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Abstract: A zig-zag order is like a directed path, only with alternating directions. A generating set of minimal size for
the semigroup of all full transformations on a finite set preserving the zig-zag order was determined by Fenandes et al.
in 2019. This paper deals with generating sets of the semigroup Fy of all full transformations on the set of all natural
numbers preserving the zig-zag order. We prove that Fy has no minimal generating sets and present two particular

infinite decreasing chains of generating sets of Fy.
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1. Introduction

This paper deals with generating sets of transformation semigroups. A full transformation on a set X is a self-
mapping on X. The set of all full transformations on X forms a semigroup Tx under the usual composition
of mappings. If X is the n-element set {1,2,...,n}, then we write T,, rather than Tx. In particular, T, is
a finite semigroup of full transformations, which is the disjoint union of the symmetric group and the singular
part Sing,,. In fact, Sing,, is an ideal of T;, consisting of all full transformations with rank < n. The semigroup
Sing,, is generated by the idempotents of rank n — 1 [9]. Ayik et al. found a necessary and sufficient condition
for any set of full transformations with rank n — 1 to be a generating set of Sing, [1]. The generating sets of
the ideals K(n,r),r € {1,2,...,n — 1}, of Sing,, were determined by Ayik and Bugay [3].

The set O,, of all order-preserving full transformations on {1,2,...,n} with respect to the usual linear
order on the natural numbers forms a semigroup, which is the disjoint union of the identity mapping on
{1,2,...,n} and the singular part. The minimal size of a generating set of O,, (i.e. the rank of O,) is n
while the singular part is generated by its idempotents of rank n — 1 [6]. A necessary and sufficient condition
for any set of full transformations in the ideal O(n,r),r € {1,2,...,n — 1}, to be a generating set of O(n,r)
was provided by Ayik and Bugay [2].

Generating sets for other (finite) semigroups of full transformations have been determined by several
authors. Among these semigroups is the semigroup F,, of all full transformations on {1,2,...,n} preserving
the zig-zag order. Recall that the zig-zag order is a partial order, which is like a path, only with alternating

directions. Full transformations on {1,2,...,n} preserving the zig-zag order were first studied by Currie and
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Visentine [4] and Rutkowski [14] in 1991 and 1992, respectively. In both papers, the authors calculated the
cardinality of F,,, depending on the parity of n. In [5], Fernandes, Koppitz, and Musunthia determined a
generating set of F,, of minimal size and gave a formula to calculate the rank of Fj,. Algebraic properties of
F,, were investigated by several authors in the last decade (e.g., [10, 11, 15]).

Recall that uncountable semigroups have only uncountable generating sets. In order to make the situation
more comfortable, Ruskuc introduced the concept of a relative generating set (i.e. a relative rank) [13]. For
example, in [7, 8], the authors considered the uncountable semigroup Ty and the semigroup Oy of all order-
preserving full transformations on the set N of all natural numbers with respect to the usual linear order on
N. One needs only one « € Ty \ Oy such that Oy U {a} generates Ty, i.e. the relative rank of Ty modulo Oy
is one, where {a} is said to be a relative generating set of Ty modulo Oy. On the other hand, in [7], Higgins,
Mitchell, and Ruskuc considered the set C of all contractions on N and obtained that the relative rank of Ty
modulo C' is uncountable. Also in [7], the authors pointed out that the relative rank of Ty modulo a so-called
dominated set is uncountable.

In the present paper, we consider an extension of the zig-zag order on {1,2,...,n} to the set of all natural
numbers N. Let

n<n+1 if nisodd;
n+1<n otherwise.

The binary relation < together with the diagonal on N is a partial order on N, in fact, < is called the zig-
zag order on N. Any element in the partially ordered set (N, =), which is called a fence, is either minimal or
maximal. The set Fy of all full transformations on N preserving the zig-zag order forms a submonoid of Ty
with the identity mapping idy on N. Corollary 2.2. in [7] and the fact that Fy is dominated imply that the
relative rank of Ty modulo Fly is uncountable infinite. In fact, the study of the semigroup Fy extends the
study of F,, on another level (we have now an uncountable semigroup of full transformations). Furthermore,
congruences on Fy were already determined in [12]. Hence, a more detailed study of the semigroup Fy seems
reasonably enough. An investigation of generating sets of F, will be provided in this paper.

Besides the zig-zag order < on N, we also deal with the usual liner order < on N. Excluding any
confusion, we introduce the following agreements. Let A be a nonempty subset of N. We use min(A4) and
max(A) for the smallest and the greatest element (if exists), respectively, in A with respect to <. Moreover,
A is said to be convex if A is an interval with respect to <. Note that the image of « (in symbols: im «) is
a convex set. For B C N, we write A< B if a <b for all a € A and all b € B.

In the next section, we show that any transformation in Fy can be expressed as the product of one

element from each of the sets

0 :={a € Fy:aa ' is a convex set for all a € im o} and

A, i={a € Fy: |nb(a)| =0, c(a) > 0,1l > n, and |{1,2,...,n}a| =n}

for any n € N, where
nb(a) :={a € N:aa = (a+1)a} and

cla) = ’U {aa™" :a €im o and ‘aa‘l‘ > 2}‘ .
Obviously, ¢(a) < ¢(af) for all «, € Fy and c(«) = 0 if and only if « is injective. It is worth mentioning
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that Fyy has no minimal generating sets. The main purpose of paper is to give two particular infinite decreasing
chains of generating sets of Fy, which will be provided in Section 3.

