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Abstract: In this paper, we prove new fixed-circle (resp. fixed-disc) results using the bilateral type contractions on a
metric space. To do this, we modify some known contractive conditions called the Jaggi-type bilateral contraction and
the Dass-Gupta type bilateral contraction. We give some examples to show the validity of our obtained results. Also,
we construct an application to rectified linear units activation functions used in the neural networks. This application
shows the importance of studying “fixed-circle problem”.
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1. Introduction and definition of the problem

There are some examples of self-mappings which have a unique fixed point or more than one fixed point. For
example, let (R, d) be the usual metric space with the function d : R× R → [0,∞) defined as

d(x, y) = |x− y| ,

for all x, y ∈ R . If we consider the self-mappings f : R → R and g : R → R defined as

fx = 1− x

and
gx = x2 − 4x+ 6,

for all x ∈ R , then f has a unique fixed point x0 = 1
2 and g has two fixed points x1 = 2 , x2 = 3 . If the

number of fixed points of a self-mapping is more than one, the following question occurs:
QUESTION : What are the geometric properties of fixed points in which case a self-mapping has more

than one fixed point?
As a new light to the fixed-point theory, by geometric thinking, the above question has been defined as

“fixed-circle problem”. This problem was first discussed in [15]. The studying of this problem gains importance
both in terms of theoretical mathematical studies and some applied areas.

Now, what is the notion of a fixed circle?
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Let (X, d) be a metric space, Cx0,r = {x ∈ X : d(x, x0) = r} a circle and T : X → X a self-mapping. If
Tx = x for every x ∈ Cx0,r then Cx0,r is called as the fixed circle of T [15].

If we consider the definition of a fixed circle, we see that there are a lot of examples of an activation function
used in neural networks. For example, let (C, dC) be the usual metric space with the function dC : C×C → [0,∞)

defined as
dC(z, w) = |z − w| ,

for all z, w ∈ C , where C is the set of all complex numbers. If we take the self-mapping T : C → C as

Tz =

{
1
z ; z ̸= 0
0 ; z = 0

,

for all z ∈ C , where z is a complex conjugate of the complex number z , then C0,1 is the fixed circle of T . In
[22], the activation function defined as

fz =
1

z
,

for all z ∈ C − {0} , which has a fixed circle, was used in the complex-valued neural network (CVNN). The
purpose of these activation functions is to ensure the existence of fixed points of the complex-valued Hopfield
neural network (CVHNN).

For the above reasons, the first solution of the fixed-circle problem was given on metric spaces in [15].
After this study, new solutions have been investigated on both a metric space and some generalized metric
spaces (for example, see [1–3, 6, 11–14, 16–21, 23, 24, 26–29]).

By the above motivation, in this paper, we present new solutions to the fixed-circle problem using the
bilateral type contractions on a metric space. To do this, we inspire of the given definitions and the obtained
results in [5] because in [5], fixed-point theorems were obtained for the cases where the number of fixed points
is at least one. In Section 2, we give a brief survey related to the fixed-circle problem. In Section 3, we
modify some known contractive conditions called the Jaggi-type bilateral contraction and the Dass-Gupta type
bilateral contraction to obtain new fixed-circle (resp. fixed-disc, common fixed-circle, common fixed-disc) results.
In Section 4, we construct an application of our theoretical results to rectified linear units activation functions.

2. A survey of the recent solutions

The first solution of the fixed-circle problem was given using Caristi’s inequality [4] on metric spaces as follows:

Theorem 2.1 [15] Let (X, d) be a metric space and Cx0,r a circle on X . Let us define the mapping
φ : X → [0,∞) as

φ(x) = d(x, x0),

for all x ∈ X . If there exists a self-mapping T : X → X satisfying
(C1) d(x, Tx) ≤ φ(x)− φ(Tx) ,
(C2) d(Tx, x0) ≥ r ,

for each x ∈ Cx0,r , then the circle Cx0,r is a fixed circle of T .

