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Abstract: Let W 1,2(R2) be the standard Sobolev space. Denote for any real number p > 2

λp = inf
u∈W1,2(R2),u ̸≡0

∫
R2(|∇u|2 + |u|2)dx
(
∫
R2 |u|pdx)2/p

.

Define a norm in W 1,2(R2) by

∥u∥α,p =

(∫
R2

(|∇u|2 + |u|2)dx− α(

∫
R2

|u|pdx)2/p
)1/2

where 0 ≤ α < λp . Using the method of blow-up analysis, we prove that for p > 2 and 0 ≤ α < λp , the supremum

sup
u∈W1,2(R2), ∥u∥α,p≤1

∫
R2

(e4πu2

− 1− 4πu2)dx

can be attained by some function u0 ∈ W 1,2(R2) with ∥u0∥α,p = 1 .

Key words: Trudinger–Moser inequality, extremal function, blow-up analysis

1. Introduction and main result

Let Ω be a smooth bounded domain in R2 and W 1,2
0 (Ω) be the standard Sobolev space. The classical Trudinger–

Moser inequality [20, 22, 23, 27, 35] states the following:

sup
u∈W 1,2

0 (Ω), ∥∇u∥2
2≤1

∫
Ω

eγu
2

dx < +∞, ∀γ ≤ 4π; (1.1)

when γ > 4π , the integral in (1.1) is still finite for any u ∈ W 1,2
0 (Ω) , but the supremum is infinity. Here and

in the sequel, ∥ · ∥s denotes the usual Ls -norm for any s > 0 with respect to the Lebesgue measure.
An interesting question about (1.1) is whether extremal function exists or not. The first result for the

attainability was proved by Carleson and Chang [7] when Ω is a unit ball in R2 . Then this result was extended
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by Struwe [26] when Ω is close to a ball in measure, by Flucher [14] to arbitrary domains in R2 , by Lin [19] to
a bounded domain in RN (N ≥ 2) , and by Adimurthi and Druet [2] to the following modified form: Let

λ(Ω) = inf
u∈W 1,2

0 (Ω),u ̸≡0
∥∇u∥22/∥u∥22

be the first eigenvalue of the Laplacian operator with respect to Dirichlet boundary condition. For any α ,
0 ≤ α < λ(Ω)

sup
u∈W 1,2

0 (Ω), ∥∇u∥2
2≤1

∫
Ω

e4πu
2(1+α∥u∥2

2)dx < +∞; (1.2)

the supremum is infinity when α ≥ λ(Ω) . We can easily see that (1.2) gives more information than (1.1).
Then this result was extended by Yang [28–30] to higher dimensional Euclidean domain and closed Riemannian
surface. Later Lu and Yang [13] generalized L2 -norm in (1.2) to Lq -norm for any real number q > 1 . Precisely,
for any q > 1 , define

λ(Ω) = inf
u∈W 1,2

0 (Ω),u ̸≡0
∥∇u∥22/∥u∥2q.

Then for any 0 ≤ α < λ(Ω) , there holds

sup
u∈W 1,2

0 (Ω), ∥∇u∥2=1

∫
Ω

e4πu
2(1+α∥u∥2

q)dx < +∞;

the above supremum is infinity when α > λ(Ω) . They also derived in [13] the existence of the extremal functions
for sufficiently small α > 0 .

Another meaningful extension of (1.1) is to construct Trudinger–Moser inequality for unbounded domain.
Earlier works in this direction were by Cao [6], Panda [21], do Ó [10], Adachi and Tanaka [1]. Later Ruf [24] (for
two dimensional case) and Li and Ruf [18] (for N -dimensional case N > 2) established the critical Trudinger–
Moser inequality which states that

sup
u∈W 1,N (RN ), ∥u∥

W1,N (RN )
≤1

∫
RN

(
eαN |u|N/(N−1)

−
N−2∑
k=0

αk
N |u| kN/(N−1)

k!

)
dx < +∞, (1.3)

where αN = Nω
1/(N−1)
N−1 , ωN−1 is the area of the unit sphere in RN , and ∥ · ∥W 1,N (RN ) denotes the standard

Sobolev norm on W 1,N (RN ) , namely

∥u∥W 1,N (RN ) =

(∫
RN

(|∇u|N + |u|N )dx

)1/N

.

In fact, they also obtained the existence of extremal functions. Based on the Young inequality and the argument
of Schwarz rearrangement, Adimurthi and Yang [4] introduced a very simple proof of the critical Trudinger–
Moser inequality in RN , as well as its singular version. Precisely, one of the conclusions in [4] is that for N ≥ 2 ,
τ > 0 , 0 ≤ β < 1 and 0 < γ ≤ 1− β , there holds

sup
u∈W 1,N (RN ), ∥u∥1,τ≤1

∫
RN

1

|x|Nβ

(
eαNγ|u|N/(N−1)

−
N−2∑
k=0

(αNγ)k|u| kN/(N−1)

k!

)
dx < +∞, (1.4)
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where ∥u∥1, τ =
(∫

RN (|∇u|N + τ |u|N )dx
)1/N . Extremal functions for (1.4) was obtained by Li and Yang [16]

via the method of blow-up analysis. Recently, an analog of (1.4) with the norm ∥u∥1,τ is replaced by a norm
involving the Lp -norm was obtained by Li [15]. For more works on singular Trudinger–Moser inequalities, we
refer the reader to [3, 9, 33, 34].

It was proved by do Ó and Souza [11] that for 0 ≤ α < 1 , there holds

sup
u∈W 1,2(R2), ∥u∥W1,2(R2)=1

∫
R2

(
e4π(1+α∥u∥2

2)u
2

− 1− 4π(1 + α∥u∥22)u2
)
dx < +∞;

for any α > 1 , the supremum is infinity. The existence of extremal functions was also obtained in [11] by
blow-up analysis.

Motivated by [11] and [15], we shall prove the existence of extremal functions for a class of Trudinger–
Moser inequality involving Lp -norms. To be specific, let p > 2 , denote

λp = inf
u∈W 1,2(R2),u̸≡0

∫
R2(|∇u|2 + |u|2)dx
(
∫
R2 |u|pdx)2/p

. (1.5)

The fact λp > 0 is based on a direct method of variation. For 0 ≤ α < λp , we define a norm in W 1,2(R2) by

∥u∥α,p =

(∫
R2

(|∇u|2 + |u|2)dx− α(

∫
R2

|u|pdx)2/p
)1/2

. (1.6)

Our main result can be stated as follows.

