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Abstract: In this paper, we investigated a new manifold with a poly-Norden structure, which is inspired by the positive
root of the equation x2 −mx− 1 = 0 . We call this new manifold as holomorphic poly-Norden manifolds. We examine
some properties of the Riemann curvature tensor and give an example of this manifold. Then, we define a different
connection on this manifold which is named the semisymmetric metric poly F-connection and study some properties of
the curvature and torsion tensor field according to this connection.
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1. Introduction
The theory of differential structures on manifolds is studied with great interest. In [19], the authors have
extensively investigated complex, product, contact, and f-structures. Later, a very interesting structure was
defined on the manifolds, which is called the golden-structure [1]. In fact, the golden-structure is inspired by

the equation x2 − x − 1 = 0 , whose positive root η = 1+
√
5

2 = 1.61803398874989... is the golden ratio. If the
equation φ2 − φ − I = 0 is provided on manifold M , then (M,φ) is called golden manifold, where φ is the
tensor field of type (1, 1) on the manifold.

In [9], the authors defined metallic structures which are the generalization of the golden structure. For

integers p and q , the metallic ratio σp,q =
p+

√
p2+4q

2 is the root of the equation x2 − px − q = 0 . Also, a
manifold M endowed with the tensor field J of type (1, 1) , such that J2 − pJ − qI = 0 , is named metallic
manifold. Many authors have made interesting studies on golden and metallic manifolds. In one of them [4], they
defined a semisymmetric metric F -connection on golden manifolds and made studies on it. A semisymmetric
connection ∇ is a connection whose torsion tensor checks the equation S(U, V ) = w(V )U − w(U)V , where
U , V are vector fields and w is a covector field. In addition, if this connection holds the requirements ∇g = 0

and ∇F = 0 , then this connection is called semisymmetric metric F -connection. See [2, 3, 5, 11, 13, 17, 18]
studies for more information.

The new bronze ratio is defined by

Bm =
m+

√
m2 − 4

2
,
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which is the positive root of the equation x2 − mx + 1 = 0 [10]. In [14], by inspiring from the ratio, the
author introduced a new structure on a manifold, which is called a poly-Norden structure. In his work, the
author examined some geometric properties of the poly-Norden manifold and investigated certain maps between
poly-Norden manifolds and other manifolds endowed with different structures.

A poly-Norden structure on a differentiable manifold M is a (1, 1) -type tensor field (affinor) F , which
satisfies the relation F 2 = mF − I , where I is the identity operator on the Lie algebra of vector fields on
the manifold. Thus, the pair (M,F ) is named an almost poly-Norden manifold. We say that a semi-Riemann
metric g is pure (or self-adjoint) with respect to a poly-Norden structure F if g(FU, V ) = g(U,FV ) for any
vector fields U, V . Also, if g(FU,FV ) = mg(FU, V ) − g(U, V ) , then the semi-Riemann metric g is called a
F -compatible metric (see [6, 7]). So, an almost poly-Norden manifold (M,F ) endowed with a semi-Riemann
metric g is called an almost poly-Norden semi-Riemann manifold and is represented by (M, g, F ) [14]. Also,
see [12] study for more information on almost poly-Norden manifolds.

In this paper, we derive the integrability condition of the almost poly-Norden structure F on (M, g, F )

with the help of a different operator whose name is φ operator (or Tachibana operator) [16]. Then, we named
this manifold (M, g, F ) as holomorphic poly-Norden manifold because it satisfies the condition φF g = 0 and by
examining the curvature property, we gave an example of such manifold. After that, we introduced a connection
p∇ with semisymmetric torsion endowed with poly-Norden structure F on this manifold and proved that this
new connection satisfies the equations p∇g = 0 and p∇F = 0 , that is, p∇ is a semisymmetric metric F -
connection. Finally, by using the operator φ , we investigated the curvature and torsion properties of this
connection p∇ .

2. Preliminaries
Let Mn be (n = 2k ) differentiable manifold of class C∞ . Throughout this paper, all connections and tensor
fields on the manifold will be assumed to be of class C∞ . In addition, the set of tensor fields of type (p, q) will
be represented by ℑp

q(Mn) . For example, the set of vector and covector fields will be indicated by ℑ1
0(Mn) and

ℑ0
1(Mn) , respectively. Now, let us give some definitions that we will use in this article.

