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Abstract: Let W'2?(R?) be the standard Sobolev space. Denote for any real number p > 2

Jaz IVl + [uf*)dw

Ap = in
P weW12(R2),uz0 (f]R2 |u|de)2/P

Define a norm in W?(R?) by

1/2
o = ( [ (09 + e —a | \uV’de)
R2 R2

where 0 < o < Ap. Using the method of blow-up analysis, we prove that for p > 2 and 0 < a < A,, the supremum

2
sup / (™ —1—4mu?)dz
R2

u€W1’2(R2): HUHa.pSI

can be attained by some function ug € W'?(R?) with |luo]

ap=1.

Key words: Trudinger-Moser inequality, extremal function, blow-up analysis

1. Introduction and main result

Let Q be a smooth bounded domain in R? and VVO1 2(9) be the standard Sobolev space. The classical Trudinger—
Moser inequality [20, 22, 23, 27, 35] states the following:

sup / e dx < 400, Vv <dm,; (1.1)
u€Wy (), [|Vul|3<1 /€

when ~ > 47, the integral in (1.1) is still finite for any u € Wy'*(€2), but the supremum is infinity. Here and
in the sequel, || - ||s denotes the usual L®-norm for any s > 0 with respect to the Lebesgue measure.
An interesting question about (1.1) is whether extremal function exists or not. The first result for the

attainability was proved by Carleson and Chang [7] when © is a unit ball in R?. Then this result was extended
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by Struwe [26] when Q is close to a ball in measure, by Flucher [14] to arbitrary domains in R?, by Lin [19] to
a bounded domain in RN (N > 2), and by Adimurthi and Druet [2] to the following modified form: Let

A= it [Vl
ueWy % (Q),u#0

be the first eigenvalue of the Laplacian operator with respect to Dirichlet boundary condition. For any «,
0<a<AQ)

sup / et (rallul?) g < 4oo; (1.2)
ue€Wy (), | Vull3<1 /2
the supremum is infinity when a > A(f2). We can easily see that (1.2) gives more information than (1.1).
Then this result was extended by Yang [28-30] to higher dimensional Euclidean domain and closed Riemannian
surface. Later Lu and Yang [13] generalized L?-norm in (1.2) to L?-norm for any real number ¢ > 1. Precisely,
for any ¢ > 1, define
N = nf Vul/l
u€Wy 7 (Q),u0

Then for any 0 < a < A(92), there holds

2 2
sup /647Tu (1+a|\u\|q)dz<+oo;
uEW?(Q), || Vul2=1/0

the above supremum is infinity when a > A(£2). They also derived in [13] the existence of the extremal functions
for sufficiently small a > 0.

Another meaningful extension of (1.1) is to construct Trudinger—Moser inequality for unbounded domain.
Earlier works in this direction were by Cao [6], Panda [21], do O [10], Adachi and Tanaka [1]. Later Ruf [24] (for
two dimensional case) and Li and Ruf [18] (for N-dimensional case N > 2) established the critical Trudinger—

Moser inequality which states that

N=2 k| |kN/(N—1)
ay|ulN/ N CVN|U‘
sup /RN <e N E — dr < +o00, (1.3)

uEWI’N(RN)vHunl,N(RN)Sl k=0

where ay = Nw]lv/ﬂf*l), wn—_1 is the area of the unit sphere in RV, and || - w1~ @~y denotes the standard

Sobolev norm on WHN(RY) | namely

1/N
fulbwnosy = ([ (09 4 i)
RN

In fact, they also obtained the existence of extremal functions. Based on the Young inequality and the argument
of Schwarz rearrangement, Adimurthi and Yang [4] introduced a very simple proof of the critical Trudinger—

Moser inequality in RY | as well as its singular version. Precisely, one of the conclusions in [4] is that for N > 2,
7>0,0<pF<1and 0<~vy<1-7, there holds

N-—-2
1 ~ k|, | kN/(N—1)
sup / (eaww/w oy (any)"ul dr < +oo, (1.4)

N
weW N @), ulls <1 Jry |2 =0 K
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where [[ull1, - = (fen ([VulY + T|u|N)da:)1/N. Extremal functions for (1.4) was obtained by Li and Yang [16]
via the method of blow-up analysis. Recently, an analog of (1.4) with the norm |Ju||; , is replaced by a norm
involving the LP-norm was obtained by Li [15]. For more works on singular Trudinger—Moser inequalities, we

refer the reader to [3, 9, 33, 34].
It was proved by do O and Souza [11] that for 0 < a < 1, there holds

sup / (e47r(1+allu\|§)u2 —1—4n(1 +a||uH§)u2> da < +oo:
u€W2(R?), [|ully1,2 g2)=1 JR?

for any o > 1, the supremum is infinity. The existence of extremal functions was also obtained in [11] by
blow-up analysis.
Motivated by [11] and [15], we shall prove the existence of extremal functions for a class of Trudinger—
Moser inequality involving LP-norms. To be specific, let p > 2, denote
Jr2 (IVul? + [u]?)da

Ap = inf . 1.5
P wew 2@ w0 ( Jp [ulPd)?P (15)

The fact A, > 0 is based on a direct method of variation. For 0 < a < \,,, we define a norm in W2(R?) by

e = ([ Q9 e [ ) (16)

Our main result can be stated as follows.