Theorem 1.1 Let p > 2 be a real number, λp and ∥ · ∥α,p be defined as in (1.5) and (1.6) respectively. For
any fixed α , 0 ≤ α < λp , there exists some u0 ∈ W 1,2(R2) with ∥u0∥α,p = 1 such that

∫
R2

(e4πu
2
0 − 1− 4πu2

0)dx = sup
u∈W 1,2(R2), ∥u∥α,p≤1

∫
R2

(e4πu
2

− 1− 4πu2)dx.

Following Carleson and Chang [7], Li [17], Li and Ruf [18], and Yang [32], we prove Theorem 1.1 via the
method of blow-up analysis. The remaining part of this article is organized as follows. In Section 2 , we prove
the existence of maximizers of the subcritical functionals. In Section 3 , we analyze the asymptotic behavior
of the maximizers. In Section 4 , using the argument of Carleson and Chang [7], we derive an upper bound
estimates of the critical functional under the assumption that blow-up occurs. In Section 5 , we construct test
functions to conclude the existence of extremals. For notational convenience, BR represents a ball centered at
the origin with the radius R , and Bc

R means the complement of BR in R2 . The same letter C will be used to
denote constants. And we do not distinguish sequence and subsequence.

2. The subcritical case
In this section, we prove the existence of maximizer for the subcritical functional

J4π−ϵ(u) =

∫
R2

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx
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for any 0 < ϵ < 4π . For simplicity, set

Λα,p = sup
u∈W 1,2(R2), ∥u∥α,p≤1

∫
R2

(e4πu
2

− 1− 4πu2)dx

and

Λα,p,ϵ = sup
u∈W 1,2(R2), ∥u∥α,p≤1

∫
R2

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx.

Lemma 2.1 Let p > 2 and 0 ≤ α < λp be fixed. Then for any 0 < ϵ < 4π , there exists some nonnegative
decreasing radially and symmetric function uϵ ∈ C1(R2) ∩W 1,2(R2) satisfying ∥uϵ∥α,p = 1 and

Λα,p,ϵ =

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx. (2.1)

Moreover, the Euler-Lagrange equation of uϵ is{
−∆uϵ + uϵ =

uϵ

λϵ
(e(4π−ϵ)u2

ϵ − 1) + α∥uϵ∥2−p
p up−1

ϵ

λϵ =
∫
R2 u

2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx.

(2.2)

Proof We first recall some results of the Schwarz rearrangement [12]. For any u ∈ W 1,2(R2) , suppose that
ũ is the Schwarz rearrangement of |u| . Then ũ is a nonnegative decreasing radially symmetric function and
satisfies ∫

R2

|∇ũ|2dx ≤
∫
R2

|∇u|2dx,
∫
R2

|ũ|qdx =

∫
R2

|u|qdx (∀q ≥ 2)

and ∫
R2

(e(4π−ϵ)ũ2

− 1− (4π − ϵ)ũ2)dx =

∫
R2

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx.

Therefore, we have

Λα,p,ϵ = sup
u∈H

∫
R2

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx,

where H is a set consisting of all nonnegative decreasing radially symmetric functions u ∈ W 1,2(R2) with
∥u∥α,p ≤ 1 .

To prove (2.1), we use a direct method of variation. Choose a sequence of functions uk ∈ H such that

lim
k→∞

∫
R2

(e(4π−ϵ)u2
k − 1− (4π − ϵ)u2

k)dx = Λα,p,ϵ. (2.3)

Since 0 ≤ α < λp , we have ∫
R2

(|∇uk|2 + |uk|2)dx ≤ λp

λp − α
.
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Hence, uk is bounded in W 1,2(R2) . Up to a subsequence, there exists some function uϵ ∈ H such that, as
k → ∞ ,

uk ⇀ uϵ weakly in W 1,2(R2),

uk → uϵ strongly in Lr
loc(R2) (∀r > 1),

uk → uϵ a.e. in R2.

Obviously, uϵ is also nonnegative decreasing radially and symmetric. The radial lemma [5] shows that for any
x ∈ R2\{0}

|u(x)|2 ≤ 1

π
∥u∥22

1

|x|2
. (2.4)

Given any η > 0 , we can choose a sufficiently large number R0 > 0 such that∣∣∣∣∣
∫
Bc
R0

up
ϵdx

∣∣∣∣∣ ≤ η

3
,

∣∣∣∣∣
∫
Bc
R0

up
kdx

∣∣∣∣∣ ≤ η

3
. (2.5)

In view of uk → uϵ strongly in Lr
loc(R2) for any r > 1 , there exists some positive integer k0 such that∣∣∣∣∣

∫
BR0

(up
k − up

ϵ )dx

∣∣∣∣∣ ≤ η

3

for any k ≥ k0 . The above estimates imply that

∥uk∥p → ∥uϵ∥p as k → ∞. (2.6)

This together with the fact uk ⇀ uϵ weakly in W 1,2(R2) leads to

∥uϵ∥α,p ≤ lim sup
k→∞

∥uk∥α,p ≤ 1.

Observe that for any u ∈ H ∫
R2

|u|2dx ≤
∫
R2

(|∇u|2 + |u|2)dx ≤ λp

λp − α
. (2.7)

By (2.4) and (2.7), we get

∫
Bc
r0

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx =

∫
Bc
r0

 ∞∑
j=2

(4π − ϵ)j

j!
u2j

 dx

≤
∞∑
j=2

(4π − ϵ)jλj
p

(λp − α)jj!

1

r2j−2
0

.

Given any ν > 0 , there exists a sufficiently large r0 > 0 such that for all u ∈ H ,∫
Bc
r0

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx ≤ ν. (2.8)

1096



LI/Turk J Math

On the other hand

∥uk − uϵ∥2W 1,2(R2) ≤ 1−
(∫

R2

(|∇uϵ|2 + u2
ϵ)dx− α(

∫
R2

up
ϵdx)

2/p

)
+ ok(1).

Noting that ∥uϵ∥α,p ≤ 1 , we immediately get

lim sup
k→∞

∥uk − uϵ∥W 1,2(R2) ≤ 1.