Definition 2.1 ([16]) Let Mn be differentiable manifold. For any K ∈ ℑ0
q(Mn) , if the following condition

holds, then the tensor field K is called a pure tensor field.

K(JV1, V2, ..., Vq) = K(V1, JV2, ..., Vq)

= ... = K(V1, V2, ..., JVq),

where V1, V2, ..., Vq ∈ ℑ1
0(Mn) and J ∈ ℑ1

1(Mn) .

Definition 2.2 ([16]) Let Mn be differentiable manifold. If K is a pure tensor field, then the operator φ (or
Tachibana operator) applied to this tensor is given by

(φJK)(X,V1, V2, ..., Vq) (2.1)

= (JX)(K(V1, V2, ..., Vq))−X(K(JV1, V2, ..., Vq))

+

q∑
i=1

K(V1, ..., (LVi
J)X, ..., Vq),
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where X ∈ ℑ1
0(Mn) and LV represents the Lie differentiation according vector field V .

Let J be a complex structure, that is, J2 = −I . In the equation (2.1), if φJK = 0 , then the vector field
K is called a holomorphic (or analytic) tensor field. The Riemann metric g on an almost complex manifold
(Mn, J) is called a Norden (or anti-Hermitian) manifold if it satisfies the condition

g(JU, V ) = g(U, JV ) or g(JU, JV ) = −g(U, V ),

where U, V ∈ ℑ1
0(Mn) . It is easy to see that g is a semi-Riemannian metric [6]. Then, the triplet (Mn, g, J) is

named almost Norden manifold. Besides, if ∇J = 0 , then the triplet (Mn, g, J) becomes a Norden (anti-Kähler)
manifold, where ∇ is the Riemannian connection of g .

On almost Norden manifold (Mn, g, J) , if φJg = 0 , then g is holomorphic and this manifold is called
almost holomorphic Norden manifold.

3. Holomorphic poly-Norden manifolds

In [14], the author (Propositions 3.4 and 3.5) shows that complex and poly-Norden structures will be written
in terms of each other, such that

F± =
m

2
I ±

√
4−m2

2
J (3.1)

and

J± = ±
(

−m√
4−m2

I +
2√

4−m2
F

)
,

where −2 < m < 2 . From the equation (2.1) and (3.1), we obtain

φFK =

√
4−m2

2
φJK (3.2)

and from here, we can easily say that if φFK = 0 , then the tensor K is holomorphic. This means that we can
study holomorphicity on the almost poly-Norden semi-Riemann manifold (Mn, g, F ) .

Theorem 3.1 Let (Mn, g, F ) be an almost poly-Norden semi-Riemann manifold. If ∇ denotes the Levi-Civita
connection of the metric g , then ∇F = 0 if and only if φF g = 0 .

Proof From the covariant derivation of the g(FU, V ) = g(U,FV ) with respect to Riemann connection ∇ , we
obtain

g((∇XF )U, V ) = g(U, (∇XF )V ).

Applying φ to the Riemannian tensor g and from LUV = [U, V ] = ∇UV −∇V U , we get

(φFXg)(U, V ) = (FX)g(U, V )−Xg(FU, V )

+g((LUF )X,V ) + g(U, (LV F )X)

= −g((∇XF )U, V ) + g((∇UF )X,V ) + g(X, (∇V F )U)

and
(φFV g)(U,X) = −g((∇V F )U,X) + g((∇UF )V,X) + g(V, (∇XF )U). (3.3)
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From the last two equations, we have

(φFXg)(U, V ) + (φFV g)(U,X) = 2g((∇UF )V,X). (3.4)

It is clear that in the equation (3.3), if ∇F = 0 , then φF g = 0 and in the equation (3.4), if φF g = 0 , than
∇F = 0 . 2

Also, from the equation (3.2), we have

φF g =

√
4−m2

2
φJg.

Then, if φF g = 0 ( or ∇F = 0), then the triplet (Mn, g, F ) is called holomorphic poly-Norden manifold.