Theorem 1.1 Let p > 2 be a real number, A\, and || - ||ap be defined as in (1.5) and (1.6) respectively. For
any fized o, 0 < a < Ny, there exists some ug € WH2(R?) with ||ug|la,, = 1 such that

/ (efmub 1 — Arug)de = sup / ('™ — 1 — dmu?)da.
R2 uEWL2(R?), [[ulla,p<1 /R?

Following Carleson and Chang [7], Li [17], Li and Ruf [18], and Yang [32], we prove Theorem 1.1 via the
method of blow-up analysis. The remaining part of this article is organized as follows. In Section 2, we prove
the existence of maximizers of the subcritical functionals. In Section 3, we analyze the asymptotic behavior
of the maximizers. In Section 4, using the argument of Carleson and Chang [7], we derive an upper bound
estimates of the critical functional under the assumption that blow-up occurs. In Section 5, we construct test
functions to conclude the existence of extremals. For notational convenience, Br represents a ball centered at
the origin with the radius R, and B% means the complement of Br in R?. The same letter C' will be used to

denote constants. And we do not distinguish sequence and subsequence.

2. The subcritical case

In this section, we prove the existence of maximizer for the subcritical functional
Jin—e(u) = / (=9 _ 1 — (47 — e)u?)da
R2
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for any 0 < € < 4m. For simplicity, set

Aop= sup / (64”“2 —1—4ru?)dz
u€WH2(R?), [[uflo,p<1 JR2

and

Aope = sup / (6(4”_E)u2 —1— (47 — e)u?)dx.
u€W2(R?), f|ulla,p <1 JR?

Lemma 2.1 Let p > 2 and 0 < o < A\, be fized. Then for any 0 < € < 4m, there exists some nonnegative
decreasing radially and symmetric function u. € C1(R?) N W12(R?) satisfying ||uclla,p =1 and
Aape = / (4m=9u _ 1 _ (47 — )u2)da. (2.1)
R2

Moreover, the Euler-Lagrange equation of u. is

€
€

—Auc + ue = 3 (4TI — 1) + e ;e
Ae = fRz U?(CMW?e)uf — 1)d$

Proof We first recall some results of the Schwarz rearrangement [12]. For any v € W12(R?), suppose that

@ is the Schwarz rearrangement of |u|. Then % is a nonnegative decreasing radially symmetric function and

/ |Vﬂ|2dx§/ |Vu|?dz, / |17|qu:/ lu|fdz (Vg > 2)
R? R? R2 R2

satisfies

and

[t 1 r - 9@y = [ (4 1 (4 g
R2 R2

Therefore, we have

Aape=sup [ (B9 — 1 — (47 — e)u?)da,
ueH JR2

where 7 is a set consisting of all nonnegative decreasing radially symmetric functions u € W2(R?) with
[ullap < 1.
To prove (2.1), we use a direct method of variation. Choose a sequence of functions uy €  such that
lim (6(4”_5)1‘% —1— (47— ui)dz = Ay pe- (2.3)
k—oo Jp2

Since 0 < o < A, we have

Ap
Ap—a

/ IVl + [ug|2)dz <
R2
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Hence, uy, is bounded in W12(R?). Up to a subsequence, there exists some function u. € . such that, as

k — o0,
ur — u. weakly in Wl’Q(RQ)7
up — ue strongly in L] (R?) (Vr > 1),
up — ue a.e. in R2.
Obviously, u. is also nonnegative decreasing radially and symmetric. The radial lemma [5] shows that for any
r € R?\{0}
1

1
2 2
u(z)]” < ;HUIIQW- (2.4)
Given any n > 0, we can choose a sufficiently large number Ry > 0 such that
/c uPdz| < g, /C uhdx gg (2.5)
Ro Ro
In view of ug — u, strongly in LTOC(R2) for any r > 1, there exists some positive integer kg such that
JRCE e
]BRO
for any k > kg. The above estimates imply that
lukllp = lluell, as &k — oo. (2.6)
This together with the fact u; — u. weakly in W12(R?) leads to
[tellov.p < limsup [[ug|a,p < 1.
k—o0
Observe that for any u € 52
2 2 2 Ap
lulde < | (|Vul* + |u|*)dz < . (2.7)
R2 R2 )\p —
By (2.4) and (2.7), we get
(471'—6)11.2 2 = (47T — 6)] 2
(e —1— (47 — e)u)dx = Z - T | dx
c Be — ]'
o ro \Jj=
Sty 1
R =T
Given any v > 0, there exists a sufficiently large 7o > 0 such that for all u € 52,
/ (6(4”_6)“2 —1— (47 — e)u?)dx < v. (2.8)

T0
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On the other hand
otk = e gy < 1 ( [ (9w + a2y~ a( | U€dx)2/p) T ox(1).
R2 R2

