
Turkish Journal of Mathematics Turkish Journal of Mathematics 

Volume 44 Number 6 Article 12 

1-1-2020 

Generating sets of an infinite semigroup of transformations Generating sets of an infinite semigroup of transformations 

preserving a zig-zag order preserving a zig-zag order 

LADDAWAN LOHAPAN 

JÖRG KOPPITZ 

SOMNUEK WORAWISET 

Follow this and additional works at: https://journals.tubitak.gov.tr/math 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
LOHAPAN, LADDAWAN; KOPPITZ, JÖRG; and WORAWISET, SOMNUEK (2020) "Generating sets of an 
infinite semigroup of transformations preserving a zig-zag order," Turkish Journal of Mathematics: Vol. 44: 
No. 6, Article 12. https://doi.org/10.3906/mat-2007-69 
Available at: https://journals.tubitak.gov.tr/math/vol44/iss6/12 

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for 
inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more 
information, please contact academic.publications@tubitak.gov.tr. 

https://journals.tubitak.gov.tr/math
https://journals.tubitak.gov.tr/math/vol44
https://journals.tubitak.gov.tr/math/vol44/iss6
https://journals.tubitak.gov.tr/math/vol44/iss6/12
https://journals.tubitak.gov.tr/math?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol44%2Fiss6%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol44%2Fiss6%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
https://doi.org/10.3906/mat-2007-69
https://journals.tubitak.gov.tr/math/vol44/iss6/12?utm_source=journals.tubitak.gov.tr%2Fmath%2Fvol44%2Fiss6%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:academic.publications@tubitak.gov.tr


Turk J Math
(2020) 44: 2132 – 2146
© TÜBİTAK
doi:10.3906/mat-2007-69

Turkish Journal of Mathematics

http :// journa l s . tub i tak .gov . t r/math/

Research Article

Generating sets of an infinite semigroup of transformations preserving
a zig-zag order

Laddawan LOHAPAN1,∗, Jörg KOPPITZ2, Somnuek WORAWISET1
1Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand

2Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria

Received: 17.07.2020 • Accepted/Published Online: 04.09.2020 • Final Version: 16.11.2020

Abstract: A zig-zag order is like a directed path, only with alternating directions. A generating set of minimal size for
the semigroup of all full transformations on a finite set preserving the zig-zag order was determined by Fenandes et al.
in 2019. This paper deals with generating sets of the semigroup FN of all full transformations on the set of all natural
numbers preserving the zig-zag order. We prove that FN has no minimal generating sets and present two particular
infinite decreasing chains of generating sets of FN.
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1. Introduction
This paper deals with generating sets of transformation semigroups. A full transformation on a set X is a self-
mapping on X. The set of all full transformations on X forms a semigroup TX under the usual composition
of mappings. If X is the n -element set {1, 2, . . . , n}, then we write Tn rather than TX . In particular, Tn is
a finite semigroup of full transformations, which is the disjoint union of the symmetric group and the singular
part Singn. In fact, Singn is an ideal of Tn consisting of all full transformations with rank < n. The semigroup
Singn is generated by the idempotents of rank n− 1 [9]. Ayik et al. found a necessary and sufficient condition
for any set of full transformations with rank n − 1 to be a generating set of Singn [1]. The generating sets of
the ideals K(n, r), r ∈ {1, 2, . . . , n− 1}, of Singn were determined by Ayik and Bugay [3].

The set On of all order-preserving full transformations on {1, 2, . . . , n} with respect to the usual linear
order on the natural numbers forms a semigroup, which is the disjoint union of the identity mapping on
{1, 2, . . . , n} and the singular part. The minimal size of a generating set of On (i.e. the rank of On ) is n

while the singular part is generated by its idempotents of rank n− 1 [6]. A necessary and sufficient condition
for any set of full transformations in the ideal O(n, r), r ∈ {1, 2, . . . , n − 1}, to be a generating set of O(n, r)

was provided by Ayik and Bugay [2].
Generating sets for other (finite) semigroups of full transformations have been determined by several

authors. Among these semigroups is the semigroup Fn of all full transformations on {1, 2, . . . , n} preserving
the zig-zag order. Recall that the zig-zag order is a partial order, which is like a path, only with alternating
directions. Full transformations on {1, 2, . . . , n} preserving the zig-zag order were first studied by Currie and
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Visentine [4] and Rutkowski [14] in 1991 and 1992, respectively. In both papers, the authors calculated the
cardinality of Fn, depending on the parity of n. In [5], Fernandes, Koppitz, and Musunthia determined a
generating set of Fn of minimal size and gave a formula to calculate the rank of Fn. Algebraic properties of
Fn were investigated by several authors in the last decade (e.g., [10, 11, 15]).

Recall that uncountable semigroups have only uncountable generating sets. In order to make the situation
more comfortable, Ruškuc introduced the concept of a relative generating set (i.e. a relative rank) [13]. For
example, in [7, 8], the authors considered the uncountable semigroup TN and the semigroup ON of all order-
preserving full transformations on the set N of all natural numbers with respect to the usual linear order on
N. One needs only one α ∈ TN \ON such that ON ∪ {α} generates TN, i.e. the relative rank of TN modulo ON

is one, where {α} is said to be a relative generating set of TN modulo ON. On the other hand, in [7], Higgins,
Mitchell, and Ruškuc considered the set C of all contractions on N and obtained that the relative rank of TN

modulo C is uncountable. Also in [7], the authors pointed out that the relative rank of TN modulo a so-called
dominated set is uncountable.

In the present paper, we consider an extension of the zig-zag order on {1, 2, . . . , n} to the set of all natural
numbers N . Let

n ≺ n+ 1 if n is odd;
n+ 1 ≺ n otherwise.

The binary relation ≺ together with the diagonal on N is a partial order on N, in fact, ⪯ is called the zig-
zag order on N. Any element in the partially ordered set (N,⪯), which is called a fence, is either minimal or
maximal. The set FN of all full transformations on N preserving the zig-zag order forms a submonoid of TN

with the identity mapping idN on N. Corollary 2.2. in [7] and the fact that FN is dominated imply that the
relative rank of TN modulo FN is uncountable infinite. In fact, the study of the semigroup FN extends the
study of Fn on another level (we have now an uncountable semigroup of full transformations). Furthermore,
congruences on FN were already determined in [12]. Hence, a more detailed study of the semigroup FN seems
reasonably enough. An investigation of generating sets of Fn will be provided in this paper.

Besides the zig-zag order ⪯ on N, we also deal with the usual liner order ≤ on N. Excluding any
confusion, we introduce the following agreements. Let A be a nonempty subset of N. We use min(A) and
max(A) for the smallest and the greatest element (if exists), respectively, in A with respect to ≤ . Moreover,
A is said to be convex if A is an interval with respect to ≤ . Note that the image of α (in symbols: im α) is
a convex set. For B ⊆ N, we write A < B if a < b for all a ∈ A and all b ∈ B.

In the next section, we show that any transformation in FN can be expressed as the product of one
element from each of the sets

Θ := {α ∈ FN : aα−1 is a convex set for all a ∈ im α} and

Λn := {α ∈ FN : |nb(α)| = 0, c(α) > 0, 1α ≥ n, and |{1, 2, . . . , n}α| = n}

for any n ∈ N, where
nb(α) := {a ∈ N : aα = (a+ 1)α} and

c(α) :=
∣∣∣⋃{

aα−1 : a ∈ im α and
∣∣aα−1

∣∣ ≥ 2
}∣∣∣ .

