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1. Introduction
Energy is the driving force for the development of a country’s industrialization. The large-scale use of traditional energy 
has led to serious environmental problems and energy crises. Therefore, it is urgent to develop new types of energy and 
improve energy conversion efficiency. Among various energy conversion devices, high-efficiency fuel cells have attracted 
widespread attention [1–3]. Methanol is a liquid fuel with high energy density, which has the advantages of abundant 
reserves, convenient storage and transportation, and high energy conversion efficiency. Therefore, direct methanol fuel 
cells (DMFCs) is one of the most promising fuel cells [4,5]. At present, the development of DMFCs faces barriers such as 
high catalyst costs and low methanol oxidation efficiency. In order to improve the activity of DMFCs, further research is 
needed to solve these problems [6–8]. The anode catalyst plays a decisive role in the performance of DMFCs [9]. In the 
past few decades, people have conducted extensive research on the electrocatalytic oxidation of methanol molecules on 
Pt-based catalysts. However, there are still some shortcomings in Pt-based materials, such as high cost and being prone to 
surface poisoning resulting in decreased activity, which hinders its application in DMFCs [10–12].       

In order to reduce preparation cost of anode catalysts, many researchers have turned their attention to nonprecious 
metal materials, such as Mo, Ce, Mn, Co, and Ni [13–16]. These metals and their oxides and corresponding metal-based 
composite materials have been extensively studied; among these, nickel is a kind of metal with abundant reserves and 
low price [17–19]. At the same time, nickel-based materials have high electrocatalytic activity for the oxidation of small 
organic molecules in alkaline environments, which is due to the formation of nickel (oxy) hydroxide (NiOOH) thin layer, 
on which the transformation process of Ni(OH)2/Ni(OOH) leads to improve the electrocatalytic performance [20,21]. 
Therefore, nickel-based catalysts are considered to be the most valuable non-Pt-based alkaline DMFC catalytic materials.

In order to improve the activity of the anode catalyst, it is a practicable method to load the catalytic particles on 
the carrier. Carbon materials are the most widely used fuel cell catalyst support in current research due to their good 
conductivity and high stability.    Carbon nanotubes [22,23], carbon nanofibers [24,25], and carbon spheres [26–28] as Pt-
based electrocatalyst supports are widely used in the oxidation of methanol. In order to enhance the performance of carbon 
materials, researchers have paid great attention to the control of carbon nanostructures, such as surface modification 
and spatial structure. Therefore, it is very important to find a suitable method to prepare high-performance carbon 
nanomaterials. Among many synthesis methods, the hydrothermal carbonization technology using biomass resources as 
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raw materials is a simple, inexpensive, and environmentally friendly method [12,29–32]. A large number of studies have 
been conducted on the synthesis of carbon spheres by hydrothermal carbonization, such as the structure control of carbon 
materials [33–35], the formation mechanism of carbon spheres [12,32–34], the types of biomass resources [34,35], and 
their application in energy storage devices [31,36,37]. Through the hydrothermal carbonization process, a large number 
of oxygen-containing functional groups are generated on the outer surface of carbon spheres [38]. During the methanol 
oxidation reaction, the introduction of these oxygen-containing functional groups may quickly eliminate the poisoning 
intermediate species [39].

 Accordingly, a new electrocatalyst of oxygen-containing functional groups riched carbon spheres supported Ni(II) 
materials as high-efficiency methanol electrooxidation catalysts were facilely synthesized by hydrothermal process. In this 
work, size-controlled growth of carbon spheres (CSs) was conducted by hydrothermal carbonization method. The CSs 
with different sizes were modified with nickel acetate to obtain Ni(II)/CSs, which were used as the catalysts for methanol 
oxidation. The surface of the CSs was rich in hydroxyl groups; therefore, the CSs performed both the cocatalyst and the 
carrier of the catalysts. The hydroxyl groups present on the surface of the carbon spheres enhance the antitoxic performance 
of the catalyst during the methanol oxidation process, thus improving the electrocatalytic activity and stability of the 
material. The Ni(II)/CSs catalysts have the advantages of simple synthesis method, low cost, and high catalytic efficiency 
and stability.