This together with (1.3), the mean theorem and the fact uk → uϵ strongly in Lq
loc(R2) for any q > 1 implies

that

lim
k→∞

∫
Br0

(e(4π−ϵ)u2
k − 1− (4π − ϵ)u2

k)dx =

∫
Br0

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx. (2.9)

Since ν > 0 is arbitrary, we have by (2.8) and (2.9)

lim
k→∞

∫
R2

(e(4π−ϵ)u2
k − 1− (4π − ϵ)u2

k)dx =

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx. (2.10)

Combining (2.3) and (2.10), we conclude (2.1).
Clearly, uϵ ̸≡ 0 and ∥uϵ∥α,p ≤ 1 . Suppose ∥uϵ∥α,p < 1 . It follows that

Λα,p,ϵ =

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx

<

∫
R2

(
e(4π−ϵ)u2

ϵ/∥uϵ∥2
α,p − 1− (4π − ϵ)

u2
ϵ

∥uϵ∥2α,p

)
dx

≤ Λα,p,ϵ.

It is a contradiction. Hence, we get ∥uϵ∥α,p = 1 .
A straightforward calculation shows that uϵ satisfies the Euler-Lagrange equation (2.2). Applying elliptic

estimates to (2.2), we have uϵ ∈ C1(R2) . 2

In view of (2.2), we show that the sequence λϵ has a positive lower bound.

Lemma 2.2 Let λϵ be as in (2.2), we have

lim inf
ϵ→0

λϵ > 0.

Proof For any fixed u ∈ W 1,2(R2) with ∥u∥α,p ≤ 1 , there holds∫
R2

(e4πu
2

− 1− 4πu2)dx = lim
ϵ→0

∫
R2

(e(4π−ϵ)u2

− 1− (4π − ϵ)u2)dx

≤ lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx.

Then we have

Λα,p ≤ lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx.
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On the other hand, we can easily see that∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ Λα,p.

Combining the above two inequalities, we get

lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx = Λα,p. (2.11)

Using an elementary inequality t(et − 1) ≥ et − 1− t for all t ≥ 0 , we obtain

λϵ ≥
1

4π − ϵ

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx.

This together with (2.11) implies that

lim inf
ϵ→0

λϵ ≥ lim
ϵ→0

1

4π − ϵ

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx =
Λα,p

4π
> 0.

We finish the proof of the lemma. 2

3. Blow-up analysis
In this section, we perform the blow-up analysis.

Since ∥uϵ∥α,p = 1 and 0 ≤ α < λp , we obtain that uϵ is bounded in W 1,2(R2) . Then there exists u0

such that up to a subsequence,

uϵ ⇀ u0 weakly in W 1,2(R2),

uϵ → u0 strongly in Lr
loc(R2) (∀r > 1),

uϵ → u0 a.e. in R2.

Noting that uϵ is decreasing radially and symmetric, we denote

cϵ = uϵ(0) = max
R2

uϵ.

If cϵ is bounded, applying the standard elliptic estimate to (2.2), we conclude that uϵ → u0 in C1
loc(R2) and∫

R2

(e4πu
2
0 − 1− 4πu2

0)dx = lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx = Λα,p.

Hence, u0 is a desire extremal function and Theorem 1.1 holds.
In the following, we assume cϵ → +∞ as ϵ → 0 . Then we have

Lemma 3.1 u0 ≡ 0 and |∇uϵ|2dx ⇀ δ0 , where δ0 is the Dirac measure centered at 0 .

Proof Suppose u0 ̸≡ 0 . Analogously to the analysis of (2.6), we have

∥uϵ∥p → ∥u0∥p as ϵ → 0.
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Consequently, there exists some ϵ0 > 0 such that

∥uϵ − u0∥2W 1,2(R2) ≤ 1− ∥u0∥2α,p

for 0 < ϵ < ϵ0 . Using em+n − 1 = (em − 1)(en − 1) + (em − 1) + (en − 1) for any m ≥ 0 , n ≥ 0 , the Hölder
inequality, we have∫

R2

(e(4π−ϵ)qu2
ϵ − 1)dx ≤

∫
R2

(e(4π−ϵ)q((1+ν)(uϵ−u0)
2+(1+1/ν)u2

0) − 1)dx

=

∫
R2

(e(4π−ϵ)q(1+ν)(uϵ−u0)
2

− 1)(e(4π−ϵ)q(1+1/ν)u2
0 − 1)dx

+

∫
R2

(e(4π−ϵ)q(1+ν)(uϵ−u0)
2

− 1)dx+

∫
R2

(e(4π−ϵ)q(1+1/ν)u2
0 − 1)dx

≤
(∫

R2

(e(4π−ϵ)qq1(1+ν)(uϵ−u0)
2

− 1)dx

) 1
q1
(∫

R2

(e(4π−ϵ)qq2(1+1/ν)u2
0 − 1)dx

) 1
q2

+

∫
R2

(e(4π−ϵ)q(1+ν)(uϵ−u0)
2

− 1)dx+

∫
R2

(e(4π−ϵ)q(1+1/ν)u2
0 − 1)dx,

where q > 1 , ν > 0 , q1 > 1 and 1/q1 + 1/q2 = 1 . Here we also use an elementary inequality due to Yang [31,
Lemma 2.1], that is, (ea − 1)s ≤ eas − 1 for a ≥ 0 and s ≥ 1 . We can choose q and q1 sufficiently close to 1

and ν sufficiently close to 0 such that (4π − ϵ)qq1(1 + ν)∥uϵ − u0∥2W 1,2(R2) < 4π . In view of Trudinger–Moser

inequality (1.3), we conclude that ∫
R2

(e(4π−ϵ)qu2
ϵ − 1)dx ≤ C (3.1)

for some constant C depending on q . It follows (3.1) that e(4π−ϵ)u2
ϵ − 1 is bounded in Lq(B1) for some q > 1 .

At the same time, ∥uϵ∥2−p
p up−1

ϵ is bounded in L
p

p−1 (B1) and uϵ is bounded in Lr(B1) for r > 0 . Therefore,
∆uϵ is bounded in Ls(B1) for some s > 1 . Applying the elliptic estimate to (2.2), we conclude that uϵ is
bounded in B1/2 , which contradicts cϵ → +∞ as ϵ → 0 . Therefore, u0 ≡ 0 .