Obviously, c(α) ≤ c(αβ) for all α, β ∈ FN and c(α) = 0 if and only if α is injective. It is worth mentioning
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that FN has no minimal generating sets. The main purpose of paper is to give two particular infinite decreasing
chains of generating sets of FN, which will be provided in Section 3.

Let α ∈ FN. The rank of α, (in symbols: rank α) is the size of the image of α. Then rank α can be finite
(in symbols: rank α < ℵ0 ) or countable infinite (in symbols: rank α = ℵ0 ). The set of all transformations in
FN with countable infinite rank will be denoted by F inf

N . For n ∈ N , let Θn = Θ ∩ Ωn, where

Ωn := {α ∈ FN : 1α ≥ n and |{1, 2, . . . , n}α| = n}.

Then we obtain that Λn = Λ ∩ Ωn, where Λ := {α ∈ FN : |nb(α)| = 0 and c(α) > 0}. Just for convenience, for
α ∈ FN, we define the following sets, which will be used subsequently:

Mn
α := {X ⊆ N : |X| = n and X is a maximal convex set with respect to |Xα| = 1};

Mα :=
⋃

n∈N Mn
α ;

M∗
α := Mα \M1

α;

MSn
α := {X ⊆

⋃
M1

α : X is a maximal convex set and |X| = n};
MSα :=

⋃
n∈N MSn

α.

More in detail, a convex set X ⊆ N belongs to Mn
α if and only if |X| = n, |Xα| = 1, and |Y α| > 1 for any

convex set Y ⊆ N with X ⊊ Y. Moreover, a convex set X ⊆
⋃

M1
α belongs to MSn

α if and only if |X| = n

and Y ⊈
⋃
M1

α for any convex set Y ⊆ N with X ⊊ Y. For any β ∈ FN , it is clear that Mα = Mβ if and only
if M∗

α = M∗
β .

Further, let Cm := {X : X ⊆ {m,m+ 1, . . .}} for all m ∈ N.

2. On minimal generating sets of FN

First, we describe any transformation α in FN, that is, α preserves the partial order ⪯ on N. If x, y ∈ N with
x ≺ y, then x is odd and y is even. Moreover, x is the successor of y or conversely y is the successor of x,

which implies |x− y| = 1. When we apply α to both x and y, their images are related with respect to ⪯, that
is, |xα− yα| ≤ 1. This fact will be used subsequently without mentioning. Now, we characterize the elements
of FN by two properties, which are easy to verify.

Proposition 2.1 Let α ∈ TN. Then α ∈ FN if and only if

(i) |xα− (x+ 1)α| ≤ 1 for all x ∈ N;

(ii) x and xα have the same parity or (x− 1)α = xα = (x+ 1)α for all x ∈ N \ {1}.

Proof Suppose α ∈ FN.

(i) Let x ∈ N. Then x ≺ x + 1 or x + 1 ≺ x. Since α ∈ FN, we obtain xα ⪯ (x + 1)α and (x + 1)α ⪯ xα,

respectively. Then |xα− (x+ 1)α| ≤ 1.

(ii) Suppose that there exists x ∈ N\{1} such that x and xα have different parities. Without loss of generality,
suppose that x is odd and xα is even. Assume (x− 1)α ̸= xα. Then (i) implies (x− 1)α ∈ {xα− 1, xα+1}. It
follows that (x− 1)α is odd. This shows that x ≺ x− 1 but (x− 1)α ≺ xα, that is, α ̸∈ FN, a contradiction.
Hence, (x− 1)α = xα. Similarly, we can show that (x+ 1)α = xα.
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Conversely, suppose that (i) and (ii) hold. Let x, y ∈ N be such that x ≺ y. Then x is odd and y is even
with x ∈ {y− 1, y+1}. By (i), we obtain |xα− yα| ≤ 1. It is enough to consider the case |xα− yα| = 1. Since
x ∈ {y − 1, y + 1} and |xα− yα| = 1, we obtain that y and yα are even by (ii) and so xα ≺ yα. Altogether,
we conclude xα ⪯ yα. Therefore, α ∈ FN. 2

An immediate consequence of Proposition 2.1 is that |A| is odd for all A ∈ M∗
α with 1 ̸∈ A. In the

following, we will use this fact as well as Proposition 2.1 without further mentioning. Any element in FN can
be described as the product of one element from each of the sets Θ and Λn for any n ∈ N.

Proposition 2.2 FN = ΘΛn = {γ1γ2 : γ1 ∈ Θ, γ2 ∈ Λn} for all n ∈ N.

Proof Let n ∈ N and α ∈ FN. Then we consider the following two cases.
Case 1: |Mα| = ℵ0. Suppose Mα = {Ai : i ∈ N} with Ai < Ai+1 for all i ∈ N. Then |Ai| < ℵ0 for all i ∈ N.
For all i ∈ N, let mi = max(Ai). This means Aiα = {miα} for all i ∈ N. Obviously, α ∈ FN and |Aiα| = 1

for all i ∈ N imply that for all i ∈ N,

mi and miα have the same parity and |miα−mi+1α| = 1. (2.1)

Let k ∈ N \ {1, 2, . . . , n} be such that k and m1α have the same parity. We define γ1 : N → N by

xγ1 := k + i− 1 for all x ∈ Ai, i ∈ N.

The transformation γ1 is well defined since
⋃

i∈N Ai = N. Moreover, Aiγ1 = {k+ i− 1} for all i ∈ N and thus,
Mγ1

= Mα. It is clear that |xγ1 − (x+ 1)γ1| ≤ 1 for all x ∈ N. Since k and m1α have the same parity and
Mγ1 = Mα, we obtain that x and xγ1 have the same parity or (x− 1)γ1 = xγ1 = (x+1)γ1 for all x ∈ N \ {1}.

Since yγ−1
1 is a convex set for all y ∈ im γ1, we obtain γ1 ∈ Θ. Further, we define γ2 : N → N by

xγ2 :=

{
m1α+ k − x if x ∈ {1, 2, . . . , k − 1};
mx−k+1α if x ∈ {k, k + 1, . . .}.

By (2.1) and the fact that k and m1α have the same parity, we can conclude that (i) and (ii) in Proposi-
tion 2.1 are satisfied for γ2, that is, γ2 ∈ FN. If rank α = ℵ0, then there exists y ∈ {m2α,m3α, . . .} with
y = m1α+1, that is, γ2 is not injective. If rank α < ℵ0, then it is clear that γ2 is not injective. Moreover, we
have |nb(γ2)| = 0, |{1, 2, . . . , n}γ2| = n, and 1γ2 = m1α + k − 1 ≥ k > n. Thus, γ2 ∈ Λn. By straightforward
calculations, we obtain Aiγ1γ2 = {miα} for all i ∈ N. This shows γ1γ2 = α.

