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1. Introduction    
The composition and origin of continental intraplate 
basaltic volcanism including that of small volcanic fields 
and enormous flood basalt provinces have received 
significant attention over the past few decades. Some of the 
continental intraplate basaltic eruptions are directly related 
to heterogeneous sources that exist in the shallow mantle 
(e.g., Meibom and Anderson, 2003; Aldanmaz et al., 2006) 
or in the lithospheric mantle (e.g., Hawkesworth et al., 1992; 
Späth et al., 2001; Weinstein et al., 2006; Ma et al., 2011b). 
The degrees of partial melting and fractional crystallization 
control the geochemical and isotopic compositions of such 
basalts (e.g., Peters et al., 2008). Moreover, the continental 
intraplate basalts have different compositions, which is 
indicative of variations in their mantle source regions 
(O’Reilly and Zhang, 1995; Xu et al., 2005; Tang et al., 2006; 
Niu, 2008) and/or to crustal contamination (Carlson et al., 
1981; Mahoney, 1988; Koszowska et al., 2007; Rocha-Júnior 
et al., 2013) during magma ascent.

The Gandom Beryan area is located on the western 
margin of the Lut Block (LB), along the Nayband fault 
(Figure 1). There are no towns/cities/villages in the 
mapped area; the nearest towns to the study area are 

Shahdad (about 70 km to the south) and Ravar (about 85 
km to the west).

The basanitic lavas erupted from fractures of the 
Nayband fault zone and covered an area of about 300 km2 
of basanitic rocks. The occurrence and origin of basanites 
in Gandom Beryan were poorly documented by Stöcklin 
et al. (1971), Samani et al. (1994), Walker et al. (2009), 
and Raeisi (2011). Walker et al. (2009) investigated active 
faulting in the area and carried out 40Ar/39Ar age dating 
and geochemistry of volcanic rock exposed along the 
Nayband fault zone in the Gandom Beryan area. Based 
on the limited dataset of major and trace elements, the 
geochemistry of the southeast of the Gandom Beryan 
area was studied by Raeisi (2011). Therefore, systematic 
geochemistry and isotopic studies of these basanites 
are necessary to investigate igneous occurrences and 
petrogenesis of Gandom Beryan basanites. 

In this study, we report mineral, whole rock chemistry, 
and Nd, Sr, and Pb isotopic compositions for basanitic 
rocks of the Gandom Beryan area in the western LB. The 
purpose of this study is to reveal geochemical and isotopic 
features of these basanites in order to clarify the genesis 
and petrological evolutions of the magma source areas.  

Abstract: In the Gandom Beryan area, basanitic lava flows erupted from fractures in the Nayband fault zone and formed an area 
of about 300 km2 of basanitic rocks in the western part of the Lut Block. Olivine and clinopyroxene are the major phenocrysts in a 
microlitic groundmass for these basanitic rocks. The geochemical data show that Gandom Beryan rocks are basanite in composition 
and belong to intercontinental rifts related to alkali basanites. These rocks have low Fe/Mg ratios (Fe2O3t/MgO = 1.07–1.43) with low 
silica content (SiO2 = 44.89–48.26 wt.%) and are high-Ti basanites. The investigated rocks are characterized by a significant enrichment 
of total REE and LREE relative to chondrite. Moreover, the REE patterns of these rocks are linear without any negative Eu anomalies. 
The low abundances of HREE in basanitic rocks and the REE modeling together reflect the relation between these elements and residual 
garnet in the partially melted mantle. The 207Pb/204Pb and 206Pb/204Pb ratios of the basanitic rocks fall near the field of enriched mantle II 
(EM-II). The Gandom Beryan volcanism, which was related to partial melting of mantle within an extensional setting, resulted from a 
left-step, pull-apart basin in the Nayband N–S trending strike–slip fault system. Although the fault system is older than Gandom Beryan 
volcanism, it seems that it has been reactivated during and after the volcanism.
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2. Geological setting 
The LB is located in eastern Iran. It is applied to the north 
trending desert belt, which is 700 km long with an average 
width of 150–200 km (Figure 1a). The basement of the LB is 
represented by metamorphic rocks that have not been dated 
(Saadat et al., 2010). Marine carbonate, sandstone, and shale 
are the major sedimentary strata in the LB that are younger 
than Permian (Stöcklin et al., 1971). Magmatism in the LB 
started in the Late Jurassic period and continued to the 
Quaternary to form a variety of volcanic, subvolcanic, and 
intrusive rocks (Esmaiely et al., 2005; Saadat et al., 2010). 
The basement and its sedimentary cover were invaded by 

several Mesozoic and Tertiary dioritic and granitic intrusive 
bodies (Stöcklin et al., 1971). The LB has a simple structure, 
dominated by gentle folding, faulting in different directions, 
and tilting (Stöcklin et al., 1971).

The Gandom Beryan area is located in the western 
part of the LB (Figure 1). Triassic reefal limestones are 
the oldest stratum, exposed in the north and southwest of 
the Gandom Beryan area (Figure 1b). There are extremely 
abundant algae and less common corals, crinoids, and 
lamellibranchs in this unit. Moreover, dolomitization 
occurred locally in this limestone. Gypsiferous sandstone 
and marl unit of Miocene have outcrops in the central 

Figure 1. a. Modified geological map of Iran, showing the location of the major faults, Lut Block (LB), Nayband fault (NF), and study area 
(after Berberian and King, 1981), b. Geological map of Gadom Beryan area, adapted from Kluyver et al. (1981). HZF (High Zagros Fault). 
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part of this area (Figure 1b). This unit is formed from the 
alternation of gypsiferous sandstone and marl (Kluyver et 
al., 1981). 