Noting that ||uclla,p < 1, we immediately get

limsup [Jup — ue|lwr2m2) < 1.
k— o0

This together with (1.3), the mean theorem and the fact uj, — u. strongly in L{ _(R?) for any ¢ > 1 implies
that

lim (6(4”76)“2 —1— (47 — )ui)dx = / (6(4‘”76)“3 —1— (47 — e)u?)dx. (2.9)
k— o0 By, B,
Since v > 0 is arbitrary, we have by (2.8) and (2.9)
lim (6(4”—6)“i —1— (47 — )ui)dx = / ((3(4”_5)"g —1— (47 — e)u?)dz. (2.10)
k—oo JRr2 R2

Combining (2.3) and (2.10), we conclude (2.1).
Clearly, ue # 0 and ||u.|

a,p < 1. Suppose |[te|la,p < 1. It follows that

N = [ (079 21— (dr — u)is
R2

2
) / <e<4ﬂ_e)u§/nuf|i,p_1—(47r—e) = )dx
- ||Ue||g¢,p

é Aa,p,@

It is a contradiction. Hence, we get |[ue|la,p = 1.
A straightforward calculation shows that u. satisfies the Euler-Lagrange equation (2.2). Applying elliptic
estimates to (2.2), we have u, € C1(R?). )

In view of (2.2), we show that the sequence A, has a positive lower bound.

Lemma 2.2 Let A\ be as in (2.2), we have

liminf A, > 0.
e—0
Proof For any fixed u € WH2(R?) with |lul|a,, <1, there holds

/ (64”“2 — 1 —47u?)dz = lim (6(4”_6)“2 —1— (47 — e)u?)dx
R2

e—0 R2

< lim (6(4”76)"S —1— (47 — e)u?)dz.
e—0 R2

Then we have

ap < lim ((2(4”*6)“z —1— (47 — e)u?)dz.
e—0 R2

A
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On the other hand, we can easily see that
/ (6(4”_5)“5 —1— (47 — e)u)dr < Ay
R2

Combining the above two inequalities, we get

lim (6(4”_6)“3 —1— (4m — e)ul)dr = Ay . (2.11)

e—0 R2

Using an elementary inequality t(e! — 1) > ef —1 —¢ for all ¢ > 0, we obtain

Ae >
T 4r — €

/ (U=l _ 1 — (47 — )u?)dz.
R2

This together with (2.11) implies that

Ay
liminf A\, > lim / ((3(4”*6)“g —1— (47 — e)uf)dx = %P S .
=0 =041 — € Jge 4
We finish the proof of the lemma. O

3. Blow-up analysis
In this section, we perform the blow-up analysis.

Since [[te]la,p = 1 and 0 < a < A, we obtain that wu. is bounded in W'?(R?). Then there exists ug

such that up to a subsequence,
ue —ug weakly in WH2%(R?),
uc — ug strongly in LI (R?) (Vr > 1),
Ue — up a.e. in RZ

Noting that w. is decreasing radially and symmetric, we denote

ce = ue(0) = TmaX Ue.

If ¢ is bounded, applying the standard elliptic estimate to (2.2), we conclude that u. — ug in CL_(R?) and

loc

/ (64”g — 1 — 47ud)dz = lim (6(4”_6)“z —1— (47 — e)ud)dr = Ay .
R2

e—0 R2

Hence, ug is a desire extremal function and Theorem 1.1 holds.

In the following, we assume ¢, — +00 as € — 0. Then we have

Lemma 3.1 ug =0 and |Vu.|*dx — &y, where & is the Dirac measure centered at 0.
Proof Suppose ug Z 0. Analogously to the analysis of (2.6), we have

[uellp = lluoll, as e —0.
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Consequently, there exists some ¢y > 0 such that
loae = ol 2y < 1= luoll%

for 0 < e < ep. Using e™™™ —1 = (e™ —1)(e™ — 1) + (€™ — 1) + (e™ — 1) for any m >0, n > 0 , the Holder

inequality, we have

/ (eUm—aaul _ 1)y S/ (eUm=9a((1+v) (ue—u0)* +(LH1/v)u3) _ 1)y
RrR2 RrR2

_ / (e4m=9a(10) (e—u0)® _ 1) (oldm=a11/v)ud _ 1) gy
R2

+/ (€(4Tr—e)q(1+l/)(u€—u0)2 _ 1)dx+/ (e(4w—e)q(1+1/u)ug — 1)da
R2 R2

1 1
< / (etdm=ean (+0)(we—u0)® _ 1)y | / (edm=ana(1+1/v)ud _ 1yqy ) "
- R2 R2

+/ (e(4ﬂ—e)q(1+u)(u€—u0)2 o 1)d$ +/ (e(4w—e)q(1+1/u)ug _ 1)dl‘,
R2 R2

where ¢ > 1, v >0, g1 > 1 and 1/¢; + 1/g2 = 1. Here we also use an elementary inequality due to Yang [31,
Lemma 2.1], that is, (e* —1)* < e — 1 for a > 0 and s > 1. We can choose ¢ and ¢; sufficiently close to 1

and v sufficiently close to 0 such that (47 — €)gq1(1 + v)||ue — UOH%/I/L?(]R?) < 4m. In view of Trudinger-Moser

inequality (1.3), we conclude that

/ (eWm =91l _ 1)dy < C (3.1)
RZ

for some constant C depending on ¢. It follows (3.1) that e~ 1 is bounded in L?(B;) for some ¢ > 1.
At the same time, ||luc||2 Puf~"! is bounded in L71(B;) and u, is bounded in L"(By) for r > 0. Therefore,