Case 2: |Mα| < ℵ0. Suppose Mα = {Ai : 1 ≤ i ≤ l} for some l ∈ N with Ai < Aj for all 1 ≤ i < j ≤ l. Then
|Ai| < ℵ0 for all i ∈ N \ {l, l + 1, . . .} and |Al| = ℵ0. Let mi = max(Ai) for all i ∈ N \ {l, l + 1, . . .} and ml =

min(Al). Then Aiα = {miα} for all i ∈ {1, 2, . . . , l}. Since α ∈ FN and |Aiα| = 1 for all 1 ≤ i ≤ l, the
following properties hold:

(a1) |miα−mi+1α| = 1 for all i ∈ N \ {l, l + 1, . . .};

(a2) mi and miα have the same parity for all 1 ≤ i ≤ l, whenever l > 1.
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Let k ∈ N \ {1, 2, . . . , n} be such that k and m1α have the same parity. Then we define γ1 : N → N by

xγ1 := k + i− 1 for all x ∈ Ai, 1 ≤ i ≤ l.

The transformation γ1 is well defined since
⋃

i∈N Ai = N. Moreover, Aiγ1 = {k+ i− 1} for all 1 ≤ i ≤ l. Using

the same arguments as in Case 1, we get γ1 ∈ FN. Since yγ−1
1 is a convex set for all y ∈ im γ1, we have γ1 ∈ Θ.

Further, let γ2 : N → N by

xγ2 :=


m1α+ k − x if x ∈ {1, 2, . . . , k − 1};
mx−k+1α if x ∈ {k, k + 1, . . . , k + l − 1};
mlα+ x− k − l + 1 if x ∈ {k + l, k + l + 1, . . .}.

By (a1), we have |xγ2 − (x+ 1)γ2| ≤ 1 for all x ∈ N. Moreover, x and xγ2 have the same parity for all x ∈ N
by (a2) and the property of k. Hence, γ2 ∈ FN. Since im γ2 = {m1α, . . . ,mlα,mlα + 1,mlα + 2, . . .} is a
convex set, rank γ2 = ℵ0, and kγ2 = m1α, there exists y ∈ {k + 1, k + 2, . . .} such that yγ2 = m1α + 1.

Since (k − 1)γ2 = m1α + 1 = yγ2 and k − 1 ̸= y, the transformation γ2 is not injective. Moreover,
|nb(γ2)| = 0, |{1, 2, . . . , n}γ2| = n, and 1γ2 = m1α + k − 1 ≥ k > n. Hence, γ2 ∈ Λn. By straightforward
calculations, we obtain Aiγ1γ2 = {miα} for all 1 ≤ i ≤ l. Therefore, γ1γ2 = α.

Altogether, we have shown FN ⊆ ΘΛn. Since the converse inclusion is clear, we have ΘΛn = FN. 2

By the construction of γ1 in Proposition 2.2, we observe that the only conditions for γ1 are Mα = Mγ1

and min(im γ1) ≥ n. This gives us the following corollary.

Corollary 2.3 Let n ∈ N and α ∈ FN. For γ1 ∈ Θ with Mα = Mγ1 and min(im γ1) ≥ n, there exists γ2 ∈ Λn

such that α = γ1γ2.

As one can see, FN is uncountable and thus, any generating set of FN is uncountable. It appears the
question whether a minimal generating set of FN exists. The following constructions clarify that there are no
minimal generating sets of FN, that is to say, we can get a smaller generating set (under the set inclusion) by
excluding suitable elements from a given generating set.

Let α ∈ F inf
N , Rα := {x ∈ im α : xα−1 is not a convex set}, and Qα := {x ∈ im α :

∣∣xα−1
∣∣ , ∣∣(x+ 1)α−1

∣∣ ≥
3}. Further, let P := {α ∈ F inf

N :
∣∣⋃

n>3 M
n
α

∣∣ , |Rα| , |Qα| < ℵ0}. For l ∈ N, let

Kl := {α ∈ P :
∣∣MSl

α

∣∣ = ℵ0 and |MSn
α| < ℵ0 for all n < l}.

Note that |M∗
α| = ℵ0 for all α ∈ Kl. Further, let Kℵ0 := P \

⋃
n∈N Kn.

Lemma 2.4 Let α ∈ F inf
N with |Rα| < ℵ0. Then there is k ∈ N such that aα ≤ bα for all k ≤ a < b.

Proof Since |Rα| < ℵ0, there is k′ ∈ N such that xα−1 is a convex set for all x ≥ k′. Let k = min(k′α−1) and
let a, b ∈ N with k ≤ a < b. Assume that aα < k′, i.e. k < a. Then rank α = ℵ0 implies that {a, a+ 1, . . .}α
is an infinite convex set containing k′, that is, there is s > a with sα = k′. Thus, k′α−1 is not a convex set
because k < a < s, where s, k ∈ k′α−1 and a ̸∈ k′α−1, a contradiction. Hence, k′ ≤ aα. Assume bα < aα.

Then rank α = ℵ0 implies that {b, b+1, . . .}α is an infinite convex set containing aα, that is, there exists t ∈ N
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with b < t and tα = aα. This means that (aα)α−1 is not a convex set since a < b < t, where a, t ∈ (aα)α−1

and b ̸∈ (aα)α−1, a contradiction to k′ ≤ aα. Therefore, aα ≤ bα. 2

As a consequence of Lemma 2.4, we obtain that α|B is injective for all B ∈ MSα ∩ Ck.

Lemma 2.5 Let α, β ∈ F inf
N and let x ∈ Rβ be such that xβ−1 ∩ im α is not a convex set. Then x ∈ Rαβ .

Proof Assume x ̸∈ Rαβ . This means that x(αβ)−1 = xβ−1α−1 is a convex set. Then xβ−1α−1α is a convex
set. But xβ−1α−1α = xβ−1 ∩ im α, a contradiction. Hence, x ∈ Rαβ . 2

Lemma 2.6 Let β ∈ F inf
N and let X ⊆ N be such that |X| = ℵ0 and |Xβ| < ℵ0. Then |Rβ | = ℵ0. Moreover,

|Rαβ | = ℵ0 for all α ∈ F inf
N .

Proof Assume |Rβ | < ℵ0. By Lemma 2.4, there is k ∈ N with aα ≤ bα for all k ≤ a < b. Let
B = {x ∈ X : x ≥ k} and c = max(Bβ). Then |B| = ℵ0. Let t ∈ N with t ≥ k. Since |B| = ℵ0, there
is s ∈ B such that t < s. Then tβ ≤ sβ ≤ c. This implies that rank β ≤ k + c < ℵ0, a contradiction. Hence,
|Rβ | = ℵ0 and so

∣∣{x ∈ Rβ : xβ−1 ⊆ im α}
∣∣ = ℵ0. Therefore, |Rαβ | = ℵ0 by Lemma 2.5. 2

Proposition 2.7 FN \ P is an ideal of FN.

Proof Let α ∈ FN\P and β ∈ FN. If rank α < ℵ0 or rank β < ℵ0, then we obtain that rank αβ, rank βα < ℵ0,

that is, αβ, βα ∈ FN \ P. Suppose now rank α = rank β = ℵ0. Since im α and im β are convex sets, we have
that rank αβ = ℵ0 and rank βα = ℵ0, respectively. Let Mβ = {Bi : i ∈ N} with Bi < Bi+1 for all i ∈ N.

Case 1: |Rα| = ℵ0. Suppose that Rα = {xi : i ∈ N} with xi < xi+1 for all i ∈ N. Let r be the least q ∈ N
with min(im β) ≤ min(xqα

−1) and let E = {xi : i ≥ r}. Then xα−1 ⊆ im β for all x ∈ E. Therefore, Lemma
2.5 implies that x ∈ Rβα and so E ⊆ Rβα. Hence, |Rβα| ≥ |E| = ℵ0.