The Plio-Quaternary basanitic rocks that are the main 
subject of our research extended from the center to the 
southeast of the study area (Figure 1b). Based on 40Ar/39Ar 
age dating by Walker et al. (2009), these rocks are in 
2.20–2.60 million years of age. According to Walker et al. 
(2009), Gandom Beryan basanitic lava flows erupted from 
volcanic cones along the faults. The huge accumulation 
of alkali basanitic lavas flowed towards the south and 
southeast of the eruptive cones and formed the Gandom 
Beryan basanitic rocks. The eruptive cones are placed near 
a left-step, pull-apart basin (about 10-km long and 5-km 
wide) in the Nayband fault (Walker et al., 2009). Local 
extension inside the pull-apart basin might have affected 
the volcanism situation (e.g., Camp and Griffis, 1982). 
Neogene-Quaternary continental sedimentary deposits 
are the youngest geological stratum in the LB. 

3. Field characteristics
Field studies show that the basanitic rocks of Gandom 
Beryan occur along the Nayband N–S trending strike–slip 
fault. Nabavi (1976) attributed this fault to the Katangan 
fault systems, and showed that the southern part of this 
fault raised Paleogene dacitic magmas. In addition, Walker 
and Jackson (2002) argued that the Gandom Beryan 
basanites postdate the initiation of the Nayband fault. 
Therefore, it seems that this part of the Nayband fault was 
reactivated during and after the formation of Gandom 
Beryan basanites. Furthermore, lavas have flowed on 
marine sedimentary deposits. The lava flows caused baking 
of underlying Neogene-Quaternary sedimentary deposits 

and changed their colors (Figure 2). The thicknesses of 
basanitic rocks vary from 1 to 10 m. The aphanitic and 
vesicular structures are the most important features in the 
basanites. Vesicles have circular and ellipsoidal shapes that 
indicate the degassing of volatiles from lava. These vesicles 
were filled with secondary minerals such as gypsum. 

4. Petrography 
Gandom Beryan basanitic rocks have porphyritic, 
microlitic, glomeroporphyritic, intergranular, and 
vesicular textures (Figure 3). According to Mackenzie 
et al. (1982), phenocrysts range from 2 to 5 mm in size, 
microphenocrysts sizes range from 1 to 2 mm, and the size 
of microlites is <1 mm. Gandom Beryan basanites have 
anhedral, subhedral, and euhedral olivine phenocrysts 
up to 3 mm in diameter that consist of 3–5 vol. % of the 
rocks, while olivine microphenocrysts and fine-grained 
euhedral olivine consist of 10–15 and about 5 vol. % of 
the rocks, respectively. Some olivine phenocrysts show 
embayment corrosions, probably due to the disequilibrium 
conditions or crystal fractionation resorption (Figure 3f). 
Some olivines converted to iddingsite. Clinopyroxene 
phenocrysts with up to 4.5 mm in diameter include 5–8 
vol. % of the rocks and some of them exhibit zoning 
texture (Figure 3b). Microphenocrysts and fine-grained 
clinopyroxene comprise 8–10 vol. % of the basanites 
as well. Clinopyroxene slightly converted to chlorite. 
Microlitic plagioclases consist of more than 55 vol % of 
the rocks, which together with fine-grained olivine and 
clinopyroxene, formed the groundmass of the basanites. 
Plagioclase microlites display albite twinning and are 
slightly weathered. As accessory minerals, apatite and 
opaque include less than 1 vol. % of the rocks.

Figure 2. The heat of basanitic lava flows has been baked the underlying loess deposits 
and changed their color in the southern part of the Gandom Beryan area.
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5. Analytical techniques      
The chemical analyses of the minerals were conducted 
using a Cameca SX-100 electron microprobe with ZAF 
matrix correction at Iran Minerals Production and 
Supply Company (IMPASCo). The machine was operated 
with an electron gun accelerating voltage of 15 kV (15 s 
background counting times), beam current of 20 nA, 
and 3 µm diameter of focused beam. All the chemical 

compositions of the minerals presented here indicate the 
average of the three analytical objects of each mineral.

Petrographic studies were carried out on 120 samples 
and 20 relatively fresh samples were chosen for the whole 
rock geochemical analyses. X-ray fluorescence (XRF) 
spectrometry was applied to analyze major element 
oxides. In addition, the trace elements were analyzed using 
inductivity coupled plasma mass spectrometry followed by 

Figure 3. a. Photomicrograph (XPL) of glomeroporphyritic texture contains clinopyroxene phenocrysts clusters, b. Photomicrograph 
(XPL) of basalt shows zoned clinopyroxene phenocrysts, c. Photomicrograph (XPL) of the studied basalt contains microlitic plagioclases 
(white color), small olivine and clinopyroxene in groundmass, d. Polarized light image of Figure 3. c, e. Rounded olivines in the studied 
basalt shown with red circles, f. Photomicrograph (PPL) of the studied basalt and a subhedral olivine displaying the magmatic corrosion. 
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lithium borate fusion and dilute acid digestion. Both the 
XRF and ICP-MS analyses were carried out in the ACME 
laboratories, Vancouver, Canada. 

Pb, Nd, and Sr isotopic compositions were analyzed for 
six whole rock samples of the Gandom Beryan basanitic 
rocks at the ACME laboratories, Vancouver, Canada. For 
sample digestion 200–400 mg of rock powder was dissolved 
using hydrofluoric, nitric, and hydrochloric acids. Sr was 
purified using cation exchange resin with 2.5 N HCl. Sr was 
loaded onto pre-outgassed and clean rhenium filaments 
with phosphoric acid and tantalum oxide. Sr isotopes were 
analyzed using thermal ionization mass spectrometry 
(TIMS) and five Faraday collectors in dynamic mode and 
88Sr = 3.0 V. Sr isotopes were normalized to 86Sr/88Sr = 01194 
and corrected for any Rb present during the analysis. Nd 
was purified using HDHEP coated resin and 0.25 N HCl. 
Nd isotopes were analyzed, using MC-ICPMS, with seven 
Faraday collectors and dissolved in 2% HNO3. Nd isotopes 

were normalized to 146Nd/144Nd = 0.7219 and corrected 
for any Sm during analysis. All analyses were undertaken 
using a spray chamber. Pb was purified using anion 
exchange resin and 1 N HBr. Pb isotopes were analyzed 
using MC-ICPMS with five Faraday collectors and with 
samples dissolved in 2% HNO3. Samples were doped with 
NBS997 Tl with Pb/Tl ratios of ≤2 and Pb isotopes were 
normalized to 203Tl/205Tl = 0.41892. All analyses were 
undertaken using a spray chamber. NBS987 Standard Sr 
was analyzed for Sr; also JNdi-1 was analyzed for Nd and 
NBS981 Standard was analyzed for Pb. None of the results 
were normalized to standard results.    