Let o € Fy. The rank of «, (in symbols: rank «) is the size of the image of «. Then rank « can be finite
(in symbols: rank o < Rg) or countable infinite (in symbols: rank o = Xp). The set of all transformations in

Fy with countable infinite rank will be denoted by Fli\lnf. For n € N, let ©,, = ©NQ, where
Q, :={a€Fy:la>nand |{1,2,...,n}a| =n}.

Then we obtain that A, = ANQ,, where A := {a € Fx : |nb(«)| = 0 and c(a) > 0}. Just for convenience, for

«a € Fy, we define the following sets, which will be used subsequently:

M :={X CN:|X|=mnand X is a maximal convex set with respect to|Xa| = 1};
Moy = Upen MY

Mg = Ma \ Mg;

MS? = {X C UM} : X is a maximal convex set and | X| = n};

MSy =, ey MST.

More in detail, a convex set X C N belongs to M7 if and only if |X| = n,|Xa| =1, and [Ya| > 1 for any
convex set Y C N with X C Y. Moreover, a convex set X C [JM]} belongs to MS? if and only if |X| =n
and Y ¢ |JM] for any convex set Y C N with X C Y. For any 3 € Fy, it is clear that M, = Mg if and only
it M7 = Mj.

Further, let Cp, :={X : X C {m,m+1,...}} for all m € N.

2. On minimal generating sets of Fy

First, we describe any transformation « in Fp, that is, o preserves the partial order < on N. If z,y € N with
x <y, then = is odd and y is even. Moreover, x is the successor of y or conversely y is the successor of =z,
which implies |z — y| = 1. When we apply « to both z and y, their images are related with respect to =<, that
is, |xra — ya| < 1. This fact will be used subsequently without mentioning. Now, we characterize the elements

of Fy by two properties, which are easy to verify.

Proposition 2.1 Let o € Ty. Then « € Fy if and only if
(1) Jra—(r+1)a] <1 forall z €N;
(i4) x and za have the same parity or (r — 1)a = za = (x + 1)« for all x € N\ {1}.

Proof Suppose a € Fy.

(i) Let x € N. Then z < z+1 or x +1 < z. Since a € Fy, we obtain za = (z + 1)a and (z + 1)a < za,
respectively. Then |za — (z + 1)a| < 1.

(ii) Suppose that there exists © € N\ {1} such that = and za have different parities. Without loss of generality,
suppose that x is odd and z« is even. Assume (z —1)a # za. Then (i) implies (z —1)a € {za—1,za+1}. It
follows that (x — 1)a is odd. This shows that z <z — 1 but (r — 1)a < za, that is, a ¢ Fy, a contradiction.

Hence, (x — 1)a = za. Similarly, we can show that (z 4+ 1)a = za.
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Conversely, suppose that (i) and (ii) hold. Let x,y € N be such that < y. Then x is odd and y is even
with z € {y — 1,y + 1}. By (i), we obtain |za — ya| < 1. It is enough to consider the case |za — ya| = 1. Since
x€{y—1,y+ 1} and |za —ya| = 1, we obtain that y and ya are even by (ii) and so za < ya. Altogether,
we conclude za = ya. Therefore, a € Fy. O

An immediate consequence of Proposition 2.1 is that |A| is odd for all A € M with 1 ¢ A. In the
following, we will use this fact as well as Proposition 2.1 without further mentioning. Any element in Fy can

be described as the product of one element from each of the sets © and A,, for any n € N.

Proposition 2.2 Fy=0A, ={y172:71 € ©,7% € A} for all n € N.

Proof Let n €N and a € Fy. Then we consider the following two cases.

Case 1: |M,| = Ng. Suppose M, = {A; : i € N} with A; < A;;1 for all i € N. Then |4;| < RXg for all ¢ € N.
For all ¢ € N, let m,; = max(A;). This means A;a = {m;a} for all i € N. Obviously, a € Fy and |4,a| =1
for all 7 € N imply that for all 7 € N,

m; and m;a have the same parity and |m;a — m;11a| = 1. (2.1)
Let k € N\ {1,2,...,n} be such that & and mja have the same parity. We define v; : N — N by
zyy:=k+i—1forallx € A;,7 € N.

The transformation 7 is well defined since | J, . A; = N. Moreover, A;y; = {k+i—1} for all ¢ € N and thus,

M,, = M,. It is clear that |zy; — (z + 1)y| < 1 for all # € N. Since k and mjia have the same parity and

i€N

M,, = M,, we obtain that « and xvy; have the same parity or (z —1)y; = 2y1 = (z+ 1)y, forall z € N\ {1}.
Since yvy; 1 is a convex set for all y € im 1, we obtain 4, € ©. Further, we define 75 : N — N by

ma+k—z ifaxe{l,2,....k—1}
Ty =
7 My ki1 ifee{kk+1,...}.

By (2.1) and the fact that k¥ and mja have the same parity, we can conclude that (i) and (ii) in Proposi-
tion 2.1 are satisfied for s, that is, 79 € Fy. If rank @ = Ny, then there exists y € {moa, msa, ...} with
y =mia+ 1, that is, 7» is not injective. If rank a < Wy, then it is clear that 5 is not injective. Moreover, we
have |nb(y2)| = 0,|{1,2,...,n}y2| =n, and lyo = mya+k —1 >k > n. Thus, 72 € A,,. By straightforward

calculations, we obtain A;y;v2 = {m;a} for all ¢ € N. This shows ;72 = a.