We next prove |∇uϵ|2dx ⇀ δ0 in the sense of measure as ϵ → 0 . Suppose not. There exists sufficiently
small r > 0 such that

lim sup
ϵ→0

∫
Br

|∇uϵ|2dx ≤ 1− γ

for some 0 < γ < 1 . Note that uϵ is decreasing radially and symmetric. We set uϵ(x) = uϵ(x) − uϵ(r) for
x ∈ Br . Then uϵ(x) ∈ W 1,2

0 (Br) satisfies
∫
Br

|∇uϵ|2dx ≤ 1 − γ . For any q′ > 1 , q′1 > 1 and 1/q′1 + 1/q′2 = 1 ,
we have by the Hölder inequality∫

Br

(
λ−1
ϵ uϵ(e

(4π−ϵ)u2
ϵ − 1)

)q′
dx ≤ 1

λq′
ϵ

∫
Br

uq′

ϵ (e
(4π−ϵ)q′u2

ϵ − 1)dx

≤ 1

λq′
ϵ

(∫
Br

u
q′q′1
ϵ dx

)1/q′1
(∫

Br

e(4π−ϵ)q′q′2u
2
ϵdx

)1/q′2

. (3.2)
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Since ∥uϵ∥α,p ≤ 1 and uϵ is nonnegative decreasing radially symmetric, we have

uϵ(r) ≤
(

λp

π(λp − α)

)1/2
1

r
. (3.3)

For any ν > 0 and x ∈ Br , there holds

u2
ϵ(x) ≤ (1 + ν)u2

ϵ(x) + (1 + 1/ν)u2
ϵ(r). (3.4)

Choosing q′ > 1 , q′2 > 1 sufficiently close to 1 and ν > 0 sufficient small such that q′q′2(1+ν)∥∇uϵ∥2L2(Br)
< 1 .

Inserting (3.3) and (3.4) into (3.2) and noticing that uϵ is bounded in Ls(Br) for any s > 1 , we conclude that∫
Br

(
λ−1
ϵ uϵ(e

(4π−ϵ)u2
ϵ − 1)

)q′
dx ≤ C, (3.5)

thanks to Lemma 2.2 and Trudinger–Moser inequality (1.1). One can see from (3.5) that λ−1
ϵ uϵ(e

(4π−ϵ)u2
ϵ − 1)

is bounded in Lq′(Br) for some q′ > 1 . Meanwhile ∥uϵ∥2−p
p up−1

ϵ is bounded in L
p

p−1 (Br) . We have by the
standard elliptic estimate to (2.2) that uϵ is uniformly bounded in Br/2 contradicting cϵ → +∞ as ϵ → 0 .
Therefore, |∇uϵ|2dx ⇀ δ0 . This completes the proof of the lemma. 2

Let
rϵ =

√
λϵc

−1
ϵ e−

1
2 (4π−ϵ)c2ϵ .

Then we have the following:

Lemma 3.2 For any γ < 4π , there holds

lim
ϵ→0

r2ϵ e
γc2ϵ = 0.

Proof Given R > 0 , we have for any γ < 4π

r2ϵ e
γc2ϵ = c−2

ϵ e−(4π−ϵ−γ)c2ϵ

∫
R2

u2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx

= c−2
ϵ

∫
BR

u2
ϵe

−(4π−ϵ−γ)c2ϵ (e(4π−ϵ)u2
ϵ − 1)dx

+ c−2
ϵ

∫
Bc
R

u2
ϵe

−(4π−ϵ−γ)c2ϵ (e(4π−ϵ)u2
ϵ − 1)dx. (3.6)

Since ∫
Bc
R

u2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx =

∞∑
j=1

(4π − ϵ)j

j!

∫
Bc
R

u2j+2
ϵ dx.

We then have by the radial lemma [5], ∫
Bc
R

u2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx ≤ C

R
.
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Passing the limit ϵ → 0 , we get

lim
ϵ→0

c−2
ϵ

∫
Bc
R

u2
ϵe

−(4π−ϵ−γ)c2ϵ (e(4π−ϵ)u2
ϵ − 1)dx = 0. (3.7)

Noting that c2ϵ ≥ u2
ϵ , whence by the Hölder inequality, we have∫

BR

u2
ϵe

−(4π−ϵ−γ)c2ϵ (e(4π−ϵ)u2
ϵ − 1)dx ≤

∫
BR

u2
ϵe

γu2
ϵdx

≤
(∫

BR

u2p1
ϵ dx

)1/p1
(∫

BR

eγp2u
2
ϵdx

)1/p2

, (3.8)

where 1/p1 + 1/p2 = 1 . Slightly modifying the proof of (3.5), one can get without any difficulty that∫
BR

eγp2u
2
ϵdx ≤ C.

Since ∫
BR

u2p1
ϵ dx ≤

∫
R2

u2p1
ϵ dx = oϵ(1).

The above estimates together with (3.8) imply that

lim
ϵ→0

c−2
ϵ

∫
BR

u2
ϵe

−(4π−ϵ−γ)c2ϵ (e(4π−ϵ)u2
ϵ − 1)dx = 0. (3.9)

Combining(3.6), (3.7), and (3.9), we finish the proof of the lemma.
2

Define two blow-up functions

vϵ(x) = c−1
ϵ uϵ(rϵx) (3.10)

and
wϵ(x) = cϵ (uϵ(rϵx)− cϵ) . (3.11)

We state the result in the following form:

Lemma 3.3 Let vϵ and wϵ be defined as in (3.10) and (3.11). Then vϵ → 1 in C1
loc(R2) , wϵ → w in C1

loc(R2) ,
where w is given by

w(x) = − 1

4π
log(1 + π|x|2).

Moreover, ∫
R2

e8πw(x)dx = 1.

Proof By calculation, we obtain

−∆vϵ(x) = −r2ϵvϵ(x)− vϵ(x)c
−2
ϵ e−(4π−ϵ)c2ϵ + c−2

ϵ vϵ(x)e
(4π−ϵ)(1+vϵ(x))wϵ(x)

+ αr2ϵ c
p−2
ϵ ∥uϵ∥2−p

p vp−1
ϵ (x) (3.12)
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and
−∆wϵ(x) = −r2ϵ c

2
ϵvϵ(x)− vϵ(x)e

−(4π−ϵ)c2ϵ + vϵ(x)e
(4π−ϵ)(1+vϵ(x))wϵ(x)

+ αr2ϵ c
p
ϵ∥uϵ∥2−p

p vp−1
ϵ (x). (3.13)

In view of (3.10) and Lemma 3.2, we have

r2ϵ c
p
ϵ∥uϵ∥2−p

p vp−1
ϵ (x) ≤ r2ϵ c

p
ϵv

p−1
ϵ (x)( ∫

BRrϵ
up
ϵ (x)dx

)1− 2
p

=
c2ϵr

4
p
ϵ vp−1

ϵ (x)( ∫
BR

vpϵ (x)dx
)1− 2

p

= oϵ(1).