6. Results
6.1. Mineral chemistry
Representative chemical compositions of the olivines and 
clinopyroxene are reported in Table 1. Totally more than 
27, 18, and 6 microprobe point analyses were performed 

Table 1. Representative chemical analyses of olivine and clinopyroxene from Gandom Beryan basalts.

Unit Standard materials
Olivine Clinopyroxene
G-Ol-1 G-Ol-2 G-Ol-3 G-Cpx-1 G-Cpx-2 G-Cpx-3

SiO2 wt.% Wollastonite 38.92 40.73 39.18 47.99 43.51 47.49
TiO2 wt.% Rutile 0 0 0 2.08 4.54 3.07
Al2O3 wt.% Corundum 0.3 0 1.32 4.55 8.69 6.46
Cr2O3 wt.% Chromite 0.03 0.02 0.06 0.0 0.01 0.0
Fe2O3 wt.% Specularite 16.65 14.94 20.09 6.14 8.1 5.52
MnO wt.% Rhodonite 0.25 0.17 0.24 0.11 0.08 0.14
MgO wt.% Periclase 42.89 43.31 38.42 13.52 10.8 11.68
CaO wt.% Wollastonite 0.25 0.08 0.23 22.41 21.07 22.54
Na2O wt.% Albite 0 0 0 0.53 0.73 0.66
Total wt.% 99.29 99.25 99.54 97.33 97.59 97.56
Si  1.0 1.03 1.02 1.82 1.67 1.809
Ti 0 0 0 0.06 0.13 0.088
Al 0.009 0 0.04 0.204 0.393 0.290
Cr 0.001 0 0.001 0.0 0.00 0.00
Fe 0.32 0.28 0.39 0.12 0.197 0.176
Mn 0.005 0.004 0.005 0.004 0.003 0.005
Mg 1.65 1.64 1.49 0.76 0.618 0.66
Ca 0.007 0.002 0.006 0.912 0.86 0.92
Na 0 0 0 0.039 0.058 0.049
Fo 83.39 85.01 78.90 - - -
Fa 16.34 14.80 20.82 - - -
Tp 0.27 0.19 0.28 - - -
Wo - - - 50.65 41.53 52.30
En - - - 42.52 36.75 37.71
Fs - - - 6.83 11.71 10.00
Mg# 83.61 88.59 79.12 86.15 75.83 78.95
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for olivine, clinopyroxene, and plagioclase, respectively. 
The olivine ranges in composition from Fo78.9 to Fo85.01 
with Mg number [Mg# = 100 × Mg/(Mg + Fetotal)] ranging 
from 79.12 to 88.59. Clinopyroxenes are diopsitic in 
composition (Wo41.53–52.30 En36.75–42.52 Fs6.83–11.71) with Mg 
number ranging from 75.83 to 86.15. The TiO2 and Al2O3 

compositions of the clinopyroxenes vary from 2.08 to 4.54 
and from 4.55 to 8.69 wt.%, respectively. 

6.2. Whole-rock chemistry  
The whole-rock major and trace element data with their Mg 
numbers are given in Table 2. The samples G10 and G11 
were neglected because of high LOI. On the basis of the total 

Table 2. Whole rock geochemical analyses of the Gandom Beryan basanitic rocks.