Twin metric G of the almost poly-Norden semi-Riemann manifold (Mn, g, F ) is defined by

G(U, V ) = g(FU, V ), (3.5)

for X,Y ∈ ℑ1
0(Mn) . Then,

G(U, V ) = g(FU, V )

= g(V, FU)

= g(FY,U) = G(V,U)

and

G(FU, V ) = g(F 2U, V )

= g(FU,FV ) = G(U,FV ),

that is, twin metric G is both symmetric and pure according to poly-Norden structure F . From the covariant
derivation of the equation (3.5) with respect to Riemann connection ∇ , we obtain

(∇XG)(U, V ) = (∇Xg)(FU, V ) + g((∇XF )U, V )

= g((∇XF )U, V )

and then,

Proposition 3.2 Let (Mn, g, F ) be a holomorphic poly-Norden manifold. The Riemann connection of the
metric g equals to the Riemann connection of the twin metric G , i.e., G∇ = ∇ .

Let gR and GR be Riemann curvature tensors of the metric g and the twin metric G , respectively.
From the proposition 3.2, we can easily see that gR = GR . The Ricci identity for poly-Norden structure F on
holomorphic poly-Norden manifold (Mn, g, F ) is as follows:

gR(U, V, FZ)− F (gR(U, V, Z)) = 0. (3.6)
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Also, for the (0, 4) -type of the curvature tensor gR , we get gR(U, V, Z,W ) = g(R(U, V, Z),W ) and

gR(U, V, FZ,W ) = g(gR(U, V, FZ),W )

= g(F gR(U, V, Z),W )

= g(gR(U, V, Z), FW )

= gR(U, V, Z, FW ),

that is, the curvature tensor gR is pure according to Z and W . Besides, from the gR(U, V, Z,W ) =
gR(Z,W,U, V ) property of the curvature tensor gR , we have

gR(FU, V, Z,W ) = gR(U,FV,Z,W ).

Finally, for gR = GR and (3.5), the curvature tensor GR of the twin metric G is as follows:

GR(U, V, Z,W ) = G(GR(U, V, Z),W )

= g(F (GR(U, V, Z)),W )

= g(GR(U, V, Z), FW )

= gR(U, V, Z, FW )

and
GR(Z,W,U, V ) = gR(Z,FW,U, V ).

From the last two equations, we obtain gR(U, V, Z, FW ) = gR(Z,FW,U, V ) . After all, we say that the
curvature tensor gR is pure with regard to poly-Norden structure F , i.e.

gR(FU, V, Z,W ) = gR(U,FV, Z,W )

= gR(U, V, FZ,W ) = gR(U, V, Z, FW ).

Then,

Theorem 3.3 Let (Mn, g, F ) be a holomorphic poly-Norden manifold. Then, φF
gR = 0 , that is, the curvature

tensor gR is a holomorphic tensor.

Proof From the covariant derivation of the equation (3.6), we have,

(∇X
gR)(FU1, U2, U3) = F (∇X

gR)(U1, U2, U3). (3.7)

If the operator φ is applied to the Riemann curvature tensor gR , we obtain

(φFX
gR)(U1, U2, U3, U4) = (∇FX

gR)(U1, U2, U3, U4) (3.8)

−(∇X
gR)(FU1, U2, U3, U4).
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Substituting (3.7) in (3.8) and using the Bianchi’s 2nd identity for the tensor field gR , we obtain

(φFX
gR)(U1, U2, U3, U4) = g((∇FX

gR)(U1, U2, U3)− (∇X
gR)(FU1, U2, U3), U4)

= g((∇FX
gR)(U1, U2, U3)− F (∇X

gR)(U1, U2, U3), U4)

= −g((∇U2

gR)(FX,U1, U3) + (∇U1

gR)(U2, FX,U3)

+F (∇X
gR)(U1, U2, U3), U4)

= −g(F ((∇U2

gR)(X,U1, U3) + (∇U1

gR)(U2, X, U3)

+(∇X
gR)(U1, U2, U3), U4)

= −g( σ
(X,U1,U2)

(∇X
gR)(U1, U2, U3), FU4)

= 0

where σ represents the cyclic sum over X , U1 , and U2 . Finally, from the equation (3.2), we have

φF
gR =

√
4−m2

2
φJ

gR,

namely, the curvature tensor gR is a holomorphic tensor. 2

Example 3.4 Let R2n be a semi-Euclidean space endowed with semi-Euclidean metric g , that is,

g =

(
δji 0

0 −δj
i

)

where i, j = 1, ..., n, i, j = n+ 1, ..., 2n . Also, let Cn be a complex space with R2n such that

s : z ∈ Cn −→ s(z) = Z ∈ R2n,

where z = (z1, z2, ..., zn), s(z) = Z = (x1, x2, ..., xn; y1, y2, ..., yn) and zt = xt + iyt, t = 1, 2, ..., n . Then, the
complex structure J on R2n is given by

J =

(
0 δji

−δj
i

0

)
.