Applying the elliptic estimates to (3.12) and (3.13), we get

vϵ → 1 in C1
loc(R2),

wϵ → w in C1
loc(R2),

where w satisfies {
−∆w = e8πw in R2

w(0) = 0 = supR2 w.

By the uniqueness result obtained in [8], we have

w(x) = − 1

4π
log(1 + π|x|2) in R2.

It follows that ∫
R2

e8πw(x)dx =

∫ +∞

0

2πr

(1 + πr2)2
dr = 1. (3.14)

2

We next consider the convergence uϵ away from the concentration point 0 . Following [2, 17], define
uϵ,β = min{βcϵ, uϵ} for 0 < β < 1 . Then we have the following:

Lemma 3.4 For any 0 < β < 1 , there holds

lim sup
ϵ→0

∫
R2

|∇uϵ,β |2dx = β.

Proof For any fixed R > 0 , testing (2.2) by (uϵ − βcϵ)
+ , we have∫

R2

|∇(uϵ − βcϵ)
+|2dx =

∫
R2

∇uϵ∇(uϵ − βcϵ)
+dx

= −
∫
R2

uϵ(uϵ − βcϵ)
+dx+ λ−1

ϵ

∫
R2

uϵ(uϵ − βcϵ)
+e(4π−ϵ)u2

ϵdx

− λ−1
ϵ

∫
R2

uϵ(uϵ − βcϵ)
+dx+ α∥uϵ∥2−p

p

∫
R2

(uϵ − βcϵ)
+up−1

ϵ dx

≥
∫
BRrϵ

(uϵ − βcϵ)
+(λ−1

ϵ uϵe
(4π−ϵ)u2

ϵ + α∥uϵ∥2−p
p up−1

ϵ dx)dx+ oϵ(1)

= (1− β)(1 + oϵ(1))

∫
BR

e8πw(x)dx+ oϵ(1).
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Here, we used the fact uϵ > βcϵ in BRrϵ and

α∥uϵ∥2−p
p ∥(uϵ − βcϵ)

+up−1
ϵ ∥L1(BRrϵ )

≤ α∥uϵ∥2p = oϵ(1).

Hence,

lim inf
ϵ→0

∫
R2

|∇(uϵ − βcϵ)
+|2dx ≥ (1− β)

∫
BR

e8πw(x)dx.

In view of (3.14), letting R → +∞ , we obtain

lim inf
ϵ→0

∫
R2

|∇(uϵ − βcϵ)
+|2dx ≥ 1− β. (3.15)

Similarly as above, testing (2.2) by uϵ,β , we get

lim inf
ϵ→0

∫
R2

|∇uϵ,β |2dx ≥ β. (3.16)

Note that |∇uϵ|2 = |∇uϵ,β |2 + |∇(uϵ − βcϵ)
+|2 almost everywhere. Combining (3.15) and (3.16), we get the

desired result. 2

A consequence of Lemma 3.4 is the following.

Lemma 3.5

lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx = lim sup
ϵ→0

λϵ

c2ϵ
.

Proof For any β , 0 < β < 1 , we obtain∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx =

∫
uϵ≤βcϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx

+

∫
uϵ>βcϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx

= I + II.

By Lemma 3.1 and Lemma 3.4, we have lim supϵ→0 ∥∇uϵ,β∥2W 1,2(R2) = β < 1 . Let 1 < s < 1/β and

1/s + 1/t = 1 . Again using the inequality et − 1 − t ≤ t(et − 1) for t ≥ 0 , the Hölder inequality and the
Trudinger–Moser inequality (1.3), we can verify that

I ≤
∫
R2

(e(4π−ϵ)u2
ϵ,β − 1− (4π − ϵ)u2

ϵ,β)dx

≤ 4π

∫
R2

u2
ϵ,β(e

(4π−ϵ)u2
ϵ,β − 1)dx

≤ 4π

(∫
R2

(e(4π−ϵ)su2
ϵ,β − 1)dx

)1/s(∫
R2

u2t
ϵ,βdx

)1/t

≤ C

(∫
R2

u2t
ϵ,βdx

)1/t

(3.17)
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for some constant C depending only on β and s . In view of the definition of uϵ,β , we obtain that∫
R2

u2t
ϵ,βdx ≤

∫
R2

u2t
ϵ dx = oϵ(1). (3.18)

It follows from (3.17) and (3.18) that

lim
ϵ→0

I = 0. (3.19)

Since uϵ → 0 in Lq
loc(R2) for any q > 1 , we get

II =

∫
uϵ>βcϵ

(e(4π−ϵ)u2
ϵ − 1)dx+ oϵ(1)

≤ 1

β2c2ϵ

∫
uϵ>βcϵ

u2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx+ oϵ(1)

≤ 1

β2

λϵ

c2ϵ
+ oϵ(1). (3.20)

Combining (3.19) and (3.20), we obtain

lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ 1

β2
lim sup

ϵ→0

λϵ

c2ϵ
.

Letting β → 1 , one has

lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ lim sup
ϵ→0

λϵ

c2ϵ
. (3.21)

Note that

λϵ

c2ϵ
=

∫
R2

u2
ϵ

c2ϵ
(e(4π−ϵ)u2

ϵ − 1− (4π − ϵ)u2
ϵ)dx+

4π − ϵ

c2ϵ

∫
R2

u4
ϵdx

≤
∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx+ oϵ(1).

Thus,

lim sup
ϵ→0

λϵ

c2ϵ
≤ lim

ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx.

This estimate together with (3.21) implies that Lemma 3.5 holds. 2

Obviously, one can derive a useful corollary from Lemma 3.5. Precisely,

Corollary 3.6 For θ < 2 , there holds

lim sup
ϵ→0

cθϵ
λϵ

= 0.
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Proof Suppose not. There exists some constant M > 0 such that λϵ/c
θ
ϵ ≤ M for θ < 2 . Then we have

λϵ/c
2
ϵ → 0 as ϵ → 0 . Assume v ∈ W 1,2(R2) and ∥v∥α,p = 1 , we have by Lemma 3.5 that

lim
ϵ→0

∫
R2

(e(4π−ϵ)v2

− 1− (4π − ϵ)v2)dx ≤ lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx

≤ lim sup
ϵ→0

λϵ

c2ϵ

= 0.