Unit MDL G1 G2 G3 G4 G5 G6 G7 G8 G9 G10
SiO2 wt.% 0.01 46.02 47.68 46.75 46.15 46.77 47.30 47.41 48.26 46.18 45.32
Al2O3 wt.% 0.01 13.27 13.61 13.41 13.15 13.43 13.69 13.44 13.71 13.38 12.96
Fe2O3 wt.% 0.04 10.74 11.00 10.79 10.86 11.04 10.94 10.88 10.98 10.84 10.66
MgO wt.% 0.01 7.99 7.80 7.88 8.12 8.15 8.08 7.86 7.73 7.90 8.27
CaO wt.% 0.01 9.21 7.71 8.32 9.04 8.88 8.19 7.80 7.55 8.09 7.99
Na2O wt.% 0.01 4.68 3.95 4.16 4.40 4.12 4.06 4.16 3.98 4.42 5.04
K2O wt.% 0.01 2.17 2.74 2.33 2.08 2.57 2.82 2.69 2.73 2.44 2.60
TiO2 wt.% 0.01 2.35 2.64 2.39 2.30 2.34 2.34 2.62 2.69 2.37 2.28
P2O5 wt.% 0.01 0.87 0.83 0.89 0.90 0.94 0.92 0.81 0.81 0.92 0.86
MnO wt.% 0.01 0.15 0.14 0.15 0.15 0.15 0.15 0.14 0.14 0.15 0.15
Cr2O3 wt.% 0.002 0.028 0.029 0.028 0.029 0.029 0.028 0.029 0.028 0.027 0.029
Ni ppm 20 103 131 107 119 123 119 133 137 112 117
Sc ppm 1 16 15 16 17 17 16 15 15 16 16
LOI wt.% -5.1 2.1 1.5 2.5 2.4 1.1 1.0 1.7 1.0 2.9 3.4
Sum wt.% 0.01 99.55 99.59 99.57 99.56 99.56 99.57 99.59 99.60 99.59 99.58
Ba ppm 1 560 516 557 574 567 575 493 540 565 550
Be ppm 1 1 3 5 3 1 3 1 2 1 2
Co ppm 0.2 46.7 43.0 42.5 46.1 42.4 47.0 44.7 44.9 42.8 45.9
Cs ppm 0.1 0.9 0.8 0.7 1.0 0.7 1.1 0.7 0.7 0.8 0.6
Ga ppm 0.5 19.7 19.9 19.9 19.2 18.7 19.4 20.5 20.7 18.9 19.1
Hf ppm 0.1 4.9 4.6 4.5 4.9 5.1 4.9 4.9 4.8 4.6 4.6
Nb ppm 0.1 72.5 70.9 74.0 73.3 72.1 75.6 68.9 72.3 74.6 71.9
Rb ppm 0.1 46.2 47.6 25.7 43.9 42.5 48.6 45.3 48.6 34.3 47.0
Sn ppm 1 2 2 2 2 2 2 2 2 2 2
Sr ppm 0.5 1100.6 913.9 948.4 1027.6 1009.7 976.4 910.1 828.8 881.9 915.6
Ta ppm 0.1 3.6 3.9 3.8 3.4 3.8 3.9 3.4 3.6 4.0 3.7
Th ppm 0.2 6.5 5.2 6.1 6.2 6.8 6.7 5.0 5.9 6.5 6.4
U ppm 0.1 1.5 0.4 0.7 1.5 1.4 1.0 0.6 0.6 1.3 1.5
V ppm 8 176 182 181 176 178 172 178 176 175 173
W ppm 0.5 2.0 1.3 1.5 1.8 1.7 1.7 1.0 0.8 1.2 1.2
Zr ppm 0.1 215.0 214.6 206.6 210.8 207.5 213.1 208.9 209.6 202.9 205.4
Y ppm 0.1 21.6 20.6 22.9 22.1 22.1 23.3 19.6 21.2 20.7 21.8
La ppm 0.1 47.0 40.5 50.7 50.8 53.2 51.5 45.6 44.0 54.3 52.2
Ce ppm 0.1 87.8 79.8 86.8 92.4 94.3 91.5 84.2 84.9 93.3 94.0
Pr ppm 0.02 10.57 9.59 10.67 11.08 11.77 11.23 9.83 9.65 10.93 10.96
Nd ppm 0.3 40.8 39.0 41.6 41.9 42.6 42.9 39.3 39.6 41.9 41.4
Sm ppm 0.05 7.65 7.25 7.59 7.52 7.91 7.78 7.21 7.22 7.90 7.76
Eu ppm 0.02 2.39 2.31 2.35 2.50 2.58 2.47 2.43 2.36 2.32 2.48
Gd ppm 0.05 6.96 6.27 6.96 7.02 7.26 7.30 6.80 6.41 7.10 6.74
Tb ppm 0.01 0.90 0.89 0.95 0.94 0.97 0.99 0.90 0.89 0.97 0.94
Dy ppm 0.05 4.93 4.60 4.68 4.56 4.92 4.93 4.77 4.41 5.03 4.70
Ho ppm 0.02 0.76 0.73 0.76 0.80 0.83 0.79 0.72 0.76 0.80 0.81
Er ppm 0.03 1.84 1.95 1.94 2.09 2.28 2.10 1.96 2.02 1.95 1.85
Tm ppm 0.01 0.27 0.27 0.25 0.26 0.27 0.28 0.25 0.24 0.25 0.25
Yb ppm 0.05 1.68 1.45 1.61 1.67 1.54 1.74 1.54 1.47 1.63 1.58
Lu ppm 0.01 0.22 0.21 0.21 0.22 0.25 0.25 0.21 0.22 0.23 0.22
TOT/C wt.% 0.02 0.09 0.06 0.13 0.13 0.11 0.06 0.05 0.12 0.10 0.05
TOT/S wt.% 0.02 0.69 0.12 0.07 0.23 0.18 0.08 0.05 0.05 0.03 0.06
Mg# 59.58 58.42 59.13 59.70 59.39 59.40 58.87 58.24 59.08 -
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alkali silica (TAS) classification diagram (Le Bas et al., 1986), 
the rocks range from basanite to tephrite (Figure 4). The 
SiO2 contents of the samples range from 44.89 to 48.26 wt.%. 

According to the Nb/Y vs Zr/TiO2 diagram (Winchester 
and Floyd, 1977), the samples plot in the field of basanite/
nephelinite (Figure 5). Based on the La/ 10 – Y/ 15 – Nb/ 8 

Table 2. (Continued).