Au, is bounded in L*(B;y) for some s > 1. Applying the elliptic estimate to (2.2), we conclude that wu. is
bounded in B /5, which contradicts cc — +o0o as € — 0. Therefore, ug = 0.

We next prove |Vuc|?dz — g in the sense of measure as € — 0. Suppose not. There exists sufficiently
small 7 > 0 such that

limsup/ |Vue2de <1 -7
B

e—0

for some 0 < v < 1. Note that u. is decreasing radially and symmetric. We set @ (z) = uc(x) — u(7) for
© € By. Then % (z) € W) ?(By) satisfies Jo IVt |?dz <1—~. Forany ¢ > 1, ¢; >1 and 1/¢} +1/¢5 =1,
we have by the Holder inequality

ql 1 ’ ’
/ ()\zlue(e(él‘n'—e)uf _ 1)) dz < _ / ug (6(47r—6)q u? 1)dCE
B= B~

1 ‘q! 1/(]1 s 2 1/ql2
< ud M dx eUm—ad axue iy (3.2)
=1 € . .
/\e B= B+
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Since ||tella,p <1 and wu. is nonnegative decreasing radially symmetric, we have

mmg(ﬂgpmym; (3.3)

For any v > 0 and x € B7, there holds

ug(2) < (14 )@ (2) + (1+ 1/v)ud (7). (3-4)

Choosing ¢’ > 1, ¢4 > 1 sufficiently close to 1 and v > 0 sufficient small such that ¢’g5(1 +V)||Vﬂg||%2(]3 y < 1.

i

Inserting (3.3) and (3.4) into (3.2) and noticing that u. is bounded in L*(B7) for any s > 1, we conclude that
2 qa
/(gw@Wﬂ%—m dx < C, (3.5)
B=

thanks to Lemma 2.2 and Trudinger—-Moser inequality (1.1). One can see from (3.5) that )\6_11L6(e(4”_6)“3 -1)
is bounded in L7 (Br) for some ¢’ > 1. Meanwhile Jucl27Pul~" is bounded in L7 1(B). We have by the
standard elliptic estimate to (2.2) that u. is uniformly bounded in By/, contradicting c. — +oo as € — 0.
Therefore, |Vuc|?dx — dy. This completes the proof of the lemma. O
Let
re = \/):c;le_%(‘l”_e)cf.

Then we have the following:

Lemma 3.2 For any v < 4w, there holds

2
lim rfevce =0.
e—0

Proof Given R > 0, we have for any v < 47
7,2670? _ 67267(47{'7677)65 / u2(6(47r76)u§ . ].)d:l?
€ e €
R2

_ 05_2/ uze—(47r—e—'y)c§ (6(471'—6)11,3 _ 1)d.’£
Br

+622/ e (m—e= e ((Ur—ul _ 1) gy (3.6)
B

c
R

Since

) < (4 — ¢ .
/ u?(e(%'rfe)uE _ l)dx _ Z (471' : E) / u§3+2dx.
]:B .

c
R Jj=1

We then have by the radial lemma [5],

1100



LI/Turk J Math

Passing the limit € — 0, we get

liH[l) c? / ufe_(“_e_'”cz(6(4”_6)“z — 1)dx = 0.
€E—r ]BE

Noting that ¢? > u2?, whence by the Holder inequality, we have

/ u?e‘“’““"ﬁci(6(4”_5)"g —1)dz §/ ufe”“gdx
Br Br

1/p1 1/p2
< (/ ugpldx> (/ ewwfd:v) ,
o Br Br

where 1/p; + 1/ps = 1. Slightly modifying the proof of (3.5), one can get without any difficulty that
/ €1P2UL e < C.
Br

Since

/ ufpldmg/ u?Prdz = o.(1).
Br R2

The above estimates together with (3.8) imply that

lim 05_2/ uge_(‘lﬁ_e_"*)ﬁ(6(4”_6)“E — 1)dz = 0.
Br

e—0

Combining(3.6), (3.7), and (3.9), we finish the proof of the lemma.

Define two blow-up functions
ve(z) = ¢ ue(rex)
and
We(x) = ce (ue(rex) — ce) -

We state the result in the following form:

Lemma 3.3 Let v, and w, be defined as in (5.10) and (3.11). Then v. — 1 in CL

loc

(R?), we — w in

where w s given by
1
w(zx) = i log(1 4 7|z|?).

