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Abstract: Let Ln be the free metabelian Leibniz algebra generated by the set Xn = {x1, . . . , xn} over a field K of
characteristic zero. This is the free algebra of rank n in the variety of solvable of class 2 Leibniz algebras. We call
an element s(Xn) ∈ Ln symmetric if s(xσ(1), . . . , xσ(n)) = s(x1, . . . , xn) for each permutation σ of {1, . . . , n} . The

set LSn
n of symmetric polynomials of Ln is the algebra of invariants of the symmetric group Sn . Let K[Xn] be the

usual polynomial algebra with indeterminates from Xn . The description of the algebra K[Xn]
Sn is well known, and

the algebra (L′
n)

Sn in the commutator ideal L′
n is a right K[Xn]

Sn -module. We give explicit forms of elements of the
K[Xn]

Sn -module (L′
n)

Sn . Additionally, we determine the description of the group Inn(LSn
n ) of inner automorphisms of

the algebra LSn
n . The findings can be considered as a generalization of the recent results obtained for the free metabelian

Lie algebra of rank n .

Key words: Leibniz algebras, metabelian identity, automorphisms, symmetric polynomials

1. Introduction
Hilbert’s fourteen problem is one of those famous twenty three problems suggested by German mathematician
David Hilbert [10] in 1900 at the Paris conference of the International Congress of Mathematicians, and it
is related with the finite generation of the algebra K[Xn]

G of invariants of G < GLn(K) , where K[Xn] =

K[x1, . . . , xn] is the usual polynomial algebra over a field K , and GLn(K) is the general linear group. Nagata
[15] showed that the problem is not true in general in 1959. Earlier in 1916, Noether [14] solved the problem
in affirmative for finite groups. In particular let G = Sn be the symmetric group acting on the algebra K[Xn]

by permuting the variables: π · p(x1, . . . , xn) = p(xπ(1), . . . , xπ(n)) , p ∈ K[Xn] , π ∈ Sn . The algebra K[Xn]
Sn

is generated by the set {
∑n

i=1 x
k
i | k = 1, . . . , n} , by the fundamental theorem of symmetric polynomials.

Elementary symmetric polynomials ej =
∑
xi1 · · ·xij , i1 < · · · < ij , j = 1, . . . , n , form another generating set.

A noncommutative analogue of the problem is the algebra K⟨Xn⟩Sn of symmetric polynomials in the
free associative algebra K⟨Xn⟩ . One may see the works [2, 9, 18] on the algebra K⟨Xn⟩Sn . Another analogue is
working in relatively free Lie algebras, which are not associative and commutative. The algebras FSn

n , and MSn
n

are not finitely generated via [3] and [4], where Fn and Mn are the free Lie algebra and the free metabelian
Lie algebra of rank n , respectively. One may see the papers [5, 7] for the explicit elements of the algebra MSn

n .
See also [8] for the inner automorphisms of MSn

n .
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We consider the Leibniz algebras which can be thought as a generalization of the Lie algebras. Leibniz
algebras are defined by the identity [x, [y, z]] = [[x, y], z] − [[x, z], y] , where the bracket is bilinear; however,
nonnecessarily skew-symmetric. In the case of skew-symmetry the identity turns into the Jacobi identity, and
we obtain a Lie algebra. Leibniz algebras are related with many branches of mathematics. See the papers
[1, 11–13, 16] for more details.

In the present study, we consider the free metabelian Leibniz algebra Ln and we determine the algebra
LSn
n of symmetric polynomials. Additionally, we describe the group Inn(LSn

n ) of inner automorphisms of LSn
n .

2. Preliminaries
Let K be a field of characteristic zero. A Leibniz algebra L over K is a vector space furnished with bilinear
commutator [., .] satisfying the Leibniz identity

[[x, y], z] = [[x, z], y] + [x, [y, z]],

or
[x, y]rz = [xrz, y] + [x, yrz],

x, y, z ∈ L . Here rz stands for the adjoint operator adz acting from right side by commutator multiplication.
The Leibniz algebra L is nonassociative and noncommutative.