Case 2: |M,| < Ng. Suppose M, = {4, : 1 <i <[} for some [ € N with A; < 4; forall 1 <i<j <[ Then
|A;] <N forall ¢ e N\ {l,l+1,...} and |4;| = Ng. Let m; = max(4;) foralli e N\ {l,I+1,...} and m; =
min(4;). Then A;a = {m,;a} for all i € {1,2,...,1}. Since o € Fy and |A;a| = 1 for all 1 < i <, the
following properties hold:

(al) |mya—mipal =1 forall s € N\ {l,l+1,...};

(a2) m; and m;a have the same parity for all 1 < ¢ <[, whenever [ > 1.
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Let k € N\ {1,2,...,n} be such that k£ and m;a have the same parity. Then we define 71 : N = N by
xy1:=k+i—1forallz e A;,1 <i<I.

The transformation v, is well defined since |J;. Ai = N. Moreover, A;y; = {k+i—1} forall 1 <4 <[. Using

the same arguments as in Case 1, we get v, € Fy. Since yvfl is a convex set for all y € im 7;, we have v € ©.
Further, let v : N — N by

ma+k—x ifee{l,2,...,k—1};
TY2 1= My g1 ifee{kk+1,....,k+1—1}
mat+ac—k—14+1 fee{k+Lk+1+1,...}.

By (al), we have |zy2 — (z + 1)y2| <1 for all x € N. Moreover, « and 27y, have the same parity for all z € N
by (a2) and the property of k. Hence, 2 € Fy. Since im v = {mia,...,mya,ma + 1,ma +2,...} is a
convex set, rank 7o = Ng, and kys = mya, there exists y € {k+ 1,k + 2,...} such that yy» = mja + 1.
Since (k — 1)y2 = mia+1 = yvy and k — 1 # y, the transformation 7, is not injective. Moreover,
[nb(y2)| = 0,]{1,2,...,n}y2| = n, and 1ya = mya+k —1 > k > n. Hence, v2 € A,,. By straightforward
calculations, we obtain A;y1v, = {m;a} for all 1 <i <. Therefore, y172 = a.

Altogether, we have shown Fy C ©A,. Since the converse inclusion is clear, we have OA,, = Fy. O

By the construction of y; in Proposition 2.2, we observe that the only conditions for v, are M, = M.,

and min(im 1) > n. This gives us the following corollary.

Corollary 2.3 Let n € N and o € Fy. For v € © with M, = M,, and min(im 1) > n, there exists y2 € A,
such that o = vy17ys.

As one can see, Fy is uncountable and thus, any generating set of Fy is uncountable. It appears the
question whether a minimal generating set of Fy exists. The following constructions clarify that there are no
minimal generating sets of Fy, that is to say, we can get a smaller generating set (under the set inclusion) by
excluding suitable elements from a given generating set.

Let oo € FiM, R, := {z € im o : za~ ! is not a convex set}, and Qq := {z € im a: [za™!|,|(z + Do !| >

3}. Further, let P :={a € FiM : |U,»3 M2, |Ral,|Qal < No}. For [ € N, let

K= {a€P:|MS,| =R and |MS?| < R for all n < I}

Note that M| =N, for all a € K;. Further, let Ky, := P\ U, ey Kn-

Lemma 2.4 Let o € Fi* with |R,| < No. Then there is k € N such that aa < ba for all k < a < b.

Proof Since |R,| < No, there is &’ € N such that za~! is a convex set for all x > k’. Let k = min(k'a~!) and
let a,b € N with k < a < b. Assume that aa < ¥/, i.e. k < a. Then rank a = Ry implies that {a,a +1,...}«
is an infinite convex set containing k', that is, there is s > a with sa = k’. Thus, k’a~"' is not a convex set
because k < a < s, where s,k € K'a™! and a ¢ k'a™!, a contradiction. Hence, k' < ac. Assume ba < ac.

Then rank o = X implies that {b,b+1, ...}« is an infinite convex set containing ac, that is, there exists t € N
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with b < ¢t and ta = aa. This means that (aa)a™! is not a convex set since a < b < t, where a,t € (ac)a™?

and b ¢ (aa)a™?, a contradiction to k' < ac. Therefore, ac < ba. O
As a consequence of Lemma 2.4, we obtain that «|p is injective for all B € M S, N Cy.

Lemma 2.5 Let o, 3 € Fi' and let z € Rg be such that 23~ Nim « is not a convezr set. Then = € Rygp.

Proof Assume = & R,s. This means that z(af)™' =z 'a™! is a convex set. Then z3~'a~ '« is a convex

set. But 28 'a"la = 287 Nim «, a contradiction. Hence, = € Rup. O

Lemma 2.6 Let 8 € F* and let X C N be such that |X| =Xo and |XB| < Ro. Then |Rg| = Ry. Moreover,
|Rag| = No for all a« € FiM.

Proof Assume |Rg| < Rg. By Lemma 2.4, there is k € N with aa < ba for all & < a < b. Let
B={zx € X :xz >k} and ¢ = max(Bf). Then |B| = Xo. Let ¢t € N with ¢ > k. Since |B| = N, there
is s € B such that ¢t < s. Then t8 < s < ¢. This implies that rank 8 < k + ¢ < Ny, a contradiction. Hence,
|Rg| = N and so |{x € Rg: 2z~ ! Cim a}’ = Rg. Therefore, |Rap| = Ng by Lemma 2.5. O

Proposition 2.7 Fy\ P is an ideal of Fy.

Proof Let a € Fy\P and 8 € Fy. If rank o < Ry or rank 3 < Y, then we obtain that rank a3, rank fa < Vg,
that is, a8, fa € Fy \ P. Suppose now rank o = rank 8 = Ny. Since im « and im 8 are convex sets, we have
that rank a8 = Ny and rank Sa = Ry, respectively. Let Mg = {B; : i € N} with B; < B;4; for all 1 € N.