From here, we easily see that gimFm
j = gmjF

m
i = , i.e. the structure J is compatible (purity) with metric g and

then (R2n, J, g) is a holomorphic Norden Euclidean space. Also, poly-Norden structures F± on R2n obtained
from complex structure J are as follows:

F± =

(
m
2 δ

j
i ±

√
4−m2

2 δj
i

∓
√
4−m2

2 δj
i

m
2 δ

j
i

)

and the triple (R2n, F, g) is called a holomorphic poly-Norden Euclidean space.
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4. Semisymmetric metric poly F -connection
In this section, we are going to study the holomorphic poly-Norden manifold endowed with another connection
rather than the metric connection.

Theorem 4.1 Let (Mn, g, F ) be a holomorphic poly-Norden manifold and p∇ be a connection with torsion pT

on that manifold such that

pT (U, V ) = γ(V )(U)− γ(U)(V )− γ(FV )(FU) + γ(FU)(FV ) (4.1)

where U, V ∈ ℑ1
0(Mn) and γ ∈ ℑ0

1(Mn) . If this connection satisfies p∇g = 0 and p∇F = 0 , then

p∇UV = ∇UV + γ(V )(U)− g(U, V )(W ) (4.2)

−γ(FV )(FU) + g(FU, V )(FW ),

where ∇ stands for the Levi-Civita connection of the metric g and g(W,Y ) = γ(Y ), W ∈ ℑ1
0(Mn) .

Proof It is well known that a new connection p∇ can be formed with

p∇UV = ∇UV +D(U, V ), (4.3)

where D is the deformation tensor field of type (1,2). Then, from pT (U, V ) =p ∇UV −p ∇V U − [U, V ] and the
method of Hayden [8], we obtain

pT (U, V ) = D(U, V )−D(V,U) (4.4)

If p∇g = 0 , we have
D(U, V, Z) +D(U,Z, V ) = 0. (4.5)

From the equations (4.4) and (4.5), we have

pT (U, V, Z) = D(U, V, Z)−D(V,U, Z)

pT (Z,U, V ) = D(Z,U, V )−D(U,Z, V )

pT (Z, V, U) = D(Z, V, U)−D(V, Z, U)

and then
pT (U, V, Z) +p T (Z,U, V ) +p T (Z, V, U) = 2D(U, V, Z),

where pT (U, V, Z) = g(pT (U, V ), Z) .
Substituting (4.1) in the last equation, we get

D(U, V ) = γ(V )(U)− g(U, V )(W )− γ(FV )(FU) + g(FU, V )(FW ).

Also, the connection given by (4.2) satisfies the condition p∇F = 0 . So, this proof is complete. 2

From now on, the connection p∇ will be called semisymmetric metric poly F -connection.
With a simple calculation, we can see that the torsion tensor pT is pure according to poly-Norden

structure F , i.e.
pT (FU, V ) = pT (U,FV ) = F pT (U, V ).
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Also, in [15], the author has proved that an F−connection is pure if and only if its torsion tensor is pure. Then,
we can easily write as following equation:

p∇FUV = p∇U (FV ) = F p∇UV.

Then,

Theorem 4.2 Let (Mn, g, F ) be a holomorphic poly-Norden manifold. If the covector γ in (4.1) is holomorphic,
then the torsion tensor pT is also a holomorphic tensor, i.e. φF γ = 0 and φF

pT = 0 .

Proof By applying the φ operator to the torsion tensor pT , we get

(φFX
pT )(U, V ) = (p∇FX

pT )(U, V )− (p∇X
pT )(FU, V ) (4.6)

= [(p∇FXγ)(V )− (p∇Xγ)(FV )](U)

−[(p∇FXγ)(U)− (p∇Xγ)(FU)](V )

+[(p∇FXγ)(FU)−m(p∇Xγ)(FU)

+(p∇Xγ)(U)](FV )

−[(p∇FXγ)(FV )−m(p∇Xγ)(FV )

+(p∇Xγ)(V )](FU).