Now consider the free algebra Ln of rank n generated by Xn = {x1, . . . , xn} in the variety of metabelian
Leibniz algebras over the base field K . The algebra Ln satisfies the metabelian identity [[x, y], [z, t]] = 0 , and
is a solvable of class 2 Leibniz algebra. Hence every element in the commutator ideal L′

n = [Ln, Ln] of the free
metabelian Leibniz algebra Ln can be expressed as a linear combination of left-normed monomials of the form

[[· · · [[xi1 , xi2 ], xi3 ], . . .], xik ] = [xi1 , xi2 , xi3 , . . . , xik ]

= [xi1 , xi2 ]ri3 · · · rik = [xi1 , xi2 ]riπ(3)
· · · riπ(k)

where π is a permutation of the set {3, . . . , k} . In this way the commutator ideal L′
n can be considered as a

right K[Rn] = K[r1, . . . , rn] -module, where ri = rxi
= adxi , i = 1, . . . , n . It is well known, see Proposition

3.1. of the paper [6], that the elements

xi1 , [xi1 , xi2 ], [xi1 , xi2 ]ri3 · · · rik , 1 ≤ i1, i2 ≤ n, 1 ≤ i3 ≤ · · · ≤ ik,

form a basis for Ln . The next result is a direct consequence of this basis.

Corollary 2.1 The commutator ideal L′
n of the free metabelian Leibniz algebra Ln is a free right K[Rn]-module

with generators [xi, xj ] , 1 ≤ i, j ≤ n .

A polynomial s = s(x1, . . . , xn) in the free metabelian Leibniz algebra Ln is said to be symmetric if

σs = s(xσ(1), . . . , xσ(n)) = s(x1, . . . , xn), σ ∈ Sn.

The set LSn
n of symmetric polynomials forms a Leibniz subalgebra, which is the algebra of invariants of the

symmetric group Sn . The K[Rn] -module structure of the commutator ideal L′
n implies that the algebra (L′

n)
Sn

is a right K[Rn]
Sn -module. One of the set of generators of the algebra K[Rn]

Sn of symmetric polynomials is
well known: {rk1 + · · ·+ rkn | 1 ≤ k ≤ n} , see [17].
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3. Main results
3.1. Symmetric polynomials

In this section we determine the algebra LSn
n of symmetric polynomials in the free metabelian Leibniz algebra

Ln . Clearly the linear symmetric polynomials are included in the K -vector space spanned on a single element
x1 + · · · + xn . Hence it is sufficient to work in the commutator ideal L′

n of Ln , and describe the algebra
(L′

n)
Sn . Let us fix the notations ai = [xi, xi] , 1 ≤ i ≤ n , and bjk = [xj , xk] , 1 ≤ j ̸= k ≤ n , which are the free

generators of K[Rn] -module L′
n . We provide explicit elements of K[Rn]

Sn -module (L′
n)

Sn . For this purpose,
we study in the K[Rn] -submodules

An =

{
n∑

i=1

aipi | pi ∈ K[Rn]

}
and Bn =

 ∑
1≤j ̸=k≤n

bjkqjk | qjk ∈ K[Rn]


of the K[Rn] -module L′

n = An ⊕ Bn , generated by ai , 1 ≤ i ≤ n , and bjk , respectively, 1 ≤ j ̸= k ≤ n , due
to the fact that they are invariant under the action of Sn ; i.e., ASn

n ⊂ An , and BSn
n ⊂ Bn .

Let us denote the subgroups Πi = {π ∈ Sn | π(i) = i} , 1 ≤ i ≤ n , and Πjk = {π ∈ Sn | π(j) = j, π(k) =

k} , 1 ≤ j ̸= k ≤ n , of Sn . In the next theorems, we determine symmetric polynomials in the K[Rn] -modules
An , and Bn , respectively.