2. Experimental
2.1. Materials
Glucose (C6H12O6, Sinopharm Chemical Reagent) was used to prepare carbon spheres (CSs) templates. Nickel acetate 
tetrahydrate (NiAc, Ni(CH3COO)2·4H2O, Collins), methanol (CH3OH, Sinopharm Chemical Reagent), and Nafion 
solution (5 wt.%, Shanghai Yibang technology) were used in electrochemical testing. Anhydrous ethanol (CH3CH2OH, 
Sinopharm Chemical Reagent) and deionized water were used as common lotions and solvents.
2.2. Synthesis of CSs
Glucose was used as the carbon source. Some improvements have been made on the basis of traditional hydrothermal 
method to synthesize carbon spheres. In short, 6 g of glucose was dissolved in 60 mL of deionized water, and then 
transferred to a 100-mL Teflon-lined stainless-steel autoclave, and maintained at 180 °C for x h (x = 8,10,12,24), to get 
carbon spheres of different particle sizes. After the reaction was completed, the autoclave was taken out of the oven and 
allowed to cool to room temperature naturally. Next, the resulting black precipitate was washed with absolute alcohol and 
deionized water, and dried at 60 °C for 12 h.
2.3. Synthesis of Ni(II)/C
    Briefly, the prepared carbon spheres were dispersed in 50-mL y M NiAc solution (y = 0.2, 0.4, 0.6, 0.8, 1.0, and 1.2). 
Subsequently, the suspension was transferred into an autoclave of 100 mL capacity and maintained at 70 °C for 24 h. Next, 
the black precipitates were collected by filtration and dried at 60 °C for 12 h to obtain the final product.
2.4. Material characterization
Scanning electron microscope (SEM) images and energy dispersive spectrometry (EDS) of the product were obtained 
with a joel 7800F microscope (Japan). Transmission electron microscope (TEM) images were taken using a FEI Tecnai G2 
F20 (USA) transmission electron microscope. Bruker D8 Advance X-ray diffractometer system with Cu-K a ( l ra.15406 
nm) was used to obtain X-ray diffraction (XRD) patterns. The Raman spectra were recorded using a Renishaw Raman 
spectrometer (UK). X-ray photoelectron spectroscopy (XPS) of the product was carried out using a Thermo ESCALAB 
250XI instrument (USA). Fourier transform infrared spectrometry (FT-IR) analysis was performed by using a Thermo 
Nicolet 380 FT-IR spectrometer (USA).
2.5. Electrochemical methods
A CHI660E electrochemical workstation (Chenhua, Shanghai) was used to achieve the electrochemical measurements. 
Three-electrode system was adopted, with platinum wire as the counter electrode, Ag/AgCl electrode as the reference 
electrode, and the glass carbon electrode (GCE) modified by Ni(II)/CSs nanocomposite as the working electrode. The 
working electrode was prepared as follows: 1 mg of catalyst and 10 μL of 5 wt.% Nafion solution were dispersed in 400 μL of 
absolute ethanol, and then sonicated for a few minutes to obtain catalyst ink slurry. Next, 10 uL of catalyst ink was dropped 
on a GCE with a diameter of 3 mm and dried in air. Thus, Ni(II)/CSs-modified GCE was obtained. Cyclic voltammetry 
(CV) and chronoamperometry (CA) were carried out with a scan rate of 100 mV/s at 40 °C.
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3. Results and discussion
3.1. Microstructure study
3.1.1. SEM
The SEM images of four carbon spheres with different particle sizes and the carbon spheres modified by Ni(II) are 
shown in Figure 1. In the processes of preparing carbon spheres, the hydrothermal temperature at 180 °C is higher than 
the glycosidation temperature, which results in aromatization and carbonization. The processes of aromatization and 
carbonization will be promoted as the extension of the reaction time, thus leading to the increase of the size of the carbon 
spheres [32]. Figure 1a displays the carbon spheres, with a fairly uniform diameter of about 80–110 nm, that are bonded 
to each other. With the increase of reaction time, the carbon spheres grow to about 230–300 nm in diameter, as shown 
in Figure 1b. Similarly, carbon spheres of 300–400 nm and 420–520 nm of homogeneous diameter can be clearly seen in 
Figures 1c and 1d. As the diameter of the carbon sphere grows, some of the spheres break. In Figure 1e, it can be seen that 
the diameter of carbon spheres is slightly larger, 90–140 nm, after the doping of Ni(II) due to the secondary hydrothermal 
reaction during the modification process. The EDS mappings are taken from the area in Figure 1f, in which C, O, and Ni 
elements with uniform dispersion are detected and the mass percentages of C, O, and Ni are 80.29%, 14.70%, and 5.01%, 
respectively.
3.1.3. TEM
The TEM image (Figure 2a) shows the smallest carbon spheres, of which the diameter is about 80–110 nm, which is 
corresponding to the results of SEM ( Figure 1a). After loading Ni(II) on the carbon spheres, the particle size of the carbon 
spheres increased slightly, 90–140 nm, as shown in Figure 2b. However, the regularity decreased slightly, which matches 
the SEM results (Figure 1e). 