Also, for the covector field γ in the equation (4.1), we obtain

(φFXγ)(U) = (p∇FXγ)(U)− (p∇Xγ)(FU) (4.7)
= 0

Finally, from the equation (4.6) and (4.7), we get

(φFX
pT )(U, V ) = (φFXγ)(V )(U)− (φFXγ)(U)(V )

+(φFXγ)(FV )(FU)− (φFXγ)(FU)(FV )

= 0

2

Then, we write the following corollary:

Remark 4.3 1. From the equation (3.2), it is obvious that

φF γ =

√
4−m2

2
φJγ,

and

φF
pT =

√
4−m2

2
φJ

pT,

2. If φF
pT = 0 , from (φFX

pT )(U, V ) = (p∇FX
pT )(U, V )− (p∇X

pT )(FU, V ) , we can write

(p∇FX
pT )(U, V ) = (p∇X

pT )(FU, V )

= (p∇X
pT )(U,FV ) = F (p∇X

pT )(U, V ),
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that is, the covariant derivation of the torsion tensor pT according to p∇ is pure according to poly-Norden
structure F .

3. The last theorem can also be proved for Riemann connection ∇ , that is, we write (φFX
pT )(U, V ) =

(∇FX
pT )(U, V )− (∇X

pT )(FU, V ) and

(∇FX
pT )(U, V ) = (∇X

pT )(FU, V )

= (∇X
pT )(U,FV ) = F (∇X

pT )(U, V ).

Throughout this article, we will assume that φF γ = 0 , that is,

(p∇FXγ)(U)− (p∇Xγ)(FU) = 0.

5. The curvature tensor of semisymmetric metric poly F -connection

It is well-known that the curvature tensor of any linear connection ∇ for all vector fields is as follows:

R(U, V, Z) = (∇U∇V −∇V ∇U −∇[U,V ])Z.

Then, (0, 4) -type of the curvature tensor for the connection (4.2) has the following form:

pR(U, V, Z,W ) = gR(U, V, Z,W ) (5.1)

+ς(U,Z)g(V,W )− ς(V, Z)g(U,W )

+ς(V,W )g(U,Z)− ς(U,W )g(V, Z)

+ς(V, FZ)g(FU,W )− ς(U,FZ)g(FV,W )

+ς(U,FW )g(FV,Z)− ς(V, FW )g(FU,Z),

where

ς(U, V ) = (∇Uγ)(V )− γ(U)γ(V ) +
1

2
γ(W )g(U, V ) (5.2)

+γ(FU)γ(FV )− 1

2
ω(FW )g(FU, V ).

It is said that the curvature tensor pR is hold:

pR(U, V,W,Z) = − pR(U, V, Z,W ) = − pR(V,U, Z,W ),

that is, pR is antisymmetric according to the first and last two components. Also,

ς(U, V )− ς(V,U) = (∇Uγ)(V )− (∇V γ)(U) (5.3)

and for the exterior differential operator d applied to the covector field ω , we get

2(dγ)(U, V ) = Uγ(V )− V γ(U)− γ([U, V ]) (5.4)

= (∇Uγ)V + γ(∇UV )− (∇V γ)U − γ(∇V U)− γ([U, V ])

= (∇Uγ)V − (∇V γ)U + γ(∇UV −∇V U)− γ([U, V ])

= (∇Uγ)(V )− (∇V γ)(U).
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From the equations (5.3) and (5.4), we obtain

ς(U, V )− ς(V,U) = (∇Uγ)(V )− (∇V γ)(U) (5.5)

= 2(dγ)(U, V ).

Then, we write the following corollary.

Corollary 5.1 1. The covector field γ is closed if and only if the tensor field ς is symmetric.