Suppose |Rαβ | < ℵ0. Then there is k ∈ N such that xβ−1α−1 is a convex set for all x ≥ k. More-
over, |Rαβ| = ℵ0. Otherwise |Rαβ| < ℵ0 and so Lemma 2.6 implies |Rαβ | = ℵ0, a contradiction. There-
fore, |Rαβ ∩ {k, k + 1, . . .}| = ℵ0. Let s be the least q ∈ N such that min(im α) < min(xqββ

−1) and let
D = {xi : i ≥ s}β ∩ {k, k + 1, . . .}. Let x ∈ D. Then xβ−1α−1 is a convex set and xβ−1 ∩ Rα ̸= ∅. Suppose
that xj ∈ xβ−1 ∩ Rα for some j ∈ N. If xβ−1 ∩ im α = {xj}, then xβ−1α−1 = xjα

−1 is not a convex set,
a contradiction. Thus,

∣∣xβ−1 ∩ im α
∣∣ ≥ 3. Since xjα

−1 is not a convex set, we obtain
∣∣xjα

−1
∣∣ ≥ 2. Hence,∣∣xβ−1α−1

∣∣ > 3. Therefore,
∣∣∣⋃n>3 M

n
αβ

∣∣∣ ≥ |D| = ℵ0.

Case 2:
∣∣⋃

n>3 M
n
α

∣∣ = ℵ0 and |Rα| < ℵ0. Let
⋃

n>3 M
n
α = {Ai : i ∈ N} with Ai < Ai+1 for all i ∈ N. Let r be

the least q ∈ N such that min(im β) ≤ min(Aq). Then for i ≥ r, there is mi ∈ N with
(⋃mi+|Ai|−1

j=mi
Bj

)
β ⊆ Ai.

Hence, there is Di ∈ Mβα with
(⋃mi+|Ai|−1

j=mi
Bj

)
⊆ Di. Then |Di| ≥

∣∣∣⋃mi+|Ai|−1
j=mi

Bj

∣∣∣ ≥ |Ai| > 3. This shows

that
∣∣∣⋃n>3 M

n
βα

∣∣∣ ≥ ∣∣∣{Di ∈ Mβα :
(⋃mi+|Ai|−1

j=mi
Bj

)
⊆ Di}

∣∣∣ = |{i ∈ N : i ≥ r}| = ℵ0.

If
∣∣(⋃

i∈N Ai

)
αβ

∣∣ = ℵ0, then we obtain
∣∣∣⋃n>3 M

n
αβ

∣∣∣ = ℵ0. Suppose now that
∣∣(⋃

i∈N Ai

)
αβ

∣∣ < ℵ0.

Assume
∣∣(⋃

i∈N Ai

)
α
∣∣ < ℵ0. Let X = {min(Ai) : i ∈ N}. Then |X| = ℵ0 and |Xα| < ℵ0. So, Lemma 2.6
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implies that |Rα| = ℵ0, a contradiction. Hence,
∣∣(⋃

i∈N Ai

)
α
∣∣ = ℵ0. Then |Rαβ | = ℵ0 by Lemma 2.6.

Case 3: |Qα| = ℵ0. Then |Qα ∩ im βα| = ℵ0 since rank βα = ℵ0. This implies that |Qβα| = ℵ0.

Suppose that |Qαβ | , |Rαβ | < ℵ0. Then |Qαβ| = ℵ0. Otherwise |Qαβ| < ℵ0 and so Lemma 2.6 implies
|Rαβ | = ℵ0, a contradiction. Let Qα = {xi : i ∈ N} with xi < xi+1 for all i ∈ N. Since |Qαβ | , |Rαβ | < ℵ0,

there is k ∈ N such that xβ−1α−1 is a convex set, and
∣∣xβ−1α−1

∣∣ < 3 or
∣∣(x+ 1)β−1α−1

∣∣ < 3 for all x ≥ k.

Then |Qαβ ∩ {k, k + 1, . . .}| = ℵ0 since |Qαβ| = ℵ0. Let D = Qαβ ∩ {k, k + 1, . . .} and let x ∈ D. Then
there is s ∈ Qα such that sβ = x. Since s ∈ Qα, we obtain that

∣∣sα−1
∣∣ , ∣∣(s+ 1)α−1

∣∣ ≥ 3. Assume that
(s + 1)β ̸= x. Then (s + 1)β = x + 1. Otherwise, (s + 1)β = x − 1 and thus, there is t > s + 1 with tβ = x.

Hence, xβ−1 ∩ im α is not a convex set. Lemma 2.5 implies that xβ−1α−1 is not a convex set, a contradiction
to x ≥ k. Thus,

∣∣xβ−1α−1
∣∣ ≥ ∣∣sα−1

∣∣ ≥ 3 and
∣∣(x+ 1)β−1α−1

∣∣ ≥ ∣∣(s+ 1)α−1
∣∣ ≥ 3, a contradiction to x ∈ D.

Hence, x = sβ = (s+ 1)β, that is,
∣∣xβ−1α−1

∣∣ ≥ ∣∣{s, s+ 1}α−1
∣∣ ≥ 6 and so xβ−1α−1 ∈

⋃
n>3 M

n
αβ . Therefore,∣∣∣⋃n>3 M

n
αβ

∣∣∣ ≥ |D| = ℵ0.

For all three cases, we obtain that αβ, βα ̸∈ P. Therefore, we can conclude that FN \P is an ideal of FN.

2

Lemma 2.8 Let α ∈ Kl for some l ∈ N and let G be a generating set of FN. Then there are γ1 ∈ Kl1 ∪Kℵ0

and γ2 ∈ Kl2 ∪Kℵ0 for some l1, l2 ∈ N with l1, l2 > l such that α = γ1γ2 and γ1, γ2 ∈ ⟨G \ {α}⟩.

Proof Since α ∈ Kl, we have |M∗
α| = ℵ0. Suppose that M∗

α = {Bi : i ∈ N} with Bi < Bi+1 for all i ∈ N.
Let γ1 ∈ Θ be such that im γ1 = N and M∗

γ1
= {Bi : i ∈ 2N}. Note that such a γ1 exists.

Moreover, we define γ2 : N → N by xγ2 := (min(xγ−1
1 ))α for all x ∈ N. Let a, b ∈ N be such that

a ≺ b. Then a is odd and b is even. Furthermore, b = a + 1 or a = b + 1. Suppose now b = a + 1. Since
γ1 ∈ Θ, we obtain that max(aγ−1

1 ) is odd and min(bγ−1
1 ) is even such that max(aγ−1

1 )+1 = min(bγ−1
1 ). Then

α ∈ FN implies that max(aγ−1
1 )α ⪯ min(bγ−1

1 )α. Since M∗
γ1

⊆ M∗
α, it follows that min(aγ−1

1 )α = max(aγ−1
1 )α.

Hence, min(aγ−1
1 )α ⪯ min(bγ−1

1 )α, that is, aγ2 ⪯ bγ2. We can show similarly for the case a = b+1. Therefore,
γ2 ∈ FN.