This is impossible since v ̸≡ 0 . Therefore, we get the desired result. 2

Lemma 3.7 For any φ ∈ C∞
0 (R2) , we have

lim
ϵ→0

∫
R2

φλ−1
ϵ cϵuϵ(e

(4π−ϵ)u2
ϵ − 1)dx = φ(0).

Proof For convenience in writing, we set

hϵ(x) = λ−1
ϵ cϵuϵ(e

(4π−ϵ)u2
ϵ − 1).

Let 0 < β < 1 be fixed, we observe that∫
R2

φhϵdx =

∫
uϵ≤βcϵ

φhϵdx+

∫
{uϵ>βcϵ}\BRrϵ

φhϵdx+

∫
{uϵ>βcϵ}

⋂
BRrϵ

φhϵdx. (3.22)

Now we estimate the integrals on the right-hand of (3.22) respectively. In view of an obvious analog of (3.19)
and thanks to Lemma 3.4 and Corollary 3.6, we have∫

uϵ≤βcϵ

φhϵdx =
cϵ
λϵ

∫
uϵ≤βcϵ

uϵφ(e
(4π−ϵ)u2

ϵ − 1)dx

≤ cϵ
λϵ

(
sup
R2

|φ|
)∫

R2

uϵ,β(e
(4π−ϵ)u2

ϵ,β − 1)dx

= oϵ(1). (3.23)

It follows from Lemma 3.2 that BRrϵ ⊂ {uϵ > βcϵ} for sufficiently small ϵ > 0 . We then obtain

∫
{uϵ>βcϵ}

⋂
BRrϵ

φhϵdx = φ(0)(1 + oϵ(1))

∫
BRrϵ

λ−1
ϵ cϵuϵ(e

(4π−ϵ)u2
ϵ − 1)dx

= φ(0)(1 + oϵ(1))

(∫
BR

e8πwdx+ oϵ(1)

)
= φ(0)(1 + oϵ(1) + oR(1)), (3.24)
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and ∫
{uϵ>βcϵ}\BRrϵ

φhϵdx ≤ 1

β

(
sup
R2

|φ|
)∫

{uϵ>βcϵ}\BRrϵ

λ−1
ϵ u2

ϵ(e
(4π−ϵ)u2

ϵ − 1)dx

≤ 1

β

(
sup
R2

|φ|
)(

1−
∫
BRrϵ

λ−1
ϵ u2

ϵ(e
(4π−ϵ)u2

ϵ − 1)dx

)

=
1

β

(
sup
R2

|φ|
)(

1−
∫
BR

e8πwdx+ oϵ(1)

)
= oϵ(1) + oR(1). (3.25)

Inserting (3.23)–(3.25) into (3.22) and letting ϵ → 0 first, then R → +∞ , we finish the proof of the lemma. 2

Let us now investigate the convergence of the function sequence cϵuϵ . We shall prove the following
lemma.

Lemma 3.8 For any 1 < q < 2 , there holds

cϵuϵ ⇀ G weakly in W 1,q
loc (R

2)

and
cϵuϵ → G in C1

loc(R2\{0}),

where G is a Green’s function and satisfies

−∆G+G = δ0 + α∥G∥2−p
p Gp−1

in a distributional sense, where δ0 is the usual Dirac measure centered at 0 .

Proof First, we claim that ∥cϵuϵ∥p is bounded. To confirm this, we will use an idea similar to that in [13,
Lemma 3.5]. Multiplying both sides of (2.2) by cϵ , we obtain

−∆(cϵuϵ) + cϵuϵ =
1

λϵ
cϵuϵ(e

(4π−ϵ)u2
ϵ − 1) + α∥cϵuϵ∥2−p

p (cϵuϵ)
p−1. (3.26)

Suppose ∥cϵuϵ∥p → +∞ as ϵ → 0 . Setting ωϵ = cϵuϵ/∥cϵuϵ∥p , one can easily deduce from (3.26) that

−∆ωϵ + ωϵ =
1

∥cϵuϵ∥p
1

λϵ
cϵuϵ(e

(4π−ϵ)u2
ϵ − 1) + αωp−1

ϵ , (3.27)

which together with Lemma 3.7 implies that ∆ωϵ is bounded in L1
loc(R2) . Applying the argument of Li and

Ruf [18, Proposition 3.7], or do Ó and de Souza [11, Lemma 4.9], which is motivated by the idea of Struwe [25,
Theorem 2.2], we conclude that ωϵ is bounded in W 1,q

loc (R2) for any 1 < q < 2 . We assume up to a subsequence

ωϵ ⇀ ω weakly in W 1,q
loc (R2) . Testing (3.27) with φ(x) ∈ C∞

0 (R2) and letting ϵ → 0 , we have∫
R2

∇φ∇ωdx+

∫
R2

φωdx = α

∫
R2

φωp−1dx. (3.28)

Since 0 ≤ α < λp , it follows from (3.28) that ω ≡ 0 , which contradicts ∥ω∥p = 1 . Therefore, ∥cϵuϵ∥p is
bounded.
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Again by Proposition 3.7 in [18] or Lemma 4.9 in [11], we conclude that cϵuϵ is bounded in W 1,q
loc (R2)

for 1 < q < 2 . Hence, there exists some G ∈ W 1,q(R2) such that cϵuϵ ⇀ G weakly in W 1,q
loc (R2) , and that

cϵuϵ → G strongly in Ls
loc(R2) for s > 1 . Given any ν > 0 , in view of that cϵuϵ is decreasing radially and

symmetric, we can find a sufficiently large number r > 0 such that∣∣∣∣∣
∫
Bc
r

(cϵuϵ)
pdx

∣∣∣∣∣ ≤ ν (3.29)

and ∣∣∣∣∣
∫
Bc
r

Gpdx

∣∣∣∣∣ ≤ ν. (3.30)

Moreover, we have

lim
ϵ→0

∫
Br

(cϵuϵ)
pdx =

∫
Br

Gpdx. (3.31)

It follows from (3.29)–(3.31) that

lim
ϵ→0

∫
R2

(cϵuϵ)
pdx =

∫
R2

Gpdx.