Unit MDL G11 G12 G13 G14 G15 G16 G17 G18 G19 G20
SiO2 wt.% 0.01 46.77 48.10 47.13 48.05 47.87 47.79 47.26 46.03 46.90 44.89
Al2O3 wt.% 0.01 15.88 13.57 13.55 13.63 13.64 13.62 13.47 13.35 13.36 12.78
Fe2O3 wt.% 0.04 9.94 11.20 10.71 10.97 10.90 10.91 10.89 10.69 10.82 11.06
MgO wt.% 0.01 3.43 7.81 7.72 7.90 7.78 8.02 8.11 7.86 8.03 10.29
CaO wt.% 0.01 7.28 7.31 8.17 8.02 7.98 7.98 7.96 8.29 8.04 9.05
Na2O wt.% 0.01 5.17 4.06 4.42 4.03 3.84 3.91 4.54 5.04 3.85 4.56
K2O wt.% 0.01 3.44 2.60 2.32 2.74 2.78 2.74 2.34 2.28 2.79 2.81
TiO2 wt.% 0.01 2.70 2.81 2.52 2.53 2.55 2.50 2.45 2.39 2.42 2.37
P2O5 wt.% 0.01 1.18 0.82 0.85 0.85 0.85 0.84 0.89 0.88 0.91 1.43
MnO wt.% 0.01 0.13 0.14 0.14 0.15 0.14 0.14 0.15 0.14 0.15 0.16
Cr2O3 wt.% 0.002 <0.002 0.028 0.029 0.028 0.029 0.028 0.029 0.028 0.029 0.054
Ni ppm 20 23 136 116 117 119 120 106 104 107 237
Sc ppm 1 9 14 15 16 16 16 16 16 16 16
LOI wt.% -5.1 3.7 1.1 2.0 0.7 1.2 1.1 1.5 2.6 2.3 -0.1
Sum wt.% 0.01 99.60 99.59 99.59 99.59 99.60 99.59 99.59 99.59 99.59 99.36
Ba ppm 1 732 550 507 527 507 507 552 547 525 1101
Be ppm 1 4 1 2 5 2 4 2 4 3 5
Co ppm 0.2 28.5 45.4 42.3 44.8 41.5 42.3 44.0 42.4 43.7 45.1
Cs ppm 0.1 1.0 0.8 0.7 0.5 0.7 0.4 1.1 0.7 0.9 0.8
Ga ppm 0.5 21.8 20.3 20.3 20.2 20.4 20.9 19.6 19.1 19.2 18.6
Hf ppm 0.1 6.1 5.0 4.9 5.2 5.4 5.1 4.9 4.9 5.0 5.6
Nb ppm 0.1 95.9 74.8 71.4 71.7 69.5 69.8 74.1 70.2 71.4 142.6
Rb ppm 0.1 49.9 51.9 46.0 45.4 48.5 47.2 42.1 43.4 48.2 48.3
Sn ppm 1 2 2 2 2 2 2 2 2 2 2
Sr ppm 0.5 1066.4 839.4 904.0 862.4 839.2 874.3 890.2 882.3 861.1 1610.6
Ta ppm 0.1 5.2 3.8 3.7 4.0 3.6 3.7 3.9 3.7 3.7 6.4
Th ppm 0.2 8.0 5.1 5.4 5.8 5.6 5.6 5.9 5.9 5.5 10.7
U ppm 0.1 1.8 0.5 1.6 1.3 0.8 0.9 1.4 1.4 1.2 2.4
V ppm 8 164 170 176 180 185 177 174 171 178 157
W ppm 0.5 1.0 0.8 1.6 0.7 1.7 0.7 1.0 1.1 1.3 1.5
Zr ppm 0.1 232.9 210.8 213.4 216.0 205.6 203.9 213.0 206.8 199.2 276.2
Y ppm 0.1 25.4 20.7 21.8 20.5 21.0 22.2 22.1 21.9 21.5 24.1
La ppm 0.1 69.9 44.0 43.9 44.0 46.4 46.3 49.9 47.5 49.2 96.8
Ce ppm 0.1 119.0 81.8 79.6 81.1 82.0 82.5 84.1 86.6 87.1 171.2
Pr ppm 0.02 14.05 9.77 9.53 9.92 9.90 10.02 10.19 10.07 10.24 20.32
Nd ppm 0.3 53.8 39.5 40.4 37.5 38.9 37.1 42.0 40.9 40.5 74.9
Sm ppm 0.05 9.36 7.35 7.33 7.29 7.02 7.35 7.43 7.21 7.43 11.62
Eu ppm 0.02 2.87 2.45 2.39 2.41 2.27 2.39 2.52 2.22 2.38 3.39
Gd ppm 0.05 8.21 6.58 6.88 6.66 6.53 6.78 6.83 6.74 6.59 9.02
Tb ppm 0.01 1.08 0.89 0.89 0.90 0.90 0.91 0.92 0.85 0.90 1.12
Dy ppm 0.05 5.33 4.68 4.63 4.48 4.67 4.71 4.80 4.48 4.75 5.48
Ho ppm 0.02 0.90 0.72 0.74 0.75 0.72 0.79 0.79 0.71 0.77 0.86
Er ppm 0.03 2.20 1.70 2.06 1.85 1.98 1.98 1.81 1.75 1.82 2.11
Tm ppm 0.01 0.29 0.22 0.25 0.27 0.25 0.25 0.24 0.25 0.25 0.25
Yb ppm 0.05 1.71 1.46 1.54 1.51 1.58 1.50 1.59 1.48 1.48 1.54
Lu ppm 0.01 0.27 0.18 0.22 0.22 0.21 0.20 0.22 0.19 0.20 0.22
TOT/C wt.% 0.02 0.05 0.05 0.08 0.06 0.05 0.05 0.03 0.08 0.05 0.04
TOT/S wt.% 0.02 0.07 0.03 0.16 0.07 0.03 0.10 0.07 0.24 0.03 <0.02
Mg# - 58.01 58.81 58.79 58.57 59.28 59.60 59.29 59.52 64.83
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diagram (Cabanis and Lecolle, 1989), the rocks appear to be 
alkali basanites of the intercontinental rifts (Figure 6). The 
tectono-magmatic discrimination diagrams cannot often 

show distinct different tectono-magmatic settings exactly, 
because they are established by old data (1970s–1980s) and 
their lines are often arbitrary, but they are frequently used 

Figure 4. Classification of the Gandom Beryan basanitic rocks on the total alkali silica 
(TAS) plot (Le Bas et al., 1986). 

Figure 5. Nb/Y–Zr/TiO2 plot (Winchester and Floyd, 1977) for the basic rocks of the 
Gandom Beryan area. 
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by petrologists, because they can show different tectonic 
environments just by the whole rock analyses.

CIPW normative calculations reveal that the studied 
alkali basanites are silica-undersaturated and contain up to 
11.5 wt.% normative nepheline (Table 3). Compositionally, 
analyzed samples have low Fe/Mg ratios (Fe2O3t/MgO = 
1.07–1.43) and low silica content with TiO2 more than 2.28 
wt.% and Ti/Y ratios of 601.92–813.61 suggest that they 
are high-Ti basalts (Peate et al., 1992; Marques et al., 1999). 
K2O and Na2O contents of the basanites vary between 

2.08% and 2.82% and 3.84% and 5.04%, respectively. Thus 
it shows a sodic affinity of Gandom Beryan basanitic 
rocks. The samples have Mg# ranging from 58.01 to 64.83 
(Table 2). The SiO2 shows a negative correlation with MgO 
(7.72–10.29 wt.%), CaO (7.31–9.21 wt.%), Na2O (3.84–
5.04 wt.%), and P2O5 (0.81–1.43 wt.%), and a positive 
correlation with Al2O3 (12.78–13.71 wt.%), Fe2O3 (10.69–
11.20 wt.%), K2O (2.08–2.82 wt.%), and TiO2 (2.30–2.81 
wt.%) (Figure 7). The Ni (103–237 ppm), Sc (14–17 ppm), 
Sr (828.8–1610.6 ppm), Nb (68.9–142.6 ppm), and La 

Figure 6. La/ 10–Y/ 15–Nb / 8 plot (Cabanis and Leocolle, 
1989) for the Gandom Beryan rocks. 