By the definitions of γ1 and γ2, it is clear that γ1γ2 = α and that there exist l1, l2 > l such that
γ1 ∈ Kl1 ∪Kℵ0

and γ2 ∈ Kl2 ∪Kℵ0
. Hence, for i ∈ {1, 2}, there is ki ∈ N satisfying the following properties:

(a1) |A| ≥ li > l for all A ∈ MSγi
∩ Cki

;

(a2) |A| = 3 for all A ∈ M∗
γi

∩ Cki
;

(a3)
∣∣xγ−1

i

∣∣ < 3 or
∣∣(x+ 1)γ−1

i

∣∣ < 3 for all x ≥ kiγi;

(a4) xγ−1
i is a convex set for all x ≥ kiγi

because
∣∣∣⋃li−1

n=1 MSn
γi

∣∣∣ < ℵ0 with li > l,
∣∣⋃

n>3 M
n
γi

∣∣ < ℵ0, |Qγi
| < ℵ0, and |Rγi

| < ℵ0, respectively. It is a

consequence of (a4) that aγi ≤ bγi for all ki ≤ a < b, which we will use without further mentioning. Since
α ∈ Kl, there is k ∈ N satisfying the following properties:
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(b1)
∣∣MSl

α ∩ Ck

∣∣ = ℵ0;

(b2) |A| = 3 for all A ∈ M∗
α ∩ Ck

because
∣∣MSl

α

∣∣ = ℵ0 and
∣∣⋃

n>3 M
n
α

∣∣ < ℵ0, respectively. Since ⟨G⟩ = FN and γ1, γ2 ∈ P, there are
µ1, µ2, . . . , µm1 , η1, η2, . . . , ηm2 ∈ G∩P such that γ1 = µ1µ2 · · ·µm1 and γ2 = η1η2 · · · ηm2 for some m1,m2 ∈ N.
By (a1) and (b1), it is clear that µ1 ̸= α and η1 ̸= α.

Assume that µj = α for some j ∈ {2, 3, . . . ,m1}. Let MSl,k
α = {A ∈ MSl

α : {k} < A} = {Ai : i ∈ N}
with Ai < Ai+1 for all i ∈ N. Let δ1 = µ1µ2 · · ·µj−1. Further, let δ2 = µj+1µj+2 · · ·µm1

if j < m1 and
let δ2 = idN if j = m1. Note that idN ∈ P. Let x ∈ N be such that x > k1 + 3 and xδ1 ∈ {min(A) : A ∈
MSl,k

α \ {A1}}. Then xδ1 = min(Ar) for some r ≥ 2 and so Ar = {xδ1, xδ1 + 1, . . . , xδ1 + l − 1}. So, (b2)
implies that B1 = {xδ1− 3, xδ1− 2, xδ1− 1}, B2 = {xδ1+ l, xδ1+ l+1, xδ1+ l+2} ∈ Mα. Note that k < x− 3.

Since {x−3, x−2, x−1, x}δ1 is a convex set containing xδ1, we get that {x−3, x−2, x−1}δ1 ⊆ B1 and so
{x−3, x−2, x−1} ⊆ (x−1)δ1αδ2(δ1αδ2)

−1. We obtain the equality {x−3, x−2, x−1} = (x−1)δ1αδ2(δ1αδ2)
−1

by (a2). Let D = {x, x + 1, . . . , x + l1 − 1}. Note that zγ1γ
−1
1 is a convex set for all z ∈ D. By (a3), we can

conclude that
∣∣xδ1αδ2(δ1αδ2)−1

∣∣ = ∣∣xγ1γ−1
1

∣∣ = 1. Let A = {X ∈ M∗
γ1

: X ⊆ D \ {x}}. Assume that A ̸= ∅.

Then there is E ∈ A with E ≤ X for all X ∈ A. Then {x, x + 1, . . . ,min(E) − 1} ∈
⋃l1−1

n=1 MSn
δ1αδ2

, a
contradiction. This implies that δ1|D is injective with zδ1 = xδ1 + z − x for all z ∈ D. Since l1 > l, we
have x + l ∈ D with (x + l)δ1αα

−1 = (xδ1 + l)αα−1 = B2. Then (x + l)γ1γ
−1
1 = (x + l)δ1αδ2(δ1αδ2)

−1 =

(xδ1 + l)αδ2δ
−1
2 α−1δ−1

1 ⊇ (xδ1 + l)αα−1δ−1
1 = B2δ

−1
1 . Therefore,

∣∣(x+ l)γ1γ
−1
1

∣∣ ≥
∣∣B2δ

−1
1

∣∣ ≥ |B2| = 3, a
contradiction. Therefore, we conclude that µj ̸= α for all j ∈ {1, 2, . . . ,m1}. Similarly, we can show that
ηj ̸= α for all j ∈ {1, 2, . . . ,m2}. So, γ1, γ2 ∈ ⟨G \ {α}⟩. 2

In particular, Lemma 2.8 shows that G has no common elements to Kl for all l ∈ N, whenever G is a
minimal generating set of FN. The main result of this section states that there are no minimal generating sets
of FN. If such a one existed, it would have the following necessary condition.

Lemma 2.9 If G is a minimal generating set of FN , then G∩Kn = ∅ for all n ∈ N. Moreover, G∩P ⊆ Kℵ0 .

Proof Assume G ∩ Kl ̸= ∅ for some l ∈ N. Then there exists α ∈ G ∩ Kl. By Lemma 2.8, there are
γ1, γ2 ∈ ⟨G \ {α}⟩ with α = γ1γ2, that is, α ∈ ⟨G \ {α}⟩. Since ⟨G⟩ = FN, we obtain ⟨G \ {α}⟩ = FN. It
contradicts to the assumption that G is a minimal generating set of FN. Therefore, G ∩Kn = ∅ for all n ∈ N.
Together with P =

(⋃
n∈N Kn

)
∪Kℵ0

, we obtain that G∩P = G∩
((⋃

n∈N Kn

)
∪Kℵ0

)
= G∩Kℵ0

⊆ Kℵ0
. 2

Theorem 2.10 There are no minimal generating sets of FN.

Proof Assume that there is a minimal generating set G of FN. By Lemma 2.9, we have G ∩Kn = ∅ for all
n ∈ N. Now, we define α : N → N by

xα :=

{
2n− 1 if x = 4n− 3 for n ∈ N;
2n if x ∈ {4n− 2, 4n− 1, 4n} for n ∈ N.
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Then M∗
α = {{4n − 2, 4n − 1, 4n} : n ∈ N}. It is clear that α ∈ P since Rα = Qα =

⋃
n>3 M

n
α = ∅. Since

α ∈ P and ⟨G⟩ = FN, Lemma 2.9 implies that α = γ1γ2 · · · γl for some γ1, γ2, . . . , γl ∈ G ∩ P ⊆ Kℵ0 and for
some l ∈ N. Let γ0 = idN and let i ∈ {1, 2, . . . , l}. Since α = γ1γ2 · · · γl, we obtain the following properties:

(a1) aγi ≤ bγi for all 1γ0γ1 · · · γi−1 ≤ a < b;

(a2) |B| = 3 for all B ∈ M∗
γi

∩ C1γ0γ1···γi−1

because Rα = ∅ and M∗
α = M3

α, respectively. Moreover, (a1) provides

(a3) γi|A is injective for all A ∈ MSγi
∩ C1γ0γ1···γi−1

.