The above theorem can be considered an existence theorem of a fixed circle, that is, this theorem
guarantees the existence of a fixed circle of a self-mapping T . The conditions (C1) and (C2) have a geometric
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meaning. The condition (C1) guarantees that Tx is not in the exterior of the circle Cx0,r and the condition (C2)

guarantees that Tx is not in the interior of the circle Cx0,r for each x ∈ Cx0,r , that is, T (Cx0,r) ⊂ Cx0,r . Using
similar geometric approaches, other existence theorems of a fixed circle were given with necessary examples and
uniqueness conditions (see [15] for more details). Also, a condition which excludes the identity map, I : X → X

defined as I(x) = x for all x ∈ X , was investigated in [15].
Using the different auxiliary function, the following fixed-circle theorem was given for the existence of a

fixed circle in [18].

Theorem 2.2 [18] Let (X, d) be a metric space, R the set of all real numbers and Cx0,r any circle on X . Let
us define the mapping φr : R+ ∪ {0} → R as

φr(u) =

{
u− r ; u > 0
0 ; u = 0

,

for all u ∈ R+ ∪ {0} . If there exists a self-mapping T : X → X satisfying
(1) d(Tx, x0) = r for each x ∈ Cx0,r ,
(2) d(Tx, Ty) > r for each x, y ∈ Cx0,r and x ̸= y ,
(3) d(Tx, Ty) ≤ d(x, y)− φr (d(x, Tx)) for each x, y ∈ Cx0,r ,

then the circle Cx0,r is a fixed circle of T .

Using the Wardowski’s techniques [31] and a Khan-type inequality [8], some fixed-circle results were
obtained with different aspects as seen in the following theorems.

Definition 2.3 [31] Let F be the family of all functions F : (0,∞) → R such that
(F1) F is strictly increasing,
(F2) For each sequence {αn} in (0,∞) the following holds

lim
n→∞

αn = 0 if and only if lim
n→∞

F (αn) = −∞,

(F3) There exists k ∈ (0, 1) such that lim
α→0+

αkF (α) = 0 .

Definition 2.4 [28] If there exist t > 0 , F ∈ F and x0 ∈ X such that for all x ∈ X the following holds :

d(x, Tx) > 0 =⇒ t+ F (d(x, Tx)) ≤ F (d(x0, x)),

then T is said to be an FC -contraction on X .

Theorem 2.5 [28] Let T be an FC -contractive self-mapping with x0 ∈ X and

r = inf {d(x, Tx) : x ̸= Tx, x ∈ X} . (2.1)

Then Cx0,r is a fixed circle of T . Especially, T fixes every circle Cx0,ρ where ρ < r .

Definition 2.6 [25] Let Fk be the family of all increasing functions F : (0,∞) → R , that is, for all
x, y ∈ (0,∞) , if x < y then F (x) ≤ F (y) .
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Definition 2.7 [12] Let (X, d) be a metric space and T : X → X a self-mapping. T is said to be an FC -Khan
type I contraction if there exist F ∈ Fk , t > 0 and x0 ∈ X such that for all x ∈ X if the following condition
holds

max {d(Tx0, x0), d(Tx, x)} ̸= 0,

then

t+ F (d(Tx, x)) ≤ F

(
h
d(Tx, x)d(Tx0, x) + d(Tx0, x0)d(Tx, x0)

max {d(Tx0, x0), d(Tx, x)}

)
,

where h ∈
[
0, 1

2

)
and if max {d(Tx0, x0), d(Tx, x)} = 0 then Tx = x .

Proposition 2.8 [12] If a self-mapping T on X is an FC -Khan-type I contraction with x0 ∈ X then we get
Tx0 = x0 .

Theorem 2.9 [12] Let (X, d) be a metric space, T : X → X a self-mapping and r defined as in (2.1) . If T

is an FC -Khan-type I contraction with x0 ∈ X then Cx0,r is a fixed circle of T .

Similar type contractive conditions and related fixed-circle results were given with some illustrative
examples on a metric space (see [12] and [28] for more details).