Case 1: |R,| = Ng. Suppose that R, = {x; : ¢ € N} with z; < z;41 for all i € N. Let r be the least ¢ € N
with min(im 8) < min(z,a™!) and let E = {z; : i > r}. Then za~! Cim S for all € E. Therefore, Lemma
2.5 implies that @ € Rg, and so E C Rg,. Hence, |Rgo| > |E| = Ro.

Suppose |Ras| < No. Then there is k& € N such that 237 'a™! is a convex set for all = > k. More-
over, |RofB| = No. Otherwise |Ry,0| < N and so Lemma 2.6 implies |Ro3| = No, a contradiction. There-
fore, |RaBN{k,k+1,...}] = Ng. Let s be the least ¢ € N such that min(im ) < min(z,387") and let
D= {z;:i>s}N{kk+1,...}. Let z € D. Then 23 'a~! is a convex set and 37! N R, # 0. Suppose
that z; € 2871 N R, for some j € N. If 87! Nim o = {z;}, then 28 'a™! = z;a™! is not a convex set,

1

a contradiction. Thus, f:vﬂ_l Nim a| > 3. Since z;a” " is not a convex set, we obtain ’xja_1| > 2. Hence,

‘xﬁ 104_1} > 3. Therefore, |lJ,~5 M, = Ng.
Case 2: |U,-5 M| =Rg and |Ra| < Ro. Let |, M2 = {A; :i € N} with 4; < A;1 forall i € N. Let r be
the least ¢ € N such that min(im 5) < min(A,). Then for ¢ > r, there is m; € N with (U;’E;‘Ai‘*l B;)B C A;.

my;

Hence, there is D; € Mg, with (U;-":ﬁl,A"lle ) € D;. Then |D;| > ‘U ‘A y:3 ‘ > |A;| > 3. This shows

:|{Z€NZZT}|=N0

m;

that U, M,

= ‘{Di € Mpo - (UH4171 B)) €

If |(Uen4i)aB| = Ro, then we obtain ‘U

. Suppose now that ‘(U Ai)aﬁ| < Np.

n>3 €N

Assume |(U;ey Ai)a| < Ro. Let X = {min(4;) : i € N}. Then |X| = Ny and |Xa| < Rg. So, Lemma 2.6
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implies that |R,| = No, a contradiction. Hence, |(U;cy 4i)@| =Ro. Then |Ras| = Rg by Lemma 2.6.

Case 3: |Qq| = No. Then |Q, Nim Ba| = Ny since rank So = Ry. This implies that |Qgq| = Ro.

Suppose that |Qagl, |Rasg| < No. Then |Qn8] = Ro. Otherwise |Q.8] < No and so Lemma 2.6 implies
|Rag| = No, a contradiction. Let Q, = {z; : i € N} with z; < x;41 for all ¢ € N. Since |Qag|,|Ras| < No,
there is k € N such that 28 'a~! is a convex set, and ‘xﬁ_la_1| <3 or ’(x + 1),6’_104_1| < 3 for all x > k.
Then |Q.8N{k,k+1,...}] = Xy since |Qa8] = No. Let D = Q8N {k,k+1,...} and let « € D. Then
there is s € @, such that sf = x. Since s € (., we obtain that ‘sa_l , (s—i—l)a_l’ > 3. Assume that
(s+1)8 # . Then (s+ 1) =z + 1. Otherwise, (s + 1)8 = z — 1 and thus, there is ¢ > s+ 1 with {5 = z.

Hence, 37! Nim « is not a convex set. Lemma 2.5 implies that 23 'a~! is not a convex set, a contradiction
to « > k. Thus, |xﬁ’10f1| > |sof1| > 3 and |(:z:+ 1)5’1a’1| > |(5+ 1)a’1| > 3, a contradiction to z € D.
Hence, x = s = (s + 1)3, that is, |ac/3’*10f1| > |{s,s + 1}04*1} >6 and so 2B ta"! € U,>3 Mi5. Therefore,

‘Un>3 Mgﬁ

For all three cases, we obtain that a8, Ba € P. Therefore, we can conclude that Fy\ P is an ideal of Fy.

O

> |D] = Ro.

Lemma 2.8 Let a € K; for some | € N and let G be a generating set of Fn. Then there are v € Kj, U Ky,
and vy € K, U Ky, for some l1,ls € N with ly,lo > 1 such that o = y172 and 71,72 € (G \ {a}).

Proof Since a € K, we have |M}| = Nq. Suppose that M = {B; : i € N} with B; < B;;; for all i € N.
Let ;1 € © be such that im 73 = N and My = {B; :i € 2N}. Note that such a ~; exists.

Moreover, we define 75 : N — N by xv, := (min(zy;'))a for all # € N. Let a,b € N be such that
a < b. Then a is odd and b is even. Furthermore, b = a4+ 1 or a = b+ 1. Suppose now b = a + 1. Since
71 € ©, we obtain that max(ay; ') is odd and min(by; ') is even such that max(ay; ') +1 = min(by; !). Then
« € Fy implies that max(ay; *)a < min(by; *)a. Since M3 C Mg, it follows that min(ay; Ve = max(ay; Ha.
Hence, min(ay; ")a < min(by; Ha, that is, ays < bys. We can show similarly for the case a = b+ 1. Therefore,
Y2 € Fn.