Table 3. CIPW normative calculation of the Gandom Beryan alkali basalts.

Or Ab An Ne Di Ol Il Hm Tn Pf Ap Sum
G1 12.824 24.519 8.792 8.17 18.385 7.974 0.321 10.74 0 3.714 2.061 97.498
G2 16.193 32.002 11.313 0.77 10.016 10.361 0.299 11 0 4.227 1.966 98.146
G3 13.77 29.938 11.035 2.851 12.991 9.534 0.321 10.79 0 3.782 2.108 97.12
G4 12.292 26.858 9.987 5.62 16.781 8.722 0.321 10.86 0 3.628 2.132 97.2
G5 15.188 25.963 10.561 4.821 15.404 9.221 0.321 11.04 0 3.697 2.226 98.442
G6 16.665 27.671 10.801 3.621 12.655 9.992 0.321 10.94 0 3.697 2.179 98.541
G7 15.897 30.684 10.054 2.447 11.5 9.984 0.299 10.88 0 4.192 1.919 97.855
G8 16.133 33.678 11.48 0 9.234 10.493 0.299 10.98 0.319 4.091 1.919 98.625
G9 14.42 27.91 9.461 5.141 13.23 9.491 0.321 10.84 0 3.748 2.179 96.741
G10 15.365 22.361 5.06 10.989 16.819 8.971 0.321 10.66 0 3.594 2.037 96.178
G11 20.329 29.735 9.963 7.591 7.433 3.572 0.278 9.94 0 4.348 2.795 95.984
G12 15.365 34.355 11.123 0 8.209 10.965 0.299 11.2 1.603 3.404 1.942 98.466
G13 13.71 30.878 10.28 3.533 12.82 9.31 0.299 10.71 0 4.022 2.013 97.577
G14 16.193 31.087 11.008 1.633 11.678 9.996 0.321 10.97 0 4.02 2.013 98.918
G15 16.429 31.397 11.77 0.594 10.845 10.057 0.299 10.9 0 4.073 2.013 98.377
G16 16.193 30.76 11.519 1.26 11.227 10.352 0.299 10.91 0 3.988 1.99 98.497
G17 13.829 30.766 9.464 4.144 12.661 10.042 0.321 10.89 0 3.884 2.108 98.11
G18 13.474 26.115 7.069 8.956 15.983 8.527 0.299 10.69 0 3.801 2.084 96.999
G19 16.488 28.664 10.932 2.12 11.807 10.18 0.321 10.82 0 3.833 2.155 97.321
G20 16.606 17.278 6.103 11.543 16.988 12.442 0.342 11.06 0 3.728 3.387 99.478
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Figure 7. Variation diagrams of selected major elements versus SiO2 for the Gandom Beryan basalts (the most primitive sample, G20 
from the north of the area shown as red circle).
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(40.5–96.8 ppm) concentrations of the basanites decrease 
with an increase in SiO2 contents, while the V (157–185 
ppm) concentrations increase with an increase in SiO2 
contents (Figures 8a–8f). Moreover, the Y (19.6–24.1 ppm) 
and Sm (7.02–11.62 ppm) contents do not show systematic 

trends versus Rb (25.7–51.9 ppm) (Figures 8g and 8h). 
Chemical data show that the sample G20 (shown as a red 
circle in Figures 7 and 8) is more primitive and it seems 
that the other samples (parental magmas) are derived from 
this primitive rock/melt.   

Figure 8. a–f) Variation diagrams of selected trace elements versus SiO2 for the Gandom Beryan basalts, and g–h) Y and Sm versus Rb 
variation diagrams for the Gandom Beryan basalts (the most primitive sample, G20 from the north of the area shown as red circle).
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Patterns of the basanites chondrite-normalized REE 
are shown in Figure 9. The samples are characterized by a 
significant enrichment of LREE with respect to chondrites 
([La/Yb]N = 18.83–42.37). In comparison with the 
N-MORB (Gale et al., 2013), E-MORB (Gale et al., 2013), 
and OIB (Sun and McDonough, 1989), the Gandom 
Beryan rocks show an overall depletion in HREE such 
as Yb and Lu (Figure 9). With regard to the chondrite-
normalized trace element plot (Figure 10), the Gandom 
Beryan rocks display an overall enrichment in highly 
incompatible elements as opposed to less incompatible 
ones. To make a meaningful comparison possible, 
the chondrite-normalized trace element diagrams of 
N-MORB, E-MORB, and OIB are shown in Figure 10. The 
Gandom Beryan was depleted in Zr, Hf, Ti, Y, and Yb with 
respect to OIB.
6.3. Strontium, neodymium, and lead isotopes 
The whole-rock Sr, Nd, and Pb isotopic compositions for 
Gandom Beryan basanites are reported in Table 4 and 
shown by four isotopic correlation diagrams (Figures 
11a–11d). The fields for depleted MORB mantle (DMM), 
enriched mantle (EM), bulk silicate earth (BSE), and 
mid-ocean ridge basalt (MORB) are indicated for 
comparison. The Gandom Beryan basanites display 
limited variation in isotopic compositions: 207Pb/206Pb 
= 0.826760–0.833880, 208Pb/206Pb = 2.066320–2.075730, 
206Pb/204Pb = 18.725–18.891, 207Pb/204Pb = 15.613–15.620, 