Now we recall the notions of a disc and a fixed disc on metric spaces. Let (X, d) be a metric space and
T : X → X a self-mapping. Then the disc is defined by

Dx0,r = {x ∈ X : d(x, x0) ≤ r} .

If Tx = x for every x ∈ Dx0,r then Dx0,r is called as the fixed disc of T (see [21] and the references therein).
“Fixed-Circle Problem” has been studied in the sense of fixed-disc results. In this context, there are some

studies in the literature. For example, in [21], some fixed-disc theorems were presented by a new approach using
the set of simulation functions and some known fixed-point techniques. Also, some possible applications of the
obtained theoretical results were discussed in the neural networks. In [23], Pant et al. obtained new fixed-circle
(resp. fixed-disc) results using the number

m(x, y) = max

{
d(x, y), ad(x, Tx) + (1− a)d(y, Ty),

(1− a)d(x, Tx) + ad(y, Ty), d(x,Ty)+d(y,Tx)
2

}
,

where 0 ≤ a < 1 and the Wardowski’s techniques. An application was constructed to discontinuous activation
functions using an appropriate fixed circle. In [24], using the similar approach and the following number

N(x, y) = max

{
d(x, y), d(x, Tx), d(y, Ty), d(y,Ty)[1+d(x,Tx)]

1+d(x,y) ,
d(x,Tx)[1+d(y,Ty)]

1+d(Tx,Ty)

}
,

new fixed-disc results were obtained and some applications of these results to real or complex-valued discontin-
uous activation functions were investigated. In [3], Bisht and Özgür studied some geometric properties of the
set of fixed points of a self-mapping with the number

L(x, y) = max

{
d(x, y), ad(x,Tx)(1+d(y,Ty))

1+d(x,y) + (1− a)d(y,Ty)(1+d(x,Tx))
1+d(x,y) ,

(1− a)d(x,Tx)(1+d(y,Ty))
1+d(x,y) + ad(y,Ty)(1+d(x,Tx))

1+d(x,y)

}
,

1333



TAŞ/Turk J Math

where 0 < a < 1 . Therefore, they proved some fixed-circle (resp. fixed-disc) theorems with necessary examples
and some applications to neural networks.

Fixed-circle problem has been also studied on some generalized metric spaces. For example, in [16], the
first solutions of this problem were obtained on an S -metric space with some illustrative examples. After this
study, new fixed-circle (or fixed-disc) results were given with various aspects (see [11, 14, 17, 26, 27]). Also, some
of these results were generalized on an Sb -metric space with geometric approaches [20]. New fixed-disc results
were investigated in rectangular and quasi metric spaces (see [1, 2]). Using known fixed-point techniques, some
applications were presented to “Fixed-Circle Problem” on 2-cone Banach spaces, Mb -metric spaces, rectangular
M -metric spaces and parametric Nb -metric spaces (see [6, 13, 19, 29]).

In some of the above studies, some open problems were left to improve fixed-circle problem. For example,
in [23], the following question was left:

Let (X, d) be a metric space and x1, . . . , xn any elements of X . Is there a circle on X with the elements
x1, . . . , xn ? If so, what is the maximum value of such n?

After examining all these studies, in the next section, we investigate new solutions to fixed-circle problem
with different techniques on metric spaces.

3. Main results
In this section, we investigate new solutions to the fixed-circle problem. To do this, we use the following numbers
given in [5].

Let (X, d) be a metric space and T : X → X a self-mapping.

RT (x, y) = max

{
d(x, y),

d(x, Tx)d(y, Ty)

d(x, y)

}

and

QT (x, y) = max

{
d(x, y),

(1 + d(x, Tx)) d(y, Ty)

1 + d(x, y)

}
.

3.1. Some bilateral type fixed-circle and fixed-disc results

We introduce new contractive conditions to obtain new fixed-circle theorems.

Definition 3.1 If there exist a function φ : X → (0,∞) and x0 ∈ X such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]RT (x0, x),

for all x ∈ X − {x0} , then T is called a Jaggi-type bilateral x0 -contractive mapping.