2. If the covector field γ is a gradient, that is γ = ∂f , then the tensor ς is symmetric.

For the tensor ς given by (5.2) is pure with regard to poly-Norden structure F , that is,

ς(U,FV )− ς(FU, V ) = [(∇Uγ)(FV )−(∇FUγ)(V )]

= (φFUγ)(V )

= 0

and from the equation (5.5), we get

pR(U, V, Z,W )−p R(Z,W,U, V )

= 2(dγ)(U,Z)g(V,W )− 2(dγ)(V, Z)g(U,W )

+2(dγ)(V,W )g(U,Z)− 2(dγ)(U,W )g(V, Z)

+2(dγ)(FV,Z)g(FU,W )− 2(dγ)(FU,Z)g(FV,W )

+2(dγ)(FU,W )g(FV,Z)− 2(dγ)(FV,W )g(FU,Z),

then,

Proposition 5.2 For the curvature tensor pR , if the covector field γ is closed (dγ = 0), then pR(U, V, Z,W )−p

R(Z,W,U, V ) = 0 .

By applying the φ operator to the tensor ς , we get

(φFXς)(U, V ) = (p∇FXς)(U, V )− (p∇Xς)(FU, V ) (5.6)

= (∇FXς)(U, V )− (∇Xς)(FU, V )

From the equation (5.2), we have

(φFXς)(U, V ) = (∇FX ∇Uγ) (V )− (∇X ∇FUγ) (V ). (5.7)

In the last equation, if we apply the Ricci identity to the 1-form γ , we obtain

(∇FX ∇Uγ) (V ) = (∇U ∇FXγ) (V )− 1

2
γ(gR(FX,U, V ))
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and

(∇X ∇FUγ) (V ) = (∇X ∇Uγ) (FV )

= (∇U ∇Xγ) (FV )− 1

2
γ(gR(X,U, FV ))

= (∇U ∇FXγ) (V )− 1

2
γ(gR(X,FU, V ))

Substituting (5.2) in the equation (5.6), we get

(φFXς)(U, V ) = −1

2
γ[gR(FX,U, V )− gR(X,U, FV )]

= 0.

Then,

Proposition 5.3 Let (Mn, g, F ) be a holomorphic poly-Norden manifold. The tensor ς given by the equation

(5.2) is a holomorphic tensor, that is, φF ς =
√
4−m2

2 φJ ς and

(p∇FXς)(U, V ) = (p∇Xς)(FU, V ) = (p∇Xς)(U,FV ). (5.8)

Because of the purity of the tensor ς , we say that the curvature tensor of the semisymmetric metric poly
F -connection is a pure tensor, namely,

pR(FU, V, Z,W ) = pR(U,FV,Z,W )

= pR(U, V, FZ,W ) = pR(U, V, Z, FW )

and from (2.1) and (5.1), we obtain

(φFX
pR)(U1, U2, U3, U4) = (p∇FX

pR)(U1, U2, U3, U4) (5.9)

−(p∇X
pR)(FU1, U2, U3, U4).

Substituting (5.1) in the last equation, we have

(φFX
pR)(U1, U2, U3, U4)

= (p∇FX
gR)(U1, U2, U3, U4)− (p∇X

gR)(FU1, U2, U3, U4)

+(φFXς)(U1, U3)g(U2, U4)− (φFXς)(U2, U3)g(U1, U4)

+(φFXς)(U2, U4)g(Y1, U3)− (φFXς)(Y1, Y4)g(U2, U3)

+(φFXς)(FU2, U3)g(FU1, U4)− (φFXς)(FU1, U3)g(FU2, U4)

+(φFXς)(FU1, U4)g(FU2, U3)− (φFXς)(FU2, U4)g(FU1, U3)

From the proposition 5.3 and theorem 3.3, we obtain

(φFX
pR)(U1, U2, U3, U4) = (p∇FX

gR)(U1, U2, U3, U4)

−(p∇X
gR)(FU1, U2, U3, U4)

= (φFX
gR)(U1, U2, U3, U4)

= 0.
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Finally,

Theorem 5.4 Let (Mn, g, F ) be a holomorphic poly-Norden manifold. The curvature tensor pR of the semi-

symmetric metric poly F -connection is a holomorphic tensor, i.e. φF
pR =

√
4−m2

2 φJ
pR and

(p∇FX
pR)(U1, U2, U3, U4) = (p∇X

pR)(FU1, U2, U3, U4)

= (p∇X
pR)(U1, FU2, U3, U4)

= (p∇X
pR)(U1, U2, FU3, U4)

= (p∇X
pR)(U1, U2, U3, FU4)

= F (p∇X
pR)(U1, U2, U3, U4).
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