Let al = 2 and al−j = 2al−j+1 + 3 for all j ∈ N \ {l, l + 1, . . .}. Since γi ∈ Kℵ0
, there exists mi ∈ N such

that |C| ≥ ai for all C ∈ MSγi
∩ Cmi

. Let m∗ = max{1γ1, 1γ1γ2, . . . , 1γ1γ2 · · · γl−1,m1,m2, . . . ,ml} and
let y ∈ N be such that {m∗} < {y, yγ1, yγ1γ2, . . . , yγ1γ2 · · · γl−1} . Further, let D1 ∈ MSγ1

∩ Cy and let
x = min(D1) . Since m∗ < y ≤ x, we obtain that |D1| ≥ a1 and γ1|D1

is injective by (a3). Let j ∈ {2, 3, . . . , l} .
Then m∗ < y ≤ x and (a1) imply that m∗ ≤ yγ1γ2 · · · γj−1 ≤ xγ1γ2 · · · γj−1 . Since aj−1 = 2aj + 3 and
m∗ ≤ xγ1γ2 · · · γj−1,the properties (a2) and (a3) provide that there is a convex set Dj ⊆ Dj−1γj−1∩Ej for some
Ej ∈ MSγj such that |Dj | = aj and γj |Dj is injective. Let D = Dlγ

−1
l−1γ

−1
l−2 · · · γ

−1
1 . SinceDγ0γ1 · · · γr−1 ⊆

Dr, γr|Dr
is injective, and Drγrγ

−1
r = Dr for all 1 ≤ r ≤ l, we obtain that |D| = |Dl| = al = 2 . Then there is

D′ ∈ MSγ1γ2···γl
with D ⊆ D′ . Thus, |D′| ≥ |D| = 2, a contradiction to α = γ1γ2 · · · γl with MSα = MS1

α.

2

Although a minimal generating set of the uncountable semigroup FN does not exist, there is an uncount-
able subsemigroup of FN having such one. Let A ⊆ N and let αA ∈ Θ be such that im αA = N and

∣∣xα−1
A

∣∣ = 3

if x ∈ A and
∣∣xα−1

A

∣∣ = 5 otherwise. Note that such an αA exists. Further, let Q := {αA : A ⊆ N}. Then
|Q| = 2ℵ0 , which means that Q is uncountable. For A,B ⊆ N, it is easy to verify that

∣∣Mm
αAαB

∣∣ > 0 for some
m ≥ 9, that is, αAαB ̸∈ Q. This shows that Q is a minimal generating set of the semigroup generated by Q.

In other words, the uncountable subsemigroup ⟨Q⟩ of FN has a minimal generating set.

3. Infinite decreasing chains of generating sets of FN

The previous section shows that there are no minimal generating sets of FN. Obviously, FN itself is the maximum
generating set. Both facts provide that FN must have infinite decreasing chains of generating sets of FN. In
this section, we will provide such two chains.

Let Inj(FN) be the set of all injective transformations in FN and let ξ be the transformation on N
defined by xξ := x + 2 for all x ∈ N. Thus, ξn ∈ Inj(FN) with 1ξn = 2n + 1 for all n ∈ N. Let
B := {α ∈ FN : |nb(α)| = 2, c(α) = 3, and im α = N}. For n ∈ N, there is exactly one β ∈ B with
min(nb(β)) = n. This transformation will be denoted by βn. Let n ∈ N. We put Bn := {βi : i ≥ n}. Further,
we define transformations λn and δn as follows:

xλn :=

{
n− x+ 1 if x ∈ {1, 2, . . . , n};
x− n+ 1 otherwise
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and

xδn :=

{
m if x ∈ {1, 2, . . . , n};
m+ x− n otherwise,

where m = 1 if n is odd and m = 2 if n is even. It is easy to check that δn ∈ FN. But λn ∈ FN, whenever
n is odd. In this case, we observe that |nb(λn)| = 0, |{1, 2, . . . , n}λn| = n, and 1λn = n. If n ̸= 1, then
(n− 1)λn = 2 = (n+ 1)λn, that is, c(λn) > 0 and so λn ∈ Λn.

Lemma 3.1 Let n ∈ N. Then δm ∈ ⟨Bn ∪ Λn ∪ {ξ}⟩ for all m ∈ N.

Proof Let m ∈ N,m1 = max{m,n}, and m2 = 2m1 + 1. Then we can calculate that

δm =


ξβ1 if m = n = 1;

ξm1βm2−2λm2−2 if m = 1, n > 1;

ξm1βk1
m2

λm2
if m = 2k1 + 1 for some k1 ∈ N;

ξm1βk2
m2−1λm2−2 if m = 2k2 for some k2 ∈ N.

Clearly, β1 ∈ B1. If n + m > 2, then m2 − 2 > n, which implies that βm2−2, βm2−1, βm2
∈ Bn and

λm2−2, λm2
∈ Λn. Altogether, we obtain δm ∈ ⟨Bn ∪ Λn ∪ {ξ}⟩. 2

Let n ∈ N. We define a transformation αn on N by xαn := x if x ∈ N\{n, n+1, . . .} and xαn := n otherwise.
It is clear that αn ∈ FN. Then we put An := {αi : i ≥ n}. Further, let

∆ := {α ∈ FN : |M∗
α| = ℵ0}

and ∆n := ∆ ∩ Ωn = {α ∈ FN : 1α ≥ n, |{1, 2, . . . , n}α| = n, and |M∗
α| = ℵ0}.

Lemma 3.2 Let α ∈ FN \∆. Then α ∈ ⟨An ∪ Bn ∪ Λn ∪ {ξ}⟩ for all n ∈ N.

Proof Since α ∈ FN \∆, we have |M∗
α| < ℵ0. Let n ∈ N and let k1 ∈ N \ {1, 2, . . . , n} be odd. Further, let

k′ = 1
2 (k1 − 1).

Case 1: |M∗
α| = 0. Then |nb(α)| = 0. Thus, x and xα have the same parity for all x ∈ N. We define γ : N → N

by

xγ :=

{
1α+ k1 − x if x ∈ {1, 2, . . . , k1 − 1};
(x− k1 + 1)α otherwise.

Then |nb(γ)| = 0, c(γ) > 0, 1γ = 1α + k1 − 1 > n, and |{1, 2, . . . , n}γ| = n, that is, γ ∈ Λn. So, we obtain

α = ξk
′
1γ ∈ ⟨Λn ∪ {ξ}⟩.

Case 2: |M∗
α| = m for some m ∈ N. Suppose now M∗

α = {Ai : 1 ≤ i ≤ m} for some m ∈ N with Ai < Aj for
all 1 ≤ i < j ≤ m. It follows |Ai| < ℵ0 for all i ∈ N \ {m,m+ 1, . . .}. Let

pi = min(Ai) for all i ∈ {1, 2, . . . ,m}

and
mi = max(Ai) for all i ∈ N \ {m,m+ 1, . . .}.
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Further, let ki+1 = ki + pi+1 −mi for all i ∈ N \ {m,m+ 1, . . .}.
Case 2.1: m = 1. If 1 ̸∈ A1 and |A1| < ℵ0, then |A1| = 2l1 + 1 for some l1 ∈ N. We define a transformation
γ

′ on N as follows:

γ
′
:=


δ|A1|ξ

k′ if 1 ∈ A1 and |A1| < ℵ0;

α1ξ
k′ if 1 ∈ A1 and |A1| = ℵ0;

ξk
′
βl1
k1+p1−1 if 1 ̸∈ A1 and |A1| < ℵ0;

ξk
′
αk1+p1−1 if 1 ̸∈ A1 and |A1| = ℵ0.