Theorem 3.2 Let T : X → X be a Jaggi-type bilateral x0 -contractive mapping with x0 ∈ X and r defined as

r = inf

{
d(x, Tx)

φ(x)
: x ̸= Tx, x ∈ X

}
.

If Tx0 = x0 , then T fixes the circle Cx0,r .
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Proof Let r = 0 . Then we get Cx0,r = {x0} . Using the hypothesis, we have Tx0 = x0 . Let r > 0 and
x ∈ Cx0,r be any point such that x ̸= Tx . By the Jaggi-type bilateral x0 -contraction hypothesis, we get

d(x, Tx) ≤ [φ(x)− φ(Tx)]RT (x0, x)

= [φ(x)− φ(Tx)]max

{
d(x0, x),

d(x0, Tx0)d(x, Tx)

d(x0, x)

}
= [φ(x)− φ(Tx)] d(x0, x)

= [φ(x)− φ(Tx)] r

and using the definition of r , we obtain

d(x, Tx) ≤ [φ(x)− φ(Tx)]
d(x, Tx)

φ(x)
< d(x, Tx),

a contradiction. It should be Tx = x , that is, T fixes the circle Cx0,r . 2

Theorem 3.2 can be also considered a fixed-disc result.

Corollary 3.3 Let T : X → X be a Jaggi type bilateral x0 -contractive mapping with x0 ∈ X and r defined as
in Theorem 3.2. If Tx0 = x0 , then T fixes the disc Dx0,r .

Proof By the similar arguments used in the proof of Theorem 3.2, the proof can be easily seen. 2

We give the following example.

Example 3.4 Let X = R be the usual metric space. Let us define the self-mapping T : R → R as

Tx =

{
x ; x ∈ [−1, 1]
0 ; x ∈ (−∞,−1) ∪ (1,∞)

,

for all x ∈ R . Then T is a Jaggi-type bilateral x0 -contractive mapping with x0 = 0 and the function
φ : R → (0,∞) as

φ(x) =

{
1 ; x ∈ [−1, 1]

2 |x| ; x ∈ (−∞,−1) ∪ (1,∞)
,

for all x ∈ R . Indeed, we obtain
d(x, Tx) = |x− 0| = |x| > 0

and
d(x, Tx) = |x| ≤ [2 |x| − 1] |x| = [φ(x)− φ(Tx)]RT (0, x),

for all x ∈ (−∞,−1) ∪ (1,∞) . We get

r = inf

{
d(x, Tx)

φ(x)
: x ̸= Tx, x ∈ R

}
= inf

{
|x|
2 |x|

: x ∈ (−∞,−1) ∪ (1,∞)

}
=

1

2
.

Hence, T satisfies the conditions of Theorem 3.2 and Corollary 3.3. Consequently, T fixes the circle C0, 12
={

− 1
2 ,

1
2

}
and the disc D0, 12

=
[
− 1

2 ,
1
2

]
.
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Definition 3.5 If there exists a function φ : X → (0, 1) and x0 ∈ X such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]QT (x0, x),

for all x ∈ X − {x0} , then T is called a Dass-Gupta type I bilateral x0 -contractive mapping.

Theorem 3.6 T : X → X be a Dass-Gupta type I bilateral x0 -contractive mapping with x0 ∈ X and r defined
as in Theorem 3.2. If Tx0 = x0 , then T fixes the circle Cx0,r .

Proof Let r = 0 . Then we get Cx0,r = {x0} . Using the hypothesis, we have Tx0 = x0 . Let r > 0 and
x ∈ Cx0,r be any point such that x ̸= Tx . By the Dass-Gupta–type I bilateral x0 -contraction hypothesis and
the definition of r , we obtain

d(x, Tx) ≤ [φ(x)− φ(Tx)]QT (x0, x)

= [φ(x)− φ(Tx)]max

{
d(x0, x),

(1 + d(x0, Tx0)) d(x, Tx)

1 + d(x0, x)

}
= [φ(x)− φ(Tx)]max

{
r,
d(x, Tx)

1 + r

}
< φ(x)max

{
r,
d(x, Tx)

1 + r

}
≤ φ(x)max

{
d(x, Tx)

φ(x)
,
d(x, Tx)

1 + r

}
= φ(x)

d(x, Tx)

φ(x)
= d(x, Tx),

a contradiction. It should be Tx = x , that is, T fixes the circle Cx0,r . 2

Theorem 3.6 can be considered another fixed-disc theorem.