Theorem 3.1 Let p =
∑n

i=1 aipi be a polynomial in An , for some pi ∈ K[Rn] , 1 ≤ i ≤ n . Then p is
symmetric if and only if

p1(r1, r2, . . . , rn) = πp1(r1, r2, . . . , rn) = p1(r1, rπ(2), . . . , rπ(n)), π ∈ Π1,

σpi = pi , σ ∈ Πi , and pi = (1i)p1 = p1(ri, r2, . . . , ri−1, r1, ri+1, . . . , rn) , for transpositions (1i) ∈ Sn ,
i = 2, . . . , n .

Proof Let p ∈ An be an element of the form

p =

n∑
i=1

aipi(r1, . . . , rn), pi ∈ K[Rn].

If p is a symmetric polynomial, then p = πp ; i.e.
n∑

i=1

aipi(r1, . . . , rn) =

n∑
i=1

aπ(i)pi(rπ(1), . . . , rπ(n))

for each π ∈ Sn by definition, and by Corollary 2.1 we may compare the coefficients of ai , i = 1, . . . , n , from
K[Rn] , in the last equality. In particular, p = πp for each π ∈ Πi , and comparing the coefficients of ai ,
i = 1, . . . , n , we obtain that

pi(r1, . . . , rn) = pi(rπ(1), . . . , rπ(i−1), ri, rπ(i+1), . . . , rπ(n)).

Now consider (1i)p = p for every transposition (1i) ∈ Sn , i = 2, . . . , n . Then these equalities give that
pi = (1i)p1 , and thus

pi(r1, . . . , rn) = (1i)p1(r1, . . . , rn)

= p1(ri, r2, . . . , ri−1, r1, ri+1, . . . , rn)
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Conversely consider the element p =
∑n

i=1 aipi satisfying the conditions in the theorem. It is sufficient to show
that (1k)p = p , k = 2, . . . , n , since these transpositions generate the symmetric group Sn . Note that if i ̸= 1, k ,
then (1k)pi = pi , since (1k) ∈ Πi . The following computations complete the proof:

(1k)p =(1k)

a1p1 + akpk +
∑
i ̸=1,k

aipi


= ak((1k)p1) + a1((1k)pk) +

∑
i ̸=1,k

ai((1k)pi)

= akpk + a1p1 +
∑
i ̸=1,k

aipi = p.

2

Theorem 3.2 Let q =
∑
bijqij be a polynomial in Bn , for some qij ∈ K[Rn] , 1 ≤ i ≠ j ≤ n . Then q is

symmetric if and only if qij = σqkl for every σ : i→ k, j → l , in particular,

q1i =(2i)q12, qi2 = (1i)q12, q2i = (1i)q21, qi1 = (2i)q21,

q21 = (12)q12, qij = (1i)(2j)q12, 3 ≤ i ̸= j ≤ n,

and qij = πqij , for all π ∈ Πij .

Proof Assume that a polynomial q =
∑
bijqij ∈ Bn , 1 ≤ i ̸= j ≤ n , is symmetric. Then πq = q for each

π ∈ Π12 gives that
q12(r1, r2, . . . , rn) = q12(r1, r2, rπ(3), . . . , rπ(n)).

Relations on qij ’s in the theorem are straightforward, by making use of Corollary 2.1, and comparing the
coefficients of b12 , b21 , and bij from the equalities q = (12)q = (1i)q = (2i)q = (1i)(2j)q = (ij)q , where
3 ≤ i ̸= j ≤ n .

Now let the polynomial q ∈ Bn satisfy the conditions of the theorem, and (1k) ∈ Sn be a transposition
for a fixed k ∈ {3, . . . , n} . We have to show that (1k)q = q . Let express q in the following form

q = b1kq1k + bk1qk1 +
∑

i,j ̸=1,k

bijqij +
∑
i ̸=1,k

(b1iq1i + bkiqki + bikqik + bi1qi1).

Note that (1k) ∈ Πij , and hence (1k)qij = qij , for i, j ̸= 1, k . Then we have that

(1k)q =bk1((1k)q1k) + b1k((1k)qk1) +
∑

i,j ̸=1,k

bij((1k)qij)

+
∑
i ̸=1,k

(bki((1k)q1i) + b1i((1k)qki) + bi1((1k)qik) + bik((1k)qi1))

=bk1qk1 + b1kq1k +
∑

i,j ̸=1,k

bijqij +
∑
i≠1,k

(bkiqki + b1iq1i + bi1qi1 + bikqik) = q.