By the definitions of v, and ~s, it is clear that ;72 = « and that there exist I,ls > [ such that
7 € Kj, UKy, and 72 € K, U Ky,. Hence, for ¢ € {1,2}, there is k; € N satisfying the following properties:

(al) |A] >1; > 1 forall Ae MS,, NCh,;
(a2) [A| =3 for all A€ M NCy,;
(a3) |x'yi_1| <3or |(z+ 1)’yi_1| < 3 for all = > k;vy;;

(ad) zvy; ! is a convex set for all = > k;~y;

< Ng with I; > [,

because ‘Uf{;ll MSZ, Unss M;“ < N, |Q~,] < Ng, and |R,,| < N, respectively. It is a

consequence of (a4) that ay; < by; for all k; < a < b, which we will use without further mentioning. Since

a € K, there is k € N satisfying the following properties:
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(b1) |MSL N Cr| = Ry;
(b2) |A|=3 forall Ae MinNCy

because |MSL| = Ny and |UJ
1y 142y vy Py s T, M2y -« - 3 Mmy € GNP such that v1 = pypg -+ - o, and y2 = m11m2 - - - Ny, for some my, mo € N.
By (al) and (bl), it is clear that pu1 # « and 71 # a.

Assume that p; = o for some j € {2,3,...,mq}. Let MSLF = {4 € MS!, : {k} < A} = {A; : i € N}
with A; < A;yq1 for all 4 € N. Let 61 = papo -+ pj—1. Further, let 62 = pjpipjro-- pim, if j < my and
let 0 = idy if j = m;. Note that idy € P. Let « € N be such that « > k; + 3 and x6; € {min(A) : A €
MSL*\ {A;}}. Then z6; = min(A,) for some r > 2 and so A, = {zd;,26; + 1,...,25; +1 — 1}. So, (b2)
implies that By = {xd1 — 3,261 — 2,261 — 1}, By = {ady + 1,261 + 1+ 1,261 + 1+ 2} € M,. Note that k < z—3.

>3 Mg} < Ng, respectively. Since (G) = Fy and 71,7 € P, there are

Since {x—3,x—2,2—1,2}d; is a convex set containing xd;, we get that {x—3,2—2,2—1}d; C By and so
{x—3,2—2,2—1} C (x—1)51ad2(51d2) L. We obtain the equality {x—3,2—2,2—1} = (z—1)§1ads(61a82) ~*
by (a2). Let D = {x,z +1,...,2 4+l — 1}. Note that zy;9; " is a convex set for all z € D. By (a3), we can

conclude that |z6yads(d1ad,) ™| = |x717f1‘ =1 Let A={X € M : X C D\ {x}}. Assume that A # 0.
Then there is E € A with F < X for all X € A. Then {z,z + 1,...,min(E) — 1} € Uf;z_ll MS§ 5,5 2
contradiction. This implies that d1|p is injective with 20y = zd; + z — « for all z € D. Since 1 > I, we
have z +1 € D with (z +)§ica™! = (26; + )aa™ = By. Then (z + D)y1yy ' = (z + 1)61ad2(51005) ! =
(x61 + Dadedy a6 D (20 + Daa~ 167" = Byd;*. Therefore, |(x+l)'yl'yl_1‘ > ‘32(51_1’ > |Bz] = 3, a
contradiction. Therefore, we conclude that p; # o for all j € {1,2,...,m}. Similarly, we can show that
n; # o forall j € {1,2,...,ma}. So, 71,72 € (G \ {a}). O

In particular, Lemma 2.8 shows that G has no common elements to K; for all [ € N, whenever G is a
minimal generating set of Fy. The main result of this section states that there are no minimal generating sets

of Iy. If such a one existed, it would have the following necessary condition.

Lemma 2.9 If G is a minimal generating set of Fy, then GNK,, =0 for all n € N. Moreover, GNP C Ky,.

Proof Assume G N K; # () for some | € N. Then there exists « € G N K; By Lemma 2.8, there are
v1,72 € (G \ {a}) with o = 41792, that is, a € (G \ {a}). Since (G) = Fy, we obtain (G \ {a}) = Fy. It
contradicts to the assumption that G is a minimal generating set of Fy. Therefore, GN K, = () for all n € N.
Together with P = (|J,,ey Kn) U Ky,, we obtain that GNP =GN ((U,eny Kn) UKy,) = GN Ky, C Ky,. O

Theorem 2.10 There are no minimal generating sets of Fy.

Proof Assume that there is a minimal generating set G of Fy. By Lemma 2.9, we have GN K,, = ) for all
n € N. Now, we define o : N — N by

2n—1 ifx =4n —3 for n € N;
Tai=
2n if x € {4n—2,4n —1,4n} for n € N.
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Then M} = {{4n —2,4n — 1,4n} : n € N}. It is clear that a € P since Ry = Qo = U,,o5 M} = 0. Since
a € P and (G) = Fy, Lemma 2.9 implies that & = y1y2 - - -7y for some 71,72,...,7 € GNP C Ky, and for

some | € N. Let 79 = idy and let i € {1,2,...,1}. Since a = 1792 -+, we obtain the following properties:
(al) ay; < by forall 1ygyr---vie1 < a < b

(a2) [B] =3 for all B € MZ N Clygyymyi_,

because R, =0 and M} = M3

a?

respectively. Moreover, (al) provides
(a3) ~ia is injective for all A € M Sy, N Crygyyeyss-