Corollary 3.7 Let T : X → X be a Dass-Gupta–type I bilateral x0 -contractive mapping with x0 ∈ X and r

defined as in Theorem 3.2. If Tx0 = x0 , then T fixes the disc Dx0,r .

Proof By the similar arguments used in the proof of Theorem 3.6, the proof can be easily obtained. 2

We give the following illustrative example.

Example 3.8 Let X =
{
−2,− 4

3 ,−1, 0, 1, 4
3 , 2, 3

}
be the metric space with the usual metric d . Let us define

the self-mapping T : X → X as

Tx =

{
x ; x ∈

{
− 4

3 ,−1, 0, 1, 4
3 , 3

}
x+ 1 ; x ∈ {−2, 2} ,

for all x ∈ X . Then T is a Dass-Gupta–type I bilateral x0 -contractive mapping with x0 = 0 and the function
φ : R → (0, 1) as

φ(x) =

{
1
4 ; x ∈

{
− 4

3 ,−1, 0, 1, 4
3 , 3

}
3
4 ; x ∈ {−2, 2} ,

for all x ∈ X . We get

r = inf

{
1
3
4

: x ∈ {−2, 2}
}

=
4

3
.

1336



TAŞ/Turk J Math

Hence, T satisfies the conditions of Theorem 3.6 and Corollary 3.7. Consequently, T fixes the circle C0, 43
={

− 4
3 ,

4
3

}
and the disc D0, 43

=
{
− 4

3 ,−1, 0, 1, 4
3

}
.

Definition 3.9 If there exist a function φ : X → (0,∞) and x0 ∈ X such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]QT (x, x0),

for all x ∈ X − {x0} , then T is called a Dass-Gupta type II bilateral x0 -contractive mapping.

Theorem 3.10 Let T : X → X be a Dass-Gupta–type II bilateral x0 -contractive mapping with x0 ∈ X and r

defined as in Theorem 3.2. If Tx0 = x0 , then T fixes the circle Cx0,r .

Proof From the similar approaches used in the proof of Theorem 3.6, the proof can be easily seen. 2

As a consequence of Theorem 3.10, we obtain the following corollary.

Corollary 3.11 Let T : X → X be a Dass-Gupta–type II bilateral x0 -contractive mapping with x0 ∈ X and
r defined as in Theorem 3.2. If Tx0 = x0 , then T fixes the disc Dx0,r .

Proof By the similar arguments used in the proof of Theorem 3.6, the proof can be easily obtained. 2

Example 3.12 Let X = R be the usual metric space. Let us define the self-mapping T : R → R as

Tx =

{
x ; x ∈ [−2,∞)
0 ; x ∈ (−∞,−2)

,

for all x ∈ R . Then T is a Dass-Gupta type II bilateral x0 -contractive mapping with x0 = 0 and the function
φ : R → (0,∞) as

φ(x) =

{
1
2 ; x ∈ [−2,∞)
|x| ; x ∈ (−∞,−2)

,

for all x ∈ R . We obtain

r = inf

{
|x|
|x|

: x ∈ (−∞,−2)

}
= 1.

Thus, T satisfies the conditions of Theorem 3.10 and Corollary 3.11. Consequently, T fixes the circle
C0,1 = {−1, 1} and the disc D0,1 = [−1, 1] .

Now we give the following corollaries.