208Pb/204Pb = 38.869–39.036, 143Nd/144Nd = 0.512676–
0.512747 (εNd = 0.74 to 2.13), 87Sr/86Sr = 0.704291–
0.705100. In the isotope correlation diagrams, the rocks 
plot in the field of Jeju Island alkali basalts (Park et al., 
2005; Tatsumi et al., 2005; Chang et al., 2006; Choi et 
al., 2006; Brenna et al., 2012a, 2012b) between BSE 
and HIMU (high µ refers to high 238U/204U) (Figures 
11a–11d). However, the samples are depleted with 
respect to the bulk earth. According to the 143Nd/144Nd 
and 87Sr/86Sr ratios, Gandom Beryan rocks are similar to 
Pannonian basin Late Tertiary alkaline basalts (Salters 
et al., 1988; Embey-Isztin et al., 1993) (Figure 11a). In 
the Pb–Pb isotope diagram (Figure 11d), the basanitic 
rocks plot close to the field of enriched mantle II (EM-II) 
while the εNd(t) values are positive. As Pang et al. (2012) 
argued, the positive εNd(t) values and LREE enrichment 
of the Late Cenozoic intraplate alkali basalts in eastern 
Iran (Lut-Sistan region) represent an LREE-depleted 
mantle source. This source has been enriched from LREE 
and then melted to form the parent melts of Lut-Sistan 
alkali basalts (Pang et al., 2012). According to Pang et 
al. (2012), such enrichment that occurred in eastern Iran 
can be seen in the western Lut region due to exodus of 
melts or volatile-rich fluids released from the seismic low 
velocity region (Niu, 2008; Humphreys and Niu, 2009) or 
from the subsolidus peridotite just before melting (Zou 
and Zindler, 1996) into the asthenosphere. 

Figure 9. Chondrite-normalized (Boynton, 1984) rare earth elements patterns for basalts from the Gandom 
Beryan basanitic rocks.
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7. Discussion
7.1. Crustal contamination and fractional crystallization 
Crustal contamination is unavoidable during mantle-
derived magma movement through the continental crust. 
Crustal contamination causes an increase in 87Sr/86Sr ratios 
and a decrease in εNd(t). Due to the low87Sr/ 86Sr ratios 
(0.704291–0.705100) and small εNd(t) range (1.70 to 2.13), 
an intense assimilation of crustal rocks did not happen in 
Gandom Beryan basanites. We excluded the sample G20 
(0.74), because it shows different isotopic characteristics 
possibly due to olivine and pyroxene bearing enclaves 
(Table 4). Therefore, crustal contamination processes can 
be excluded. 

The Mg# of Gandom Beryan alkali basanites ranges 
from 58.01 to 64.83 that is lower than pristine mantle 

melts. The occurrence of clinopyroxene and olivine 
phenocrysts in the basanites is associated with crystal 
fractionation during the ascent of magma. Due to 
clinopyroxene and olivine fractionation, the trends of 
major and trace elements such as CaO, MgO, and Ni 
decrease while SiO2 concentrations increase (Figures 7 
and 8). The simultaneous increase in Fe2O3, TiO2, and V 
as well as the increase in SiO2 contents exhibits that the 
fractionation of Fe-Ti oxides was not significant (Figures 
7 and 8). The concentration of Sm and Y (with high KD for 
amphibole-liquid compared to pyroxene-liquid; Rollinson, 
1993) versus Rb contents (index of fractionation) display 
that amphibole fractionation was not notable (Figure 
8). Moreover, the lack of Eu anomalies exhibits the 
absence of plagioclase fractionation (Figure 9). Thus, 

Figure 10. Chondrite normalized multi element distribution diagram for the Gandom Beryan Basalts 
(GBB) (normalization values are after Thompson, 1982).

Table 4. Sr-Nd-Pb isotope data for Gandom Beryan basanitic rocks.

Sample 87Sr/86Sr 143Nd/144Nd 206Pb/204Pb 207Pb/204Pb 208Pb/204Pb 208Pb/206Pb 207Pb/206Pb εNd
G20 0.704431 0.512676 18.834 15.620 39.003 2.070840 0.829350 0.740
G17 - 0.512747 18.891 15.619 39.036 2.066320 0.826760 2.130
G04 0.704567 0.512734 18.725 15.615 38.869 2.075730 0.833880 1.870
G13 0.704573 0.512725 18.841 15.617 38.968 2.068220 0.828860 1.700
G10 0.704291 0.512744 18.871 15.613 39.019 2.067630 0.827350 2.070
G01 0.705100 0.512743 18.862 15.617 39.000 2.067720 0.827980 2.050
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the clinopyroxene and olivine are the main fractionation 
minerals in Gandom Beryan basanites.  
7.2. Origin of Gandom Beryan rocks
According to Rollinson (1993) and Hauri et al. (1994), 
garnet is almost the only mineral phase in mantle that 
causes fractionation between middle REE (MREE) and 
heavy REE (HREE) of the alkali basalts. Thus the intense 
fractionation between MREE and HREE of the Gandom 
Beryan basanites exhibits residual garnet in the origin. 
Due to the fact that HREE concentrations in the studied 
basanites are less than those in the MORBs (Figure 9), 

the parent magmas might have originated from the 
garnet stability mantle source, which is deeper than 
that of MORBs. In the alkali basalts, scandium contents 
indicate evidence for the low degree of melting, because 
this element is intensely partitioned into clinopyroxene 
and garnet mineral phases (Rollinson, 1993). Scandium 
concentrations range from 14 to 17 ppm in the Gandom 
Beryan alkali basanites, which are lower than Sc abundance 
of primitive MORB [ranging from 35 to 40 ppm, (Pearce et 
al., 1990)]. This indicates that the melting degrees were less 
than those necessary to produce MORB.