Moreover,

/ S (@) g = 1.
R2

Proof By calculation, we obtain

_26—(47r—e)cf + 06_21)5 (x)e(47r—e)(1+v5(o;))w€(:v)

—Avc(z) = —rfve(x) —v(x)c,

+ar?el ™2 ||uc|; v (@)

loc

(3.8)

(3.10)

(3.11)

(R2> ’

(3.12)
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and

—Aw(z) = —rZctv.(z) — ve(m)e™ W= Ly (z)e@m ) (tve(@)we (@)

+arZel|Juel[; 7P vE ™ ().

In view of (3.10) and Lemma 3.2, we have

2 .p,p—1 »
chf||ue||§7pvf’1(x) < récPvP~ (x) _crlil (:c)1

( f[BRTE ug(x)da:> ’

Applying the elliptic estimates to (3.12) and (3.13), we get
ve—>1 in Cp(R?),

we — w in C’lloc(Rz),

where w satisfies

—Aw =" in R2
w(0) = 0 = supg: w.

By the uniqueness result obtained in [8], we have
1

w(r) = ——log(1+7|z|?) in R2
47

It follows that

+o00
, 2
/ 5@ dy =/ =1,
R2 0 (1+ 7r2)2

We next consider the convergence u. away from the concentration point 0.

ue g = min{fc., u.} for 0 < g < 1. Then we have the following:

Lemma 3.4 For any 0 < 8 < 1, there holds

limsup/ |V, g2dz = B.
R2

e—0

Proof For any fixed R > 0, testing (2.2) by (u. — Bce)™, we have

/ |V (ue — Bee)T|de = / VuV(ue — Be)tdr
R2 R2

(3.13)

(3.14)

O
Following [2, 17], define

= —/ ue(ue — Bee) T dr + )\5_1 / ue(ue — ﬁce)+e(4ﬂ_€)uzdx
]RQ

R2

27N we(ue — Be)Tda + aHueHi_”/ (e — Beo)TuP e
RZ

R2

=(1-8)(1+ 05(1))/ ST dy 4 0,(1).

Br

1102

> / (ue — ﬁce)+(/\gluefz(m“e)“f + a\|u5||g*puf*1dx)da: +0c(1)
BRre
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Here, we used the fact u. > fce in Bg,, and
allucl[577 [ (ue = Be)Ful ™ | L1 @,y < alluelll = oc(1).
Hence,

imint [V~ et e = (- 0) [ o
R2

e—0 Br
In view of (3.14), letting R — 400, we obtain

liminf [ |V(ue — Be)tPde > 1 - B. (3.15)
e—0 ]R2

Similarly as above, testing (2.2) by ue g, we get
liminf/ |Vue g|?dz > B. (3.16)
e—0 R2

Note that |Vu|> = |Vuegl? + |V (ue — Bee)T|? almost everywhere. Combining (3.15) and (3.16), we get the
desired result. O

A consequence of Lemma 3.4 is the following.

Lemma 3.5

lim ((3(4”_5)"g — 1 — (47 — €)u?)dx = limsup —

€20 Jr2 e—0 Cz.

Proof Forany 8, 0 </ <1, we obtain
/ (6(4”_5)"E —1— (47 — e)u?)dx = / (6(47T_€)u§ —1— (47 — e)u?)dx
R? ue<fce
+ / (eWm=ue _ 1 — (47 — )ul)da
ue>LBee
=I+1I.

By Lemma 3.1 and Lemma 3.4, we have limsup, o [|[Vuesl[fy1z@e) = 8 < 1. Let 1 < s < 1/8 and
1/s+ 1/t = 1. Again using the inequality e! — 1 — ¢ < t(et — 1) for £ > 0, the Hélder inequality and the
Trudinger—Moser inequality (1.3), we can verify that

I< /]R2 (6(4”_6)“3!3 —1— (47 — e)u? 5)da

< 477/ ufﬁ(e(M*E)“fﬁ — 1)dx
R2

, 1/s 1/t
<dAr </ (etdm—esucs l)daz) (/ uf%dw)
R? RZ

1/t
<C (/RZ uffﬁdm) (3.17)
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for some constant C' depending only on 8 and s. In view of the definition of uc g, we obtain that

/R2 utyde < /R2 u?tde = o (1). (3.18)

It follows from (3.17) and (3.18) that

lim I = 0. (3.19)

e—0

Since u, — 0 in L _(R?) for any ¢ > 1, we get

loc

II = / (6(4”_5)“g —1)dz + o(1)
Ue>Pee

< 1
= B2c2
1 A

/ uz(e(‘”%)“g — 1)dx 4 0(1)
we>Pee

Combining (3.19) and (3.20), we obtain

1 Ae
lim (6(4”_6)“z —1— (47 — e)u?)dx < — limsup —-.

e—0 R2 e—0 CE
Letting 5 — 1, one has
lim (6(4”_5)“g —1— (47 — €)u?)dz < limsup k (3.21)
e—0 R2 € - e—0 C?