Corollary 3.13 Let r be defined as in Theorem 3.2. If there exist a function φ : X → (0,∞) and x0 ∈ X

such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]

(
α1d(x, x0) + α2

d(x, Tx)d(x0, Tx0)

d(x, x0)

)
,

for all x ∈ X −{x0} where α1, α2 are two nonnegative real numbers with a sum 1 and Tx0 = x0 , then T fixes
the circle Cx0,r . Especially, T fixes the disc Dx0,r .
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Proof Using the following inequality,

α1d(x, x0) + α2
d(x, Tx)d(x0, Tx0)

d(x, x0)
≤ RT (x0, x),

we derive the desired corollary. 2

Corollary 3.14 Let r be defined as in Theorem 3.2. If there exists a function φ : X → (0,∞) and x0 ∈ X

such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]

(
α1d(x, x0) + α2

(1 + d(x, Tx)) d(x0, Tx0)

1 + d(x, x0)

)
,

for all x ∈ X −{x0} where α1, α2 are two nonnegative real numbers with a sum 1 and Tx0 = x0 , then T fixes
the circle Cx0,r . Especially, T fixes the disc Dx0,r .

Proof Using the following inequality,

α1d(x, x0) + α2
(1 + d(x, Tx)) d(x0, Tx0)

1 + d(x, x0)
≤ QT (x, x0),

we see this corollary. 2

Corollary 3.15 Let r be defined as in Theorem 3.2. If there exists a function φ : X → (0,∞) and x0 ∈ X

such that
d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)] d(x, x0),

for all x ∈ X − {x0} with Tx0 = x0 , then T fixes the circle Cx0,r . Especially, T fixes the disc Dx0,r .

Proof Using the following inequality,
d(x, x0) ≤ QT (x, x0),

we prove the desired result. 2

Corollary 3.16 Let r be defined as in Theorem 3.2. If there exists a function φ : X → (0, 1) and x0 ∈ X

such that

d(x, Tx) > 0 =⇒ d(x, Tx) ≤ [φ(x)− φ(Tx)]

(
(1 + d(x0, Tx0)) d(x, Tx)

1 + d(x0, x)

)
,

for all x ∈ X − {x0} with Tx0 = x0 , then T fixes the circle Cx0,r . Especially, T fixes the disc Dx0,r .

Proof Using the following inequality,

(1 + d(x0, Tx0)) d(x, Tx)

1 + d(x0, x)
≤ QT (x0, x),

we derive the desired corollary. 2

1338



TAŞ/Turk J Math

3.2. Two bilateral type common fixed-circle theorems

In this section, we suppose that (X, d) is a metric space and T, S : X → X are two self-mappings on X . If
Tx = Sx = x for all x ∈ Cx0,r (resp. x ∈ Dx0,r ), then Cx0,r (resp. Dx0,r ) is called the common fixed circle
[12] (resp. the common fixed disc [21]) of the pair (T, S) .

Now we modify the number RT (x, y) for the pair (T, S) as follows:

RT,S(x, y) = max

{
d(x, y),

d(x, Tx)d(y, Sy)

d(x, y)

}
.

Let us define the following numbers:

rT = inf

{
d(x, Tx)

φ(x)
: Tx ̸= x, φ(x) > 0, x ∈ X

}
,

rS = inf

{
d(x, Sx)

φ(x)
: Sx ̸= x, φ(x) > 0, x ∈ X

}
,

rT,S = inf

{
d(Tx, Sx)

φ(x)
: Tx ̸= Sx, φ(x) > 0, x ∈ X

}
and

r∗ = min {rT , rS , rT,S} .

We prove the following theorem.

Theorem 3.17 Suppose that there exist a function φ : X → (0,∞) and x0 ∈ X such that

d(Tx, Sx) > 0 =⇒ d(Tx, Sx) ≤ [φ(x)− φ(Tx)]RT,S(x0, x),

for all x ∈ X − {x0} . If Tx0 = Sx0 = x0 and T is a Jaggi-type bilateral x0 -contractive mapping (or S is
a Jaggi-type bilateral x0 -contractive mapping) with x0 ∈ X , then Cx0,r∗ is a common fixed circle of the pair
(T, S) . Especially, Dx0,r∗ is a common fixed disc of the pair (T, S) .