Let a; = 2 and a;—j = 2a;—j41 + 3 for all j € N\ {[,{ +1,...}. Since v; € Ky,, there exists m; € N such
that |C| > a; for all C € MS.,, N C,y,,. Let m* = max{ly,1y1v2,...,1M1%2 - Y—1, M1, Ma,...,my} and
let y € N be such that {m*} < {y,yv1,yMV2,--.,y711Y2 - N-1}. Further, let D; € MS, NC, and let
x =min(D;). Since m* < y <z, we obtain that |D;| > a; and ~1|p, is injective by (a3). Let j € {2,3,...,1}.
Then m* < y < z and (al) imply that m* < yyye---y—1 < oy17y2---yj—1. Since aj_1 = 2a; + 3 and
m* < xy172 - - - vj—1, the properties (a2) and (a3) provide that there is a convex set D; C D;_1y;_1NE; for some
E; € MS,, such that |D;| = a; and ~;|p, is injective. Let D = Dml—fﬂfé ooqr . Since Dygyy -1 ©
D,.,7|p, is injective, and D,v,v ! = D, for all 1 <r <, we obtain that |D| = |D;| = a; = 2. Then there is
D' € MS,,+,..., with D C D’. Thus, |D'| > |D| = 2, a contradiction to o = 172+ -7y with M S, = MS..
O

Although a minimal generating set of the uncountable semigroup Fy does not exist, there is an uncount-
able subsemigroup of Fy having such one. Let A C N and let vy € © be such that im a4 = N and |xa;1| =3
if x € A and ‘xa21| = 5 otherwise. Note that such an a4 exists. Further, let @ := {a4 : A C N}. Then
|Q| = 2%, which means that @ is uncountable. For A, B C N, it is easy to verify that ‘MQ’LQB’ > 0 for some

m > 9, that is, aqap € Q. This shows that @) is a minimal generating set of the semigroup generated by Q.

In other words, the uncountable subsemigroup (@) of Fiy has a minimal generating set.

3. Infinite decreasing chains of generating sets of Fyy

The previous section shows that there are no minimal generating sets of Fiy. Obviously, Fiy itself is the maximum
generating set. Both facts provide that Fy must have infinite decreasing chains of generating sets of Fy. In
this section, we will provide such two chains.

Let Inj(Fy) be the set of all injective transformations in Fy and let £ be the transformation on N
defined by z¢ := z + 2 for all € N. Thus, " € Inj(Fy) with 1" = 2n + 1 for all n € N. Let
B = {a € Fy : |nb(a)] = 2,¢(e) = 3, and im o« = N}. For n € N, there is exactly one 5 € B with
min(nb(3)) = n. This transformation will be denoted by 5,,. Let n € N. We put B,, := {f; : i > n}. Further,

we define transformations \,, and §,, as follows:

- {n—x—i—l if z€{1,2,...,n};

r—n+1 otherwise
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and

5 m ifx €{1,2,...,n};
oy 1=
m+x —n otherwise,

where m = 1 if n is odd and m = 2 if n is even. It is easy to check that §, € Fy. But A\, € Fy, whenever
n is odd. In this case, we observe that |nb(A,)| = 0,]{1,2,...,n}\,| = n, and 1\, = n. If n # 1, then
(n—=1)A, =2=(n+1)A\,, that is, ¢(A,;) >0 and so A, € A,,.

Lemma 3.1 Let n € N. Then 6, € (B, UA, U{}) for all m € N.

Proof Let m € N;m; = max{m,n}, and my = 2m; + 1. Then we can calculate that

§h ifm=n=1,
)M By —2Am,—2 ifm=1,n>1;
" fmlﬁﬁllz)\mz if m = 2k, + 1 for some k; € N;

gmpkz  Np,_o  if m = 2k, for some ko € N.

Clearly, f1 € By. If n+m > 2, then my — 2 > n, which implies that Bn,—2,B8m,—1,0m, € Bn and
Ama—25 Amy € Ap. Altogether, we obtain 6, € (B, U A, U{&}). O

Let n € N. We define a transformation «,, on N by za,, :=z if x € N\ {n,n+1,...} and z«, := n otherwise.

It is clear that a,, € Fy. Then we put A, := {«a; : i > n}. Further, let
A = {a € Fy: |M;| :NQ}
and A, :=ANQ, ={a € Fy:la>n,|{1,2,...,n}a] =n, and |[M}| =R}

Lemma 3.2 Let a € Fy\ A. Then a € (A, UB, UA, U{&}) for all n € N.

Proof Since a € Fy \ A, we have |M}| < Ro. Let n € N and let k1 € N\ {1,2,...,n} be odd. Further, let
K =5k —1).
Case 1: |M}| =0. Then |nb(a)| = 0. Thus, = and z« have the same parity for all € N. We define v: N — N
by
la+k —a ifzed{l,2,....k —1}
xy =
7 (r — k1 +1)a  otherwise.

Then |nb(y)| = 0,¢(y) > 0,1y = la+ k1 — 1 > n, and |{1,2,...,n}y| = n, that is, v € A,. So, we obtain

a=¢hye (A, U{E}).
Case 2: |M}| = m for some m € N. Suppose now M} = {4, :1 <i<m} for some m € N with 4; < A, for
all 1 <i<j<m. It follows |A;| <Ry forall i € N\ {m,m+1,...}. Let

p; = min(4;) for all i € {1,2,...,m}

and
m; = max(4;) foralli € N\ {m,m+1,...}.
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Further, let kiy1 = ki +pig1 —m; forall i e N\ {m,m+1,...}.
Case 2.1: m=1. If 1 ¢ A; and |A1| < Rg, then |[A;| =2l; + 1 for some I; € N. We define a transformation
7/ on N as follows:
814y EF if 1 € Ay and |4, < No;
g if 1€ Ay and |A;] = N;
T VB, 1€ Ay and [Ar] < Ro;
Eklak1+P1—l if 1 ¢ Aj and |A;] = No.