Figure 11. a) 87Sr/ 86Sr versus 143Nd/ 144Nd, b) 206Pb/ 207Pb versus 143Nd/ 144Nd, c) 206Pb/ 207Pb versus 87Sr/ 86Sr, d) 206Pb/ 204Pb versus 207Pb/ 
204Pb ratios for Gandom Beryan basalts. BSE = bulk silicate earth, fields of depleted MORB mantle (DMM), enriched mantle I (EMI), 
enriched mantle II (EMII) and HIMU (high μ, refers to high 238U/204U) are after Rollinson (1993). Data sources: Little Hungarian Plain 
(LHP) (Harangi et al., 1995). Western and Central Europe (Wilson and Downes, 1991). Alkaline basalts from the Pannonian Basin 
(Embey-Isztin et al., 1993 and Salters et al., 1988). Saghegy basalts (LHP) (Harangi et al., 1995). MORB (mid ocean ridge basalts) and 
OIB (Zindler and Hart, 1986). Old lithospheric mantle (Zhang et al., 2002). The field of Jeju Island is after Tatsumi et al. (2005), Park 
et al. (2005), Choi et al. (2006), Chang et al. (2006), and Brenna et al. (2012a, 2012b). Data for Wudalianchi are after Zou et al. (2003). 
The field of Mt. Baekdu is after Basu et al. (1991) and Kuritani et al. (2009). Data for Baengnyeong Island are after Park and Park (1996), 
Kim et al. (2002), and Choi et al. (2006). The field of Ulleung and Dok Islands is after Tatsumoto and Nakamura (1991), Kim (2000), and 
Choi et al. (2006). Data for Indian MORB and Pacific and North Atlantic MORB are after Barry and Kent (1998) and Zou et al. (2000). 
The field of Smoky Butte is after Fraser et al. (1985).
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The high LaN/YbN (=18.83–42.37) ratios in the 
studied rocks suggest the important role played by 
clinopyroxene in the formation of such rocks because 
partition coefficients of HREE are higher than the LREE in 
clinopyroxene (Green, 1994). Furthermore, clinopyroxene 
is a major repository for REE during mantle melting and 
low pressure crystallization (Gaetani and Grove, 1995). 
According to Gallahan and Nielson (1992), the most 
important compositional factors controlling the REE 
partitioning between clinopyroxene and melt at constant 
temperature and pressure are the Ca content of the 
clinopyroxene and the Al content of the melt. Petrographic 
evidence indicates an abundance of clinopyroxene and 
apatite within the basanite samples. The sloping of rare 
earth elements (20.032 ≤ LaN/LuN ≤ 45.703) can be 
explained by the percentage of partial melting of mantle 
source. Moreover, the low abundance of HREE in basanitic 
rocks reflects the relation of these elements in residual 
garnet in the partially melted mantle. In addition, the 
studied basanite exhibits low Lu/Hf (0.0360–0.0510) and 
high LaN/YbN (=18.83–42.37). These chemical evidences 
show that the basaltic magma has been formed by melting 
of a mantle source with variable contents of residual garnet 
(Piccirillo and Melfi, 1988). HREE abundances are rather 
constant (Yb = 1.45–1.68 ppm), but LREE abundances 
are variable (La = 40.5–96.8 ppm). Thus there is a range 
in LaN/YbN = 18.83–42.37. These features are typical of 
alkaline magmas derived from a mantle peridotite source 
(Alibert et al., 1983).   

The chondrite-normalized multielement distribution 
of the basanitic rocks from the Gandom Beryan area 
(Figure 10) shows significant enrichments of K, Nb, Ta, 
La, and Ce. All samples exhibit relative enrichment in high 
field strength elements (HFSE; La/Nb > 0.5) and do not 
display depletions in Nb as opposed to LILE (Sr and Ba). 
The dome-shape pattern is evident (Figure 10) and can be 
compared with the OIB-type basalts and may result from 
an undepleted source with low degree of partial melting. 
Moreover, all patterns show an overall relative enrichment 
with increasing incompatibility from right (Lu) toward left 
(Cs) on the plot with negative anomalies for Nd. The ratio 
of HFSE/LREE exhibits the origin of the lava in such a way 
that the ratios more than one suggest an asthenospheric 
origin (Smith et al., 1999). Thus, the high Nb/La ratios 
(1.355–1.750) of Gandom Beryan samples display an 

asthenospheric origin. The patterns for all rock types are 
almost parallel, implying their cogenetic nature. Isotopic 
data (Figure 11) on the studied rocks also indicate that 
they are similar to OIB-type basalt and are similar to those 
in Jeju Island. Finally, from geochemical, isotopic, and 
tectonic points of view, the Gandom Baryan basanite can 
be compared with the Kula alkaline volcanism in Turkey 
(Alıcı et al., 2002). According to Alıcı et al. (2002), the Kula 
basanitic rocks erupted in an extensional environment and 
represent a postcollisional magmatism during ascending 
of asthenospheric magmas. We suggest that the Gandom 
Baryan basanite suite is also originated in such a tectonic 
setting in the Central Iranian structural unit.

8. Conclusion
The Gandom Beryan Plio-Quaternary volcanic rocks are 
represented by high-Ti basanite. These rocks are alkali 
in nature and belong to intercontinental rifts related to 
alkali basanites. Generally, in these rocks, MgO versus 
major oxides and some trace elements diagrams display 
fractional crystallization of mafic minerals. Due to the fact 
that HREE concentrations in the studied basanites are less 
than those in the MORBs, the parent magmas might have 
originated from the garnet stability mantle source, which 
is deeper than those mentioned for MORBs. 

The REE chondrite-normalized diagram displays a 
steep pattern representing the low-degree partial melting 
of mantle. In the chondrite-normalized trace elements 
spider plot, analyzed rocks display no enrichment in 
comparison with HFSE on the one hand and Ti, Ta, and 
Nb having no negative anomalies on the other hand. These 
features are related to magmas derived from the mantle 
source. The trace element and REE ratios indicate that the 
source of Gandom Beryan basanites was deep seated in the 
mantle. 

According to Pb isotopes, Gandom Beryan volcanism 
was related to partial melting of enriched mantle that 
occurred within an extensional setting linked to the 
Nayband fault system. 
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