Note that
Ae ’U/g 47 —e)u? 2 Am —€ 4
CEZ/WCE(G( ue 1 — (47 — e)u?)dx + z /Rguedx
< / (6(4’“’76)”3 —1— (47 — e)u?)dx + o.(1).
R2
Thus,
Ae
limsup — < lim (e(‘”_e)“E —1— (47 — e)u?)da.
e—0 Ce e—0 R2
This estimate together with (3.21) implies that Lemma 3.5 holds. O

Obviously, one can derive a useful corollary from Lemma 3.5. Precisely,

Corollary 3.6 For 0 < 2, there holds

&
limsup = = 0.
e—0 €
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Proof Suppose not. There exists some constant M > 0 such that \./c! < M for § < 2. Then we have

Ae/c2 — 0 as € —» 0. Assume v € WH2(R?) and |[v]|lap = 1, we have by Lemma 3.5 that

lim (6(4”_6)”2 —1— (47 — €)v?)dz < lim (6(4”_6)“E —1— (47 — e)u?)dx
e—0 R2 e—0 R2

. A
< limsup —26
e—0 Cg¢

=0.

This is impossible since v #Z 0. Therefore, we get the desired result. O

Lemma 3.7 For any ¢ € C§°(R?), we have

lim <,0/\6_1c€u6(6(4’7_6)“z — 1)dz = ¢(0).

e—0 R2

Proof For convenience in writing, we set
he(z) = )\glcéue(e(‘“*)“? —-1).

Let 0 < 8 < 1 be fixed, we observe that

/ whedx:/ @hedaﬁL/ @heder/ phedx. (3.22)
R? ue<PBee {ue>Bee I \Brr, {ue>Bee} NBrr.

Now we estimate the integrals on the right-hand of (3.22) respectively. In view of an obvious analog of (3.19)

and thanks to Lemma 3.4 and Corollary 3.6, we have

/ phedr = e uew(e(4”_6)“§ — 1)dx
ue<Pee Ae Ju.<pe.
< e (Sup|@|> / Ue 5 (€T — 1)dy
Ae \ R2 R2
= o.(1). (3.23)

It follows from Lemma 3.2 that Br,. C {u. > Bec} for sufficiently small € > 0. We then obtain

/ ohedz = p(0)(1 + 06(1))/ A e (e — 1) da
{ue>Bcc} NBRr,

Brr,

— 0040 ([ s ro )

=(0)(1 + 0c(1) + 0r(1)), (3.24)
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and
1
/ phedr < = (sup|<p|>/ AT 2 (e —9ve — 1) dx
{ue>Be}\Bry, B\ re {ue>BeP\Bar,
1
<= <sup|<p|> 1—/ At (U — 1) da
B\ r2 Brr.
1 8w
=—(suplp|) [1- e dx + o0.(1)
B\ g2 Br
= 0.(1) + or(1). (3.25)

Inserting (3.23)—(3.25) into (3.22) and letting € — 0 first, then R — +o00, we finish the proof of the lemma. O

Let us now investigate the convergence of the function sequence ccu.. We shall prove the following

lemma.

Lemma 3.8 For any 1 < q < 2, there holds

ceue — G weakly in WEI(R?)

loc

and
ccte - G in C’lloc(Rz\{O}),

where G is a Green’s function and satisfies
—AG+G =6+ a||GH]%_pGp_1
in a distributional sense, where dg is the usual Dirac measure centered at 0.

Proof First, we claim that ||ccuc||, is bounded. To confirm this, we will use an idea similar to that in [13,

Lemma 3.5]. Multiplying both sides of (2.2) by ¢, we obtain

1
—A(cete) + cette = )\—ceue(e(‘m*e)“S -1+ ozHch€||§7p(ceue)p71. (3.26)

Suppose ||ceuel|l, = +00 as € = 0. Setting we = ceue/||cete]|p, one can easily deduce from (3.26) that

1 1
—Aw, +we = 7—06%(6(4”_6)“3 — 1)+ awP™t, (3.27)
l[ceuellp Ae

1
loc

Ruf [18, Proposition 3.7], or do O and de Souza [11, Lemma 4.9], which is motivated by the idea of Struwe [25,

which together with Lemma 3.7 implies that Aw, is bounded in L{ (R?). Applying the argument of Li and

Theorem 2.2], we conclude that w, is bounded in VVli)Cq (R?) for any 1 < g < 2. We assume up to a subsequence

we — w weakly in W,29(R?). Testing (3.27) with @(z) € C§°(R?) and letting € — 0, we have

V@dex—i—/ @wdx:a/ owP ™ da. (3.28)
R2 R2 R2

Since 0 < a < A, it follows from (3.28) that w = 0, which contradicts ||w|, = 1. Therefore, ||ccue|, is
bounded.
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Again by Proposition 3.7 in [18] or Lemma 4.9 in [11], we conclude that ccu,. is bounded in Wlf)’cq(R2)
for 1 < ¢ < 2. Hence, there exists some G € W4(R?) such that cou, — G weakly in WL(R?), and that