Testing (3.26) with φ(x) ∈ C∞
0 (R2) , we have

∫
R2

∇φ∇(cϵuϵ)dx+

∫
R2

φcϵuϵdx =

∫
R2

φ
cϵuϵ

λϵ
(e(4π−ϵ)u2

ϵ − 1)dx+ α∥cϵuϵ∥2−p
p

∫
R2

φ(cϵuϵ)
p−1dx. (3.32)

Letting ϵ → 0 , we obtain

∫
R2

∇φ∇Gdx+

∫
R2

φGdx = φ(0) + α∥G∥2−p
p

∫
R2

φGp−1dx;

hence, G satisfies the following equation in a distributional sense

−∆G+G = δ0 + α∥G∥2−p
p Gp−1.

Let r0 , R0 be such that R0 > 4r0 > 0 , we can choose a radially symmetric cut-off function η(x) ∈
C∞

0 (BR0
\Br0) that equals 1 on B4r0\B2r0 . By Lemma 3.1, one has ∥∇(ηuϵ)∥2 → 0 as ϵ → 0 , which implies that

e(4π−ϵ)η2u2
ϵ −1 is bounded in Ls(BR0

\Br0) for any s > 1 . Therefore, e(4π−ϵ)u2
ϵ −1 is bounded in Ls(B4r0\B2r0) .

At the same time, ∥cϵuϵ∥2−p
p (cϵuϵ)

p−1 is bounded in L
p

p−1 (BR0\Br0) . Applying elliptic estimates to (3.26) two

times, we get cϵuϵ → G in C1(B4r0\B3r0) . That is, cϵuϵ → G in C1
loc(R2\{0}) . This completes the proof of

the lemma. 2

Note that

−∆

(
G+

1

2π
log |x|

)
= −G+ α∥G∥2−p

p Gp−1 ∈ Ls
loc(R2).
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Applying elliptic estimates, we get (G + 1
2π log |x|) ∈ C1

loc(R2 \ {0}) . Therefore, the Green function G takes
the following form

G(x) = − 1

2π
log |x|+A0 + g(x), (3.33)

where A0 is a constant depending on p , g(x) ∈ C1(R2) and g(0) = 0 .

4. Upper bound estimate

In this section, under the assumption of cϵ → +∞ as ϵ → 0 , we will use a result by Carleson and Chang [7] to

derive an upper bound of the integrals
∫
R2(e

(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx .

Lemma 4.1 For any δ , 0 < δ < 1 , we have∫
Bδ

|∇uϵ|2dx = 1− 1

c2ϵ

(
1

2π
log

1

δ
+A0 + oϵ(1) + oδ(1)

)
,

where oϵ(1) → 0 as ϵ → 0 , oδ(1) → 0 as δ → 0 .

Proof In view of the Euler-Lagrange equation (2.2) and ∥uϵ∥α,p = 1 , we have by the divergence theorem

∫
Bδ

|∇uϵ|2dx = 1−
∫
R2\Bδ

(|∇uϵ|2 + u2
ϵ)dx−

∫
Bδ

u2
ϵdx+ α

(∫
R2

up
ϵdx

) 2
p

= 1−
∫
R2\Bδ

u2
ϵ

λϵ
(e(4π−ϵ)u2

ϵ − 1)dx− α∥uϵ∥2−p
p

∫
R2\Bδ

up
ϵdx

+

∫
∂Bδ

uϵ
∂uϵ

∂v
ds−

∫
Bδ

u2
ϵdx+ α

(∫
R2

up
ϵdx

) 2
p

.

Now we proceed to estimate the right five terms on the above equation respectively. A direct calculation gives

∫
R2\Bδ

u2
ϵ

λϵ
(e(4π−ϵ)u2

ϵ − 1)dx =
1

c2ϵ

c2ϵ
λϵ

∫
R2\Bδ

u2
ϵ(e

(4π−ϵ)u2
ϵ − 1)dx =

oϵ(1)

c2ϵ
. (4.1)

At the same time, one has

α∥uϵ∥2−p
p

∫
R2\Bδ

up
ϵdx =

1

c2ϵ

(
α∥G∥2p + oϵ(1) + oδ(1)

)
,

∫
∂Bδ

uϵ
∂uϵ

∂v
ds =

1

c2ϵ

(∫
∂Bδ

G
∂G

∂v
ds+ oϵ(1)

)
,

∫
Bδ

u2
ϵdx =

1

c2ϵ

(∫
Bδ

G2dx+ oϵ(1)

)
,

α

(∫
R2

up
ϵdx

) 2
p

=
1

c2ϵ

(
α∥G∥2p + oϵ(1)

)
.
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Combining all the above estimates and recalling that G(x) = − 1
2π log |x|+A0 + g(x) , we get the desired result

∫
Bδ

|∇uϵ|2dx = 1− 1

c2ϵ

(
1

2π
log

1

δ
+A0 + oϵ(1) + oδ(1)

)
.

2

Lemma 4.2 There holds

lim sup
ϵ→0

∫
BRrϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ πe4πA0+1.

Proof Set sϵ = sup∂Bδ
uϵ = uϵ(δ) and ũϵ = (uϵ−sϵ)

+ , the positive part of uϵ−sϵ . Obviously, ũϵ ∈ W 1,2
0 (Bδ) .

By Lemma 4.1, we have∫
Bδ

|∇ũϵ|2dx ≤ τϵ,δ = 1− 1

c2ϵ

(
1

2π
log

1

δ
+A0 + oϵ(1) + oδ(1)

)
. (4.2)

Then we use Carleson and Chang’s upper bounded estimate [7] and conclude that

lim sup
ϵ→0

∫
Bδ

(
e(4π−ϵ)ũ2

ϵ/τϵ,δ − 1
)
dx ≤ πeδ2. (4.3)

Note that uϵ = cϵ + oϵ(1) on BRrϵ . This together (4.2) leads to that on BRrϵ ⊂ Bδ

(4π − ϵ)u2
ϵ ≤ 4π(ũϵ + sϵ)

2

≤ 4πũ2
ϵ + 8πsϵũϵ + oϵ(1)

≤ 4πũ2
ϵ − 4 log δ + 8πA0 + oϵ(1) + oδ(1)

≤ 4πũ2
ϵ/τϵ,δ − 2 log δ + 4πA0 + o(1),

where o(1) → 0 as ϵ → 0 first and then δ → 0 . For any fixed R > 0 , we calculate∫
BRrϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ δ−2e4πA0+o(1)

∫
BRrϵ

e4πũ
2
ϵ/τϵ,δdx+ o(1)

= δ−2e4πA0+o(1)

∫
BRrϵ

(e4πũ
2
ϵ/τϵ,δ − 1)dx+ o(1)

≤ δ−2e4πA0+o(1)

∫
Bδ

(e4πũ
2
ϵ/τϵ,δ − 1)dx+ o(1).