2

We obtain the next corollary by combining Theorems 3.1 and 3.2.
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Corollary 3.3 If s is a symmetric polynomial in the free metabelian Leibniz algebra Ln , then it is of the form

s =
∑

1≤i≤n

αxi +
∑

1≤i≤n

[xi, xi]((1i)f) +
∑

3≤i ̸=j≤n

[xi, xj ]((1i)(2j)g)

+ [x1, x2]g +
∑

3≤i≤n

([x1, xi]((2i)g) + [xi, x2]((1i)g)

+ [x2, x1]h+
∑

3≤i≤n

([xi, x1]((2i)h) + [x2, xi]((1i)h)),

where α ∈ K , f, g, h ∈ K[Rn] , such that πf = f for π ∈ Π1 , σg = g for σ ∈ Π12 , and h = (12)g .

Example 3.4 Let n = 2 and the free metabelian Leibniz algebra L2 be generated by x1, x2 . Then each
symmetric polynomial s ∈ LS2

2 is of the form

s =α(x1 + x2) + [x1, x1]f(r1, r2) + [x2, x2]f(r2, r1)

+ [x1, x2]g(r1, r2) + [x2, x1]g(r2, r1),

where α ∈ K , f, g ∈ K[R2] . Note that the Lie correspondence of this result (modulo the annihilator) is that if
s(x1, x2) is a symmetric polynomial in the free metabelian Lie algebra generated by x1, x2 , then

s = α(x1 + x2) + [x1, x2]t(r1, r2),

such that t(r1, r2) = −t(r2, r1) , which is compatible with the recent result given in [7].

3.2. Inner automorphisms

Let u be an element in the commutator ideal L′
n of the free metabelian Leibniz algebra Ln . The adjoint

operator
adu : Ln → Ln, adu(v) = [v, u], v ∈ Ln

is nilpotent since ad2u = 0 , and that ψu = exp(adu) = 1 + adu is called an inner automorphism of Ln with
inverse ψ−u . Clearly the group Inn(Ln) consisting of all inner automorphisms is abelian due to the fact that
ψu1

ψu2
= ψu1+u2

.
Let AnnR(Ln) = {u ∈ Ln | [x, u] = 0, x ∈ Ln} be the right annihilator of the free metabelian

Leibniz algebra Ln . In the next theorem we determine the group Inn(LSn
n ) of inner automorphisms preserving

symmetric polynomials.

Theorem 3.5 Inn(LSn
n ) = {ψu1+u2

| u1 ∈ AnnR(Ln), u2 ∈ (L′
n)

Sn} .

Proof Let v ∈ LSn
n , u = u1 + u2 , for some u1 ∈ AnnR(Ln) , and u2 ∈ (L′

n)
Sn . Then clearly

ψu(v) = v + [v, u1 + u2] = v + [v, u2] ∈ LSn
n .

Conversely, let ψu(v) ∈ LSn
n for v ∈ LSn

n , and u ∈ L′
n . The action of ψu is identical when v ∈ L′

n . Hence we
assume that the linear counterpart vl = α(x1+ · · ·+xn) , α ∈ K , of v is nonzero. We may express u = u1+u2 ,
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u1 ∈ AnnR(Ln) , u2 ∈ L′
n , where u2 /∈ AnnR(Ln) . Hence we have ψu(v) ∈ LSn

n , which implies that [vl, u2] is a
symmetric polynomial. Let π ∈ Sn be an arbitrary permutation. Then

[vl, u2] = π[vl, u2] = [πvl, πu2] = [vl, πu2]

or [x1 + · · ·+ xn, u2 − πu2] = 0 , and thus u2 − πu2 = 0 . Therefore u2 ∈ (L′
n)

Sn . 2

We complete the paper by releasing the following problem.

Problem 3.6 Determine the group Aut(LSn
n ) of all automorphisms preserving the symmetric polynomials.
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