It is clear that γ
′ ∈ Θ,Mα = Mγ′ , and 1γ

′ ≥ k1 > n. Then Corollary 2.3 implies that there exists γ
′′ ∈ Λn

with α = γ
′
γ

′′
. Since γ

′ ∈ ⟨An ∪ Bn ∪ Λn ∪ {ξ}⟩, we obtain that α = γ
′
γ

′′ ∈ ⟨An ∪ Bn ∪ Λn ∪ {ξ}⟩.
Case 2.2: m > 1. If 1 ̸∈ A1, then |A1| = 2l1 + 1 for some l1 ∈ N. In the case |Am| < ℵ0, we obtain that
|Am| = 2lm + 1 for some lm ∈ N. We define transformations γ1, γ2, . . . , γm on N as follows:

γ1 :=

{
δm1ξ

k
′
1 if 1 ∈ A1;

ξk
′
1βl1

k1+p1−1 otherwise,

for i ∈ N \ {1,m,m+ 1, . . .}, we put

γi :=


βli
ki

if 1 ∈ A1 and m1 is odd;
βli
ki+1 if 1 ∈ A1 and m1 is even;

βli
ki+p1−1 if 1 ̸∈ A1,

and

γm :=



βlm
km

if 1 ∈ A1,m1 is odd, and |Am| < ℵ0;

αkm if 1 ∈ A1,m1 is odd, and |Am| = ℵ0;

βlm
km+1 if 1 ∈ A1,m1 is even, and |Am| < ℵ0;

αkm+1 if 1 ∈ A1,m1 is even, and |Am| = ℵ0;

βlm
km+p1−1 if 1 ̸∈ A1 and |Am| < ℵ0;

αkm+p1−1 if 1 ̸∈ A1 and |Am| = ℵ0.

Let α∗ = γ1γ2 · · · γm. By straightforward calculations, we obtain that α∗ ∈ Θ, Mα = Mα∗ , and 1α∗ ≥ k1 > n.

Then Corollary 2.3 implies that there exists α
′ ∈ Λn with α = α∗α

′
. By the definition of γ1 and Lemma 3.1,

we get γ1 ∈ ⟨Bn ∪ Λn ∪ {ξ}⟩. For i ∈ {2, 3, . . . ,m}, we obtain that γi ∈ ⟨An ∪ Bn⟩ since ki > n. Therefore,
α = α∗α

′ ∈ ⟨An ∪ Bn ∪ Λn ∪ {ξ}⟩. 2

Both previous lemmas lead to the definition of an infinite decreasing chain {Hn : n ∈ N} of generating
sets of FN, where Hn := An∪Bn∪Λn∪∆n∪{ξ}. It is worth mentioning that the intersection of the Hi ’s gives
the singleton set {ξ}, which is not a generating set of FN. It is easy to verify that ξ ̸∈ ⟨An ∪ Bn ∪ Λn ∪∆n⟩.
Therefore, the relative rank of FN modulo An ∪ Bn ∪ Λn ∪∆n is one.

Theorem 3.3 ⟨Hn⟩ = FN for all n ∈ N.

Proof Let n ∈ N. It is a consequence of Lemma 3.2 that

⟨An ∪ Bn ∪ Λn ∪∆ ∪ {ξ}⟩ = FN.

2142



LOHAPAN et al./Turk J Math

In order to show ⟨Hn⟩ = FN, it is enough to prove ∆ \∆n ⊆ ⟨Hn⟩. Let α ∈ ∆ \∆n. Then |M∗
α| = ℵ0 and so

|Mα| = ℵ0. Suppose that Mα = {Ai : i ∈ N} with Ai < Ai+1 for all i ∈ N. Let pi = min(Ai) for all i ∈ N and
let k1 ∈ N be odd such that k1 > n.

Case 1: |{1, 2, . . . , n}α| = n. We define γ : N → N by xγ := k1 + i− 1 for all x ∈ Ai, i ∈ N. It is obvious that
γ ∈ Θ,M∗

γ = M∗
α, 1γ = k1 > n, and |{1, 2, . . . , n}γ| = n. This means γ ∈ ∆n. Moreover, Corollary 2.3 implies

that there exists γ′ ∈ Λn with γγ′ = α. Therefore, α ∈ ⟨Hn⟩.

Case 2: |{1, 2, . . . , n}α| < n. Let s be the smallest natural number r such that n < pr and Ar ∈ M∗
α. Then

we define γ0 : N → N by

xγ0 :=

{
k1 + x− 1 if x ∈ {1, 2, . . . , ps − 1};
k1 + ps + i− 2 if x ∈ As+i−1 for i ∈ N.

Note that γ0 ∈ ∆n since 1γ0 = k1 > n, |{1, 2, . . . , n}γ0| = n, and
∣∣M∗

γ0

∣∣ = |M∗
α| − s = ℵ0. If s = min{i ∈

N : Ai ∈ M∗
α}, then Mγ0

= Mα and so we put β := γ0. Suppose s > min{i ∈ N : Ai ∈ M∗
α}. Let

{C ∈ M∗
α : C < As} = {Bi : 1 ≤ i ≤ m} for some m ∈ N with Bi < Bj for all 1 ≤ i < j ≤ m. For

i ∈ N \ {1,m+ 1,m+ 2, . . .}, there is li ∈ N with |Bi| = 2li + 1. Moreover, there is l1 ∈ N with |B1| = 2l1 + 1

or |B1| = 2l1, depending on the parity of |B1| . Let qi = min(Bi) and mi = max(Bi) for all i ∈ {1, 2, . . . ,m}.
Further, let kj+1 = kj + qj+1 −mj for all j ∈ N \ {m,m+ 1, . . .}. For i ∈ {1, 2, . . . ,m}, we define γi : N → N
as follows:

γi :=


βli
ki

if 1 ∈ B1 and |B1| is odd;
βli
ki−1 if 1 ∈ B1 and |B1| is even;

βli
ki+q1−1 if 1 ̸∈ B1.

In this case, we put β := γ0γ1γ2 · · · γm. By straightforward calculations, we obtain that β ∈ Θ,Mβ = Mα,

and 1β ≥ k1 − 1 ≥ n. Then Corollary 2.3 implies that there exists β
′ ∈ Λn such that ββ

′
= α. Therefore,

α = ββ
′ ∈ ⟨Hn⟩. 2

It is easy to see that Ωn+1 ⊊ Ωn,An+1 ⊊ An, and Bn+1 ⊊ Bn for all n ∈ N. Therefore, we can conclude
that {Hn : n ∈ N} is an infinite decreasing chain of generating sets of FN.

Recall that FN = ΘΛn for any n ∈ N, where Θ is a subsemigroup of FN. This means that we can
generate any element in FN by elements from Θ and Λn. Now, let

Γ := {α ∈ Θ : rank α = ℵ0 and there exists b ∈ im α with
∣∣bα−1

∣∣ ≥ 3}.

We will generate the elements in FN by elements from the proper subsemigroup Γ of FN,Λn, and the additional
transformation ξ, for any n ∈ N. Moreover, Λn is covered by the semigroup Λ.

Proposition 3.4 Λ and Γ are subsemigroups of FN.