Proof Let r∗ = 0 . Then we have Cx0,r∗ = {x0} , so using the hypothesis, Cx0,r∗ is a common fixed circle of
the pair (T, S) . Let r∗ > 0 and x ∈ Cx0,r∗ be any point such that Tx ̸= Sx . Thus, we get d(Tx, Sx) > 0 .
Using the hypothesis, we have

d(Tx, Sx) ≤ [φ(x)− φ(Tx)]RT,S(x0, x)

= [φ(x)− φ(Tx)]max

{
d(x0, x),

d(x0, Tx0)d(x, Sx)

d(x0, x)

}
= [φ(x)− φ(Tx)] d(x0, x)

= [φ(x)− φ(Tx)] r∗

< φ(x)rT,S ≤ φ(x)
d(Tx, Sx)

φ(x)
= d(Tx, Sx),

which is a contradiction. Hence, x is a coincidence point of the pair (T, S) , that is,

Tx = Sx. (3.1)
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Finally, if T is a Jaggi type bilateral x0 -contractive mapping (or S is a Jaggi type bilateral x0 -contractive
mapping) then by Theorem 3.2 we get

Tx = x (or Sx = x). (3.2)

Consequently, using the equalities (3.1) and (3.2), we obtain

Tx = Sx = x,

for all x ∈ Cx0,r∗ , that is, Cx0,r∗ is a common fixed circle of the pair (T, S) . The last part of this proof, it can
be easily seen. 2

We give the following illustrative example of the above theorem.

Example 3.18 Let X = R be the usual metric space. Let us consider the self-mapping T : R → R defined as
in Example 3.4. Let us define another self-mapping S : R → R as

Sx =

{
x ; x ∈ [−1, 1]
x
2 ; x ∈ (−∞,−1) ∪ (1,∞)

,

for all x ∈ R . Then the pair (T, S) satisfies the conditions of Theorem 3.17 with x0 = 0 and the function
φ : R → (0,∞) as

φ(x) =

{
1 ; x ∈ [−1, 1]

2 |x| ; x ∈ (−∞,−1) ∪ (1,∞)
,

for all x ∈ R . Also, we obtain

rT = inf

{
d(x, Tx)

φ(x)
: Tx ̸= x, φ(x) > 0, x ∈ X

}
= inf

{
|x|
2 |x|

: x ∈ (−∞,−1) ∪ (1,∞)

}
=

1

2
,

rS = inf

{
d(x, Sx)

φ(x)
: Sx ̸= x, φ(x) > 0, x ∈ X

}

= inf

{ ∣∣x
2

∣∣
2 |x|

: x ∈ (−∞,−1) ∪ (1,∞)

}
=

1

4
,

rT,S = inf

{
d(Tx, Sx)

φ(x)
: Tx ̸= Sx, φ(x) > 0, x ∈ X

}

= inf

{ ∣∣x
2

∣∣
2 |x|

: x ∈ (−∞,−1) ∪ (1,∞)

}
=

1

4

and

r∗ = min {rT , rS , rT,S} =
1

4
.

Consequently, C0, 14
=

{
− 1

4 ,
1
4

} (
resp. D0, 14

=
[
− 1

4 ,
1
4

])
is a common fixed circle (resp. is a common fixed

disc) of the pair (T, S) .
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Let us modify the number QT (x, y) for the pair (T, S) as follows:

QT,S(x, y) = max

{
d(x, y),

(1 + d(x, Tx)) d(y, Sy)

1 + d(x, y)

}
.

Now we give the following theorem using the numbers QT,S(x, y) and r∗ .

Theorem 3.19 Assume that there exist a function φ : X → (0,∞) and x0 ∈ X such that

d(Tx, Sx) > 0 =⇒ d(Tx, Sx) ≤ [φ(x)− φ(Tx)]QT,S(x, x0),

for all x ∈ X − {x0} . If Tx0 = Sx0 = x0 and T is a Dass-Gupta type II bilateral x0 -contractive mapping (or
S is a Dass-Gupta type II bilateral x0 -contractive mapping) with x0 ∈ X , then Cx0,r∗ is a common fixed circle
of the pair (T, S) . Especially, Dx0,r∗ is a common fixed disc of the pair (T, S) .