It is clear that 'y/ € 0,My, =M, and 17/ > k1 > n. Then Corollary 2.3 implies that there exists 7// €A,

with o =~'~". Since » € (A, UB, UA, U{¢}), we obtain that o = 7' € (A, UB, UA, U{£}).
Case 2.2: m > 1. If 1 ¢ Ay, then |A;| = 2l; + 1 for some I; € N. In the case |A,,| < Ng, we obtain that

|Am| = 21, + 1 for some [, € N. We define transformations ~;,7a,...,7m on N as follows:
S, EF1 ifle Ay
MFN L ah .
& 1Bk1+p1_1 otherwise,

for i e N\ {1,m,m+1,...}, we put

ﬁ/l; if 1 € A; and my is odd;
Y 1= ﬁllgiﬂ if 1 € A; and m; is even;

B]lgﬂrpl*l if 1 ¢ Al’

and
B,lc’jn if 1 € Ay, my is odd, and |4,,] < Ro;
., if 1 € Ay, my is odd, and |4,,| = Ro;
B ,?:;_H if 1 € Ay, my is even, and |A,,| < N;
m = g, +1 if 1 € Ay, mq is even, and |A,,| = No;
Bt 1 1 & Ay and [An| < No;
O apr—1 if 1€ Ay and Ay, | = No.

Let a* = vy1v2 - -+ Vm. By straightforward calculations, we obtain that a* € ©, M, = M,~, and la* > k; > n.

Then Corollary 2.3 implies that there exists o €A, with o = a*a. By the definition of v; and Lemma 3.1,
we get v1 € (B, UA, U{&}). For i € {2,3,...,m}, we obtain that v; € (4, UB,) since k; > n. Therefore,

a=a*a € (A, UB, UA, U{E}). O

Both previous lemmas lead to the definition of an infinite decreasing chain {H,, : n € N} of generating
sets of Fy, where H,, := A, UB,UA, UA,, U{¢}. Tt is worth mentioning that the intersection of the H;’s gives
the singleton set {£}, which is not a generating set of Fy. It is easy to verify that £ & (A, UB, UA,, UA,).
Therefore, the relative rank of Fy modulo A, U B, UA, UA,, is one.

Theorem 3.3 (H,) = Fy for all n € N.

Proof Let n € N. It is a consequence of Lemma 3.2 that

(A, UB, UA, UAU{E}) = Fy.

2142



LOHAPAN et al./Turk J Math

In order to show (H,) = Fy, it is enough to prove A\ A, C (H,). Let « € A\ A,. Then |M}| =Xy and so
| M| = Rg. Suppose that M, = {A; :i € N} with A; < A;4; for all i € N. Let p; = min(4;) for all i € N and
let k1 € N be odd such that k1 > n.

Case 1: [{1,2,...,n}a| =n. We define v: N — N by ay:=k; +i—1for all z € 4;,7 € N. It is obvious that
v €O,M; = Mj 1y =k >n, and {1,2,...,n}y|[ = n. This means v € A,. Moreover, Corollary 2.3 implies
that there exists 7/ € A, with 49’ = «. Therefore, a € (H,).

Case 2: |{1,2,...,n}a] < n. Let s be the smallest natural number r such that n < p, and A, € M. Then
we define 79 : N — N by

ki+x—1 ifxe{l,2,...,ps — 1};
X =
O k4 pe+i—2 ifze€ Ay foricN.

Note that 9 € A, since 1y = k1 > n,|[{1,2,...,n}y| = n, and |M,*Y‘O| = |M} —s=No. If s =min{i €
N: A, € M!}, then M,, = M, and so we put § := 7. Suppose s > min{i € N : 4, € M}}. Let
{CeM;:C< A} ={B;:1<i<m} forsome m € N with B; < Bj forall 1 <i < j < m. For
i€ N\ {1l,m+1,m+2,...}, there is ; € N with |B;| = 2{; + 1. Moreover, there is Iy € N with |By| =2l; +1
or |By| = 2y, depending on the parity of |B;|. Let ¢; = min(B;) and m; = max(B;) for all i € {1,2,...,m}.
Further, let kj41 = k;j +¢j41 —m; forall j e N\ {m,m+1,...}. For i € {1,2,...,m}, we define v; : N - N
as follows:

By if 1 € By and |By| is odd;

i = ﬁ]lgﬁl if 1 € By and |By] is even;

Bl vq1 if1¢ By

In this case, we put B := Y7172 Vm. By straightforward calculations, we obtain that 5 € ©, Mg = M,,

and 18 > k1 — 1 > n. Then Corollary 2.3 implies that there exists ﬁ/ € A,, such that ,6,6” = «. Therefore,
a=p8 e (H,). O

It is easy to see that Q,+1 € Q,, A,4+1 C A, and B,41 € B, for all n € N. Therefore, we can conclude
that {H, : n € N} is an infinite decreasing chain of generating sets of Fj.
Recall that Fy = ©OA,, for any n € N, where O is a subsemigroup of Fy. This means that we can

generate any element in Fy by elements from © and A,. Now, let
I':= {a € © : rank o = g and there exists b € im o with |ba™"| > 3}.

We will generate the elements in Fy by elements from the proper subsemigroup I' of Fy, A,,, and the additional

transformation £, for any n € N. Moreover, A,, is covered by the semigroup A.

Proposition 3.4 A and ' are subsemigroups of Fx.