In view of (4.3), we get

lim sup
ϵ→0

∫
BRrϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ πe4πA0+1. (4.4)
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By a change of variable x = rϵy , there holds∫
BRrϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx = r2ϵ

∫
BR

e(4π−ϵ)u2
ϵ(rϵy)dy + oϵ(1)

=
λϵ

c2ϵ

(∫
BR

e8πw(y)dy + oϵ(1)

)
+ oϵ(1)

=
λϵ

c2ϵ
(1 + oϵ(1) + oR(1)).

As a result, we obtain

lim
R→+∞

lim
ϵ→0

∫
BRrϵ

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx = lim
ϵ→0

λϵ

c2ϵ
. (4.5)

In view of Lemma 3.5, (4.4) and (4.5), we conclude

Λα,p = lim
ϵ→0

∫
R2

(e(4π−ϵ)u2
ϵ − 1− (4π − ϵ)u2

ϵ)dx ≤ πe4πA0+1 (4.6)

as desired. 2

5. Test function computation

In this section, we will construct a family of the test function φϵ(x) ∈ W 1,2(R2) such that ∥φϵ∥α,p = 1 and∫
R2

(e4πφ
2
ϵ − 1− 4πφ2

ϵ)dx > πe4πA0+1 (5.1)

for ϵ > 0 sufficiently small. This result contradicts with (4.6) and consequently the blow up does not occur.
Therefore we get the desired extremal function and complete the proof of Theorem 1.1.

For this purpose, we set

φϵ(x) =

 c+ 1
c

(
− 1

4π log(1 + π |x|2
ϵ2 ) + b

)
|x| ≤ Rϵ

G(x)
c |x| > Rϵ

(5.2)

where R = (− log ϵ)2 , G is the Green function given as in (3.33), b and c are constants depending only on ϵ

to be determined later.
In order to assure that φϵ ∈ W 1,2(R2) , we require

c+
1

c

(
− 1

4π
log(1 + πR2) + b

)
=

1

c

(
− 1

2π
log(Rϵ) +A0 + g(Rϵ)

)

which implies that

4πc2 = −2 log ϵ− 4πb+ 4πA0 + log π +O(Rϵ) +O

(
1

R2

)
. (5.3)
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By (3.33), we calculate∫
R2\BRϵ

(|∇φϵ|2 + φ2
ϵ)dx =

1

c2

∫
R2\BRϵ

(|∇G|2 +G2)dx

=
1

c2

(
α∥G∥2−p

p

∫
R2\BRϵ

Gpdx−
∫
∂BRϵ

G
∂G

∂v
ds

)

=
1

c2

(
α∥G∥2p −

1

2π
log(Rϵ) +A0 +O(Rϵ log(Rϵ))

)
. (5.4)

In view of (5.2), we have∫
R2\BRϵ

φp
ϵdx =

1

cp

∫
R2\BRϵ

Gpdx =
1

cp
(
∥G∥pp +O(Rϵ log(Rϵ)

)
. (5.5)

Meanwhile, we obtain ∫
BRϵ

|∇φϵ|2dx =
1

4πc2

∫ Rϵ

0

2r3

(r2 + ϵ2

π )2
dr

=
1

4πc2

(
log π − 1 + logR2 +O

(
1

R2

))
. (5.6)

In addition, we require b to be bounded with respect to ϵ . Then we have∫
BRϵ

φ2
ϵdx = O((Rϵ)2(− log ϵ)), (5.7)

and ∫
BRϵ

φp
ϵdx = O((Rϵ)2(− log ϵ)

p
2 ). (5.8)

Combining (5.4)–(5.8), we conclude

∥φϵ∥2α,p =
1

c2

(
− 1

2π
log ϵ+A0 −

1

4π
+

1

4π
log π +O(Rϵ log(Rϵ)) +O

(
1

R2

))
.

Setting ∥φϵ∥α,p = 1 , we get

c2 = − 1

2π
log ϵ+A0 −

1

4π
+

1

4π
log π +O(Rϵ log(Rϵ)) +O

(
1

R2

)
. (5.9)

It follows from (5.3) and (5.9) that

b =
1

4π
+O(Rϵ log(Rϵ)) +O

(
1

R2

)
. (5.10)

In view of (5.9), (5.10) and the Taylor formula of (1 + t)2 near t = 0 , we conclude for any x ∈ BRϵ

4πφ2
ϵ(x) ≥ 4πc2 + 8πb− 2 log

(
1 + π

|x|2

ϵ2

)

= −2 log

(
1 + π

|x|2

ϵ2

)
− 2 log ϵ+ 4πA0 + log π + 1 +O

(
1

R2

)
.
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This leads to ∫
BRϵ

(e4πφ
2
ϵ − 1− 4πφ2

ϵ)dx ≥ πϵ−2e4πA0+1+O( 1
R2 )

∫
BRϵ

1(
1 + π |x|2

ϵ2

)2 dx++O

(
1

R2

)

= πϵ−2e4πA0+1+O( 1
R2 )

∫ Rϵ

0

2πr(
1 + π r2

ϵ2

)2 dr +O

(
1

R2

)

= πe4πA0+1 +O

(
1

R2

)
. (5.11)

Also, on R2\BRϵ , we calculate∫
R2\BRϵ

(e4πφ
2
ϵ − 1− 4πφ2

ϵ)dx ≥ 8π2

c4

∫
R2\BRϵ

G4dx

=
8π2

c4

(∫
R2

G4dx+ oϵ(1)

)
. (5.12)

Combining (5.11) and (5.12) and noting that R−2c4 = oϵ(1) , we have

∫
R2

(e4πφ
2
ϵ − 1− 4πφ2

ϵ)dx ≥ πe4πA0+1 +
8π2

c4

(∫
R2

G4dx+ oϵ(1)

)
.

Therefore, we conclude (5.1) for sufficiently small ϵ → 0 . 2
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