Proof By the similar arguments used in the proof of Theorem 3.17, we can easily prove it. 2

Example 3.20 Let X = R be the usual metric space. Let us consider the self-mapping T : R → R defined as
in Example 3.12. Let us define another self-mapping S : R → R as

Sx =

{
x ; x ∈ [−2,∞)
x
3 ; x ∈ (−∞,−2)

,

for all x ∈ R . Then the pair (T, S) satisfies the conditions of Theorem 3.19 with x0 = 0 and the function
φ : R → (0,∞) as

φ(x) =

{
1
2 ; x ∈ [−2,∞)
|x| ; x ∈ (−∞,−2)

,

for all x ∈ R . Also, we obtain

rT = inf

{
|x|
|x|

: x ∈ (−∞,−2)

}
= 1,

rS = inf

{∣∣ 2x
3

∣∣
|x|

: x ∈ (−∞,−2)

}
=

2

3
,

rT,S = inf

{∣∣x
3

∣∣
|x|

: x ∈ (−∞,−2)

}
=

1

3

and

r∗ = min {rT , rS , rT,S} =
1

3
.

Consequently, C0, 13
=

{
− 1

3 ,
1
3

} (
resp. D0, 13

=
[
− 1

3 ,
1
3

])
is a common fixed circle (resp. is a common fixed

disc) of the pair (T, S) .
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4. An application to rectified linear units activation functions
Activation functions are of great importance in the neural networks to learn and make sense of something.
The main aim of these functions is to convert an input signal of a node in the neural networks to an output
signal. There are a lot of examples of activation functions used in the neural networks. One of the most popular
activation functions is “rectified linear units (ReLU)” (see [7, 9, 10, 30] and the references therein). In this
section, we focus on “leakly rectified linear unit (LReLU)” and “parametric rectified linear unit (PReLU)”.
Using these activation functions, we give an application of the main result obtained in Section 3. To do this, at
first, we recall the notions of LReLU and PReLU, respectively:

LReLU(x) = f(x) =

{
x ; x > 0

0.01x ; x ≤ 0

and

PReLU(x) = g(x) =

{
x ; x > 0
αx ; x ≤ 0

.

If α ≤ 1 then PReLU(x) is equivalent to

h(x) = max (x, αx)

and if α = 0 then PReLU(x) is a ReLU .
Now we consider the activation function PReLU(x) with α ∈ (0, 1) . Then the function satisfies the

conditions of Theorem 3.2 on the usual metric space with x0 = 1 and the function φ : X → (0,∞) as

φ(x) =

{
1 ; x = 0
|x| ; x ̸= 0

,

for all x ∈ R . Indeed, for x ∈ (−∞, 0) , we get

d(x, g(x)) = |x− αx| = |(1− α)x| > 0,

RT (1, x) = max

{
d(1, x),

d(1, g(1))d(x, g(x))

d(1, x)

}
= |1− x|

and

d(x, g(x)) = d(x, αx) = |x− αx| = |x| |1− α|

< |x| |1− α| |1− x| = |x| (1− α) |1− x|

= (|x| − α |x|) |1− x| = (|x| − |αx|) |1− x|

= [φ(x)− φ(αx)] |1− x| = [φ(x)− φ(g(x))]RT (1, x).

Hence, g is a Jaggi-type bilateral x0 -contractive mapping. Also, we obtain

r = inf

{
d(x, g(x))

φ(x)
: x ̸= g(x), x ∈ R

}
=

{
|x− αx|

|x|
: x ∈ (−∞, 0)

}
=

{
|x| |1− α|

|x|
: x ∈ (−∞, 0)

}
= |1− α| = 1− α.
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Consequently, the activation function PReLU(x) fixes the circle C1,1−α = {α, 2− α} and the disc D1,1−α =

[α, 2− α] . On the other hand, if we take α = 0.01 , then the activation function LReLU(x) fixes the circle
C1,0.99 = {0.01, 1.99} and the disc D1,0.99 = [0.01, 1.99] .
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