S

5 (R?) for s > 1. Given any v > 0, in view of that ccu. is decreasing radially and

ccue — G strongly in L

symmetric, we can find a sufficiently large number r > 0 such that

/ (ceue)Pdr| <v (3.29)
B
and
/ GPdx| < wv. (3.30)
Moreover, we have
lim (ceus)pdzzz:/ GPdz. (3.31)
e—0 B, B,

It follows from (3.29)—(3.31) that

e—0

lim (cgus)pdarz/ GPdx.
R2 R2

Testing (3.26) with p(z) € C§°(R?), we have

VoV (ceue)dr + /

pccucdr :/ <,0%(e(4”_6)“f —1)dz + Ol”Ceue”?)_p/ o(ceud )P tdr. (3.32)
R2 R2 R2

R2 €

Letting € — 0, we obtain

VgoVde—i—/ pGdx = ¢(0) +aHG||12,_p/ oGP~ d;
R? R2 R?

hence, G satisfies the following equation in a distributional sense
—AG+G =0+ a||G||127_pGp_1.

Let rg, Ry be such that Ry > 419 > 0, we can choose a radially symmetric cut-off function n(x) €
C§°(Bg, \B,,) that equals 1 on By, \Ba,, . By Lemma 3.1, one has ||V (nu.)||2 = 0 as e = 0, which implies that

e@m=em™uZ _1 is hounded in L* (Br,\By,) for any s > 1. Therefore, e@m=9u? _1 is bounded in L (Bar, \Bar,) -
At the same time, [[ccucl|7"(ccuc)?~" is bounded in L7 1(Bg,\B,,). Applying elliptic estimates to (3.26) two
(R?\{0}). This completes the proof of

the lemma. O
Note that

times, we get ccue — G in C1(Byy, \Bay,). That is, ccuc — G in Cf

loc

1
~a (G g toglel) = ~G+ alGIE TGP € Li(R)
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Applying elliptic estimates, we get (G + 5= log|z|) € CL (R?\ {0}). Therefore, the Green function G takes

the following form
1
G(z) = ~3- log |z| + Ao + g(x), (3.33)
where Ag is a constant depending on p, g(z) € C*(R?) and ¢(0) = 0.

4. Upper bound estimate
In this section, under the assumption of ¢, — 400 as € — 0, we will use a result by Carleson and Chang [7] to

derive an upper bound of the integrals f]RQ(e(‘“T_e)“z —1— (47 — e)u?)dx.

Lemma 4.1 For any §, 0 <6 <1, we have

1 1 1
|Vuc|*de =1 — = (% logg + Ag+o0.(1) + 05(1)) ,

Bs
where 0.(1) =0 as ¢ > 0, 05(1) =0 as § — 0.

Proof In view of the Euler-Lagrange equation (2.2) and ||u¢||a,, = 1, we have by the divergence theorem

|Vue|?de =1 — / (|Vuel? +u?)dx — / uldzr + o (/ ufdx)
By R2\B, By R?

u? 2 2
=1- / — (e _1)dx — oz||u6||p_p/ uPdx
R2\Bs Ae R2\B

8
Oue 9 g
—|—/ ue—ds—/ uedac—i—a(/ ufdm) .
OB v Bs R2

Now we proceed to estimate the right five terms on the above equation respectively. A direct calculation gives

S

2 1 2 (1
/ &(6(477—6)1;? _ 1)d$[)‘ _ 72076 ug(e(4ﬂ—e)uf _ 1)dl‘ _ 0 ( )
R2\B; )\5 C¢ >\e R2\Bj

2
Ce

(4.1)

At the same time, one has

_ 1
allwl ™ [ e = 2 (@lIGIE + 0.1+ 0s(1).
5 €

Ou, 1 / oG )
Ue——dSs = — G—ds+o0.(1) |,
/E)]B5 v c? < oBs OV 1)
2 1 2
/ uidr = — (/ G dx—l—oe(l)) ;
Bs Ce Bs

P
a </ ufdx) = = (allGl7 4 0c(1)) .
R2 Ce
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Combining all the above estimates and recalling that G(x) = —3= log |z| + Ag + g(), we get the desired result

1 1 1
Ve = 1= 5 (- Tow 5+ o +ou(1) +os(1) ).

Bs

Lemma 4.2 There holds

lim sup/ (eWm=9u _ 1 — (4r — e)ud)da < met™ Aot
e—0 Brr

Proof Set s. = supgg, te = uc(0) and U = (uc —sc) ", the positive part of u. —s.. Obviously, @, € W&’Q(B5).

By Lemma 4.1, we have

1

Vi 2de < 75 =1-— - (
c
€

1 1
%logg + Ao + 0€<1) + 05(1)) .