Proof Let α, β ∈ Λ. Then |nb(α)| = |nb(β)| = 0 and c(α), c(β) > 0. This means M∗
α = M∗

β = ∅. Assume∣∣∣M∗
αβ

∣∣∣ > 0. Then there exists D ∈ M∗
αβ , that is, |D| > 1 and |Dαβ| = 1. Since D is a convex set and |D| > 1,

there is a ∈ N such that {a, a + 1} ⊆ D. Since |nb(α)| = 0, we obtain that aα = b and (a + 1)α = c for
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some b, c ∈ N such that |b− c| = 1. Since |{b, c}β| = |{a, a+ 1}αβ| ≤ |Dαβ| = 1 and |b− c| = 1, we obtain
|nb(β)| ̸= 0, a contradiction. Therefore, M∗

αβ = ∅, that is, |nb(αβ)| = 0. Together with 0 < c(α) ≤ c(αβ), we
obtain that αβ ∈ Λ.

Now, let α, β ∈ Γ. Then α, β ∈ Θ and rank α = rank β = ℵ0. It is clear that rank αβ = ℵ0 and αβ ∈ Θ.

Furthermore, there is a ∈ N with
∣∣aα−1

∣∣ ≥ 3. Then
∣∣aβ(αβ)−1

∣∣ = ∣∣aββ−1α−1
∣∣ ≥ ∣∣aα−1

∣∣ ≥ 3. Altogether, we
conclude that αβ ∈ Γ. 2

We are going to establish a second infinite decreasing chain of generating sets of FN , which are subsets
of the union of the three semigroups {ξ},Λ, and Γ. Let n ∈ N and let Gn be the set of all α ∈ FN satisfying
at least one of the following three properties:

(g1) α = ξ;

(g2) α ∈ Λn;

(g3) α ∈ Θn such that |M∗
α| ∈ {1,ℵ0} and M∗

α = M3
α.

Clearly, Gn ⊆ Γ ∪ Λn ∪ {ξ}.

Theorem 3.5 ⟨Gn⟩ = FN for all n ∈ N.

Proof Let n ∈ N. By the definition of Gn , we have Λn ∪ {ξ} ⊆ Gn. We will show that An,Bn,∆n ⊆ ⟨Gn⟩.

Let α ∈ An. Then α = αk for some k ≥ n, and xα = x if x ∈ N \ {k, k+ 1, . . .} and xα = k otherwise.
Let l be the least even natural number r such that r > k. We define transformations γ1 and γ2 on N as
follows:

xγ1 :=


l + x if x ∈ N \ {k, k + 1, . . .};
l + k if x ∈ {k, k + 2, k + 4, . . .};
l + k + 1 if x ∈ {k + 1, k + 3, k + 5, . . .}

and

xγ2 :=


l + x if x ∈ {1, 2, . . . , l + k − 1};
2l + k if x ∈ {l + k, l + k + 1, l + k + 2};
l + x− 2 if x ∈ N \ {1, 2, . . . , l + k + 2}.

Then γ1 ∈ Λn and γ2 satisfies (g3). By straightforward calculations, we obtain γ1γ2λ2l+1

= α. Since 1λ2l+1 = 2l + 1 > n, we have λ2l+1 ∈ Λn. This shows An ⊆ ⟨Gn⟩.

Let α ∈ Bn. Then α = βk for some k ≥ n, that is,

xα =


x if x ∈ N \ {k, k + 1, . . .};
k if x ∈ {k, k + 1, k + 2};
x− 2 if x ∈ N \ {1, 2, . . . , k + 2}.

Let l be again the least even natural number r such that r > k and define γ : N → N by xγ := xα+ l for all
x ∈ N. Then γ satisfies (g3). It is easy to see that γλl+1 = α. Since 1λl+1 = l + 1 > n, we obtain λl+1 ∈ Λn,
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that is, Bn ⊆ ⟨Gn⟩.

Let α ∈ ∆n. Then 1α ≥ n, |{1, 2, . . . , n}α| = n, and |M∗
α| = ℵ0. Suppose M∗

α = {Ai : i ∈ N} with
Ai < Ai+1 for all i ∈ N. It follows that |Ai| < ℵ0 for all i ∈ N. For i ∈ N, let pi = min(Ai) and li = |Ai| . Let l

be now the least even natural number r such that r > 1α. Further, let k2 = l+p2 and ki = l+pi−Σi−1
j=2(lj−3)

for all i ∈ N \ {1, 2}. Note that if l1 is even, then p1 = 1. Put c = 1 if l1 is even and c = 0 otherwise. We
define transformations γ1, γ2, and γ3 on N as follows:

xγ1 :=



x if x ∈ {1, 2, . . . , p2 − 1};
ki if x ∈ {pi, pi + 2, . . . , pi + li − 3};
ki + 1 if x ∈ {pi + 1, pi + 3, . . . , pi + li − 2};
ki + 2 if x = pi + li − 1;

l + x− Σi
j=1(lj − 3) if x ∈ {pi + li, pi + li + 1, . . . , pi+1 − 1},

xγ2 :=


l + x+ l1 − 3 + c if x ∈ {1, 2, . . . , l + p1 − 1− c};
2l + p1 + l1 − 3 if x ∈ {l + p1 − c, l + p1 + 2− c, . . . , l + p1 + l1 − 3};
2l + p1 + l1 − 2 if x ∈ {l + p1 + 1− c, l + p1 + 3− c, . . . , l + p1 + l1 − 2};
l + x if x ∈ {l + p1 + l1 − 1, l + p1 + l1, . . .},

and

xγ3 :=



l + x if x ∈ {1, 2, . . . , 2l + p1 + l1 − 4};
3l + p1 + l1 − 3 if x ∈ {2l + p1 + l1 − 3, 2l + p1 + l1 − 2, 2l + p1 + l1 − 1};
l + x− 2 if x ∈ {2l + p1 + l1, 2l + p1 + l1 + 1, . . . , l + k2 − 1};
2l + ki − 2(i− 1) if x ∈ {l + ki, l + ki + 1, l + ki + 2};
l + x− 2i if x ∈ {l + ki + 3, l + ki + 4, . . . , l + ki+1 − 1}

for all i ∈ N \ {1}. It is easy to verify that γ1, γ2 ∈ Λn and γ3 satisfies (g3). By straightforward calculations,
we obtain that γ1γ2γ3 ∈ Θ,Mγ1γ2γ3

= Mα, and 1γ1γ2γ3 ≥ 2l+ l1 − 2 ≥ l > n. Then Corollary 2.3 implies that
there exists γ4 ∈ Λn such that γ1γ2γ3γ4 = α. Therefore, ∆n ⊆ ⟨Gn⟩.

Altogether, we have shown Hn = An ∪ Bn ∪ Λn ∪ ∆n ∪ {ξ} ⊆ ⟨Gn⟩. By Proposition 3.3, we obtain
⟨Gn⟩ = FN. 2

Let n ∈ N. Since Ωn+1 ⊊ Ωn, we can conclude that Gn+1 ⊊ Gn. This shows that {Gn : n ∈ N} is
an infinite decreasing chain of generating sets of FN. Moreover,

⋂
n∈N Gn = {ξ} because any transformation

α ∈ FN \ {ξ} is not in G1α+1. In other words, the relative rank of FN modulo Gn is one.
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