Proof Let a,8 € A. Then |nb(a)| = [nb(B)| = 0 and c(a),c(8) > 0. This means M; = M} = (). Assume

‘M;B > 0. Then there exists D € M4, that is, [D| > 1 and |Daf| = 1. Since D is a convex set and [D| > 1,

there is @ € N such that {a,a + 1} C D. Since |nb(a)| = 0, we obtain that aac = b and (a + 1)a = ¢ for

2143



LOHAPAN et al./Turk J Math

some b,c € N such that [b—¢| = 1. Since |{b,c}8| = |[{a,a+ 1}aB] < |Daf] =1 and |b—c| = 1, we obtain
[nb(B)| # 0, a contradiction. Therefore, M}, = @, that is, |nb(a8)| = 0. Together with 0 < ¢(a) < c(af), we
obtain that af € A.

Now, let o, 8 € I'. Then o, 8 € © and rank o = rank 8 = Ny. It is clear that rank o = Ry and af € O.
Furthermore, there is a € N with |aa™!| > 3. Then |aB(aB)~!| = B8 a™!| > [aa™!| > 3. Altogether, we
conclude that a8 €T O

We are going to establish a second infinite decreasing chain of generating sets of Fl, which are subsets
of the union of the three semigroups {¢}, A, and I'. Let n € N and let G,, be the set of all a € Fy satisfying

at least one of the following three properties:

(gl) a=¢;

(g2) a € Ay;

(g3) a € O, such that |M}| € {1,R¢} and M} = M3.

Clearly, G, CTUA, U{¢{}.

Theorem 3.5 (G,) = Fy for all n € N.

Proof Let n € N. By the definition of G,,, we have A,, U{{} C G,,. We will show that A,,, B,, A, C (G,).

Let o € A,,. Then o = oy, for some k > n, and za =z if z e N\ {k,k+1,...} and za = k otherwise.

Let [ be the least even natural number r such that r > k. We define transformations vy; and 2 on N as

follows:
I+ ifx e N\ {k,k+1,...};
xy1 =<1+ k ifeef{k,k+2,k+4,...}
l+k+1 ifee{k+1,k+3,k+5,...}
and

l+x ifee{l,2,....1+k—1}
Ty =< 2+ k ifee{l+ki+k+1,1+k+2}
l+x—2 ifxeN\{1,2,...,01+k+2}.

Then v € A,, and v, satisfies (g3). By straightforward calculations, we obtain ~;1y2A2;4+1
= «. Since 1Ay 41 =21+ 1 > n, we have Ayy1 € A,,. This shows A, C (G,,).

Let a € B,,. Then a = 8 for some k > n, that is,

x ifx e N\ {k,k+1,...};
za=<k ifee{kk+1,k+2}
x—2 ifxeN\{1,2,...,k+2}.

Let [ be again the least even natural number r such that r > k and define v : N — N by zv := za + 1 for all
x € N. Then + satisfies (g3). It is easy to see that yA\;+1 = a. Since 1\j41 =1+ 1 > n, we obtain N1 € A,
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that is, B, C (Gy).

Let o € A,. Then la > n,|{1,2,...,n}a| = n, and |[M}| = Ny. Suppose M = {A; : i € N} with
A; < Ajyq for all 4 € N. Tt follows that |A;| < Vg for all i € N. For ¢ € N, let p; = min(A;) and I; = |4;|. Let [
be now the least even natural number r such that » > la. Further, let ko = I+p2 and k; = I+ p; —E;;g(lj -3)
for all ¢+ € N\ {1,2}. Note that if [; is even, then p; = 1. Put ¢ =1 if I is even and ¢ = 0 otherwise. We

define transformations 1,72, and 3 on N as follows:

x ifxe{1,2,...,p2 — 1};

k; if x € {ps,pi +2,...,pi +1; — 3};
xy1 =X ki +1 ifee{p;+1,pi+3,....0:+1; — 2}

ki + 2 ifx=p;+1—1;

l+$—2§-=1(lj—3) ifee{p+l,pi+lL+1,...,piv1— 1},

l+24+0 —-3+c ifaxe{l,2,....14p —1-c};
20+p1 +1 —3 ifee{l+pr—cl4+p+2—c,....; +p1+1 —3}

TRE Yt h—2  fre{lipaloclipt3—c..ltp+l -2}

l+x fee{l+pr+lb—11+p1+1h,...},
and

I+ ifexe{l,2,....20+p1 +1; —4};
l+p+1;—3 ifxe{21+p1+11—3,2l+p1+11—2,2l+p1+ll—1};

Y3 =R 1l+x—2 fee{2l+pr+L,20+p1+lL+1,..., 1 +ky—1};
24k —20—-1) ifee{l+k,l+k+1,14+k+2}
l+2—2i ifxe{l+k +3,1+ki+4,...,0+ki —1}

for all 4 € N\ {1}. It is easy to verify that 71,72 € A,, and 3 satisfies (g3). By straightforward calculations,
we obtain that y1v2y3 € ©, My, 4,y = Ma, and 1y1y2y3 > 20411 —2 > 1 > n. Then Corollary 2.3 implies that
there exists 4 € A, such that 1727374 = a. Therefore, A, C (G,).

Altogether, we have shown H,, = A, UB, UA, UA, U{¢} C (G,). By Proposition 3.3, we obtain
<Gn> = Fy. O

= =

Let n € N. Since Q41 € Q,, we can conclude that Gp41 C G,. This shows that {G,, : n € N} is

an infinite decreasing chain of generating sets of Fy. Moreover, [, - Gn = {£} because any transformation

neN
a € Fy\ {¢} is not in G1a41. In other words, the relative rank of Fy modulo G,, is one.
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