Bs

Then we use Carleson and Chang’s upper bounded estimate [7] and conclude that

lim sup/ (6“”76)173/7@5 - 1) dx < wed?.
Bs

e—0

Note that ue = ¢ + 0(1) on Bg,. . This together (4.2) leads to that on Bg,. C Bs
(4 — e)u? < 4 (T, + s.)?
< 4ATU? + 878 i + 0c(1)
< 472 — 4logd + 8mAg + 0 (1) + 05(1)

< dmu? /1. s — 2log§ + 4w Ay + o(1),
where o(1) — 0 as € — 0 first and then § — 0. For any fixed R > 0, we calculate

/ (6(4”76)“3 —1— (47 — e)u?)da < 62t Aoto(1) / AT s g o(1)
BRrg

BRrr.

= §2¢imAoto(l) / (647”72/7—"’5 —1)dx + o(1)

BRrre

< 52t Aoto(l) / (64Wﬂf/n,5 — 1)dz + o(1).
Bs

In view of (4.3), we get

lim SUP/ (W9 _ 1 — (4r — e)ud)da < med™ Aot
e—0 Brr.

(4.2)

(4.3)
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By a change of variable z = r.y, there holds

/ (em=9we — 1 — (4 — e)ul)dr = r? / U= U gy 4 o.(1)
Brre Br

=% ([ ey o) +ou)
Br

= %(1 +0c(1) + or(1)).

As a result, we obtain

A
lim lim (6(4”_5)"E —1— (47 — e)u?)dx = lim —- (4.5)
R—+o00 €0 Brr, e—0 cf
In view of Lemma 3.5, (4.4) and (4.5), we conclude
Aap=lim [ (W™= — 1 — (47 — e)u?)dx < me*m Ao+ (4.6)
e—0 R2
as desired. O

5. Test function computation

In this section, we will construct a family of the test function ¢.(z) € WH%(R?) such that ||pc|la,, =1 and

/ (647“/’3 — 1 — 4mwp?)dx > metm Aot (5.1)
RQ

for € > 0 sufficiently small. This result contradicts with (4.6) and consequently the blow up does not occur.
Therefore we get the desired extremal function and complete the proof of Theorem 1.1.

For this purpose, we set

c—&—l(—ilog(l—i—ﬂ"xlz)—i—b) |z| < Re
c 4 €2 =
G(z)

(6]

(pe(x) = (52)

|z| > Re
where R = (—loge)?, G is the Green function given as in (3.33), b and ¢ are constants depending only on €

to be determined later.

In order to assure that ¢, € WH2(R?), we require

1 1 9 1 1
which implies that

1
4rc? = —2loge — 4mb + 4w Ay + log 4+ O(Re) + O <R2) . (5.3)
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By (3.33), we calculate

1
/ (IVee? + ¢2)dx = 3/ (|VG)? + G*)dx
R2\Bre C” JR2\Bg.
1
=3 o Gl12~ p GPdr — Ga—Gds
R2\BRF OBRe v

In view of (5.2), we have
1 1
Plde = — GPdz = — (||G|5 + O(Relog(Re)) .
/]Rz\]ERe & JR2\Bg. P ( g )

Meanwhile, we obtain

1 Re  op3
/ |V<p5|2dm: / ! ——dr
Br. drc? Jo o (r24<)?

1 1
— logm — 1 + log R?
T2 (ogw +log R +O(R2))

In addition, we require b to be bounded with respect to €. Then we have

A 2d = O((Re)*(~loge)),

and
4 Pdr = O((Re)*(~ loge) %),

Combining (5.4)—(5.8), we conclude

4m
Setting [|@ellap =1, we get

1 1 1 1
2o Ay — — + —1 1
c 5 oge+ Ap i + i og m + O(Relog(Re)) + O (R2>

It follows from (5.3) and (5.9) that

1 1
b= = + O(Relog(Re)) + O <R2> .

In view of (5.9), (5.10) and the Taylor formula of (1 +#)? near t = 0, we conclude for any = € B,

2
47rgof(:£) > 4nc? + 8wb — 2log (1 + 7T|x2>
€

2 1
:—210g<1+7r|362)—210ge+47rA0+10g7r+1+O< )
€ R2

% ( \GHP - — log(Re) + Ao + O(Re log(Re))> .

1 1 1 1 1
loe (21,]3 =3 <27r10g6+ Ag— — + ElongrO(Relog(Re)) + 0 <R2>) )

(5.4)

(5.9)

(5.10)
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leads to

2 1 1
/ (e*™Pe — 1 — 4np?)dx > re2eAmA0t1+0(57) / ———dr ++0 (2)
Bre Bre (]_ _|_ W@) R

Re
_ 7r€72e47rA0+1+O(E1§>/ 2mr 0 <1)
o

1+ ﬂ':—i) R?
= et L O (;) : (5.11)
, on R2\Bg,, we calculate
/ (64”993 — 1 —4rp?)dx > 8712/ Ghdx
R2\B . ¢ JR2\Bg.
= Scif ( . Gdx + 06(1)> : (5.12)

Combining (5.11) and (5.12) and noting that R~2c* = o.(1), we have

8 2
/ (64”“"E — 1 —4rp?)dx > metmAotl 4 l4 ( Gdx + 06(1)> .
R2 C R2

Therefore, we conclude (5.1) for sufficiently small € — 0. O
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