The crystal structures of CSs and Ni(II)/CSs were measured by XRD (Figure 3). The spectra of the two samples are 
similar. There are two broad peaks around 20° and 44° indicating that the material corresponds to the typical amorphous 
carbon structure [40]. After the introduction of Ni(II), the carbon frameworks of Ni(II)/CSs are still amorphous and the 
diffraction peak of Ni cannot be observed in the XRD because the content of Ni in the composite material is small.
3.1.4. Raman
The Raman spectra of CSs and Ni(II)/CSs are shown in Figure 4. There are two obvious peaks around 1331 cm–1 and 
1586 cm–1, which are assigned to the D-band and the G-band, respectively. The D-band is attributed to defects within 
carbon materials and the G-band represents the feature Raman-active E2g mode of graphitic sheets [41]. The intensity ratio 
between D-band and G-band (ID/IG) of Ni(II)/CSs is 0.90, which is higher than CSs (0.83), indicating a higher degree of 
carbon defects in Ni(II)/CSs composites [42]. 

Figure 1. The SEM images of CSs in different sizes (a) 80–110 nm, (b) 230–300 nm, (c) 300–400 nm, and (d) 420–520 
nm; (e) The SEM image of Ni(II)/CSs; (f) the area scanning element mappings of Ni(II)/CSs.

file:///Users/tubitak/Desktop/KIM-2009-77/javascript:;


HU et al. / Turk J Chem

251

Figure 2. The TEM images of (a) CSs about 100 nm in diameter; (b) Ni(II)/CSs.

Figure 3. The XRD pattern of the synthesized Ni(II)/CSs.

Figure 4. The Raman spectra of Ni(II)/CSs.
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3.1.5. FT-IR
The FT-IR spectra of pure CSs and Ni(II)/CSs are displayed in Figure 5. Similarly, in both spectrums, the broad bands 
above 3000 cm–1 due to the stretching of surface hydroxyl groups (−OH bond) [43] and the bands in the region around 
3000 cm−1 arise from C−H bridging stretches. The peaks at 1760 cm−1, 1610 cm−1, and 1250 cm−1 are assigned to C=O, 
C-C, and C-O stretches, respectively. The presence of these functional groups on the CSs is due to the organics left from 
raw glucose. The spectrum of Ni(II)/CSs reveals the appearance of new band with the peak at 580 cm−1 assigned to Ni-O 
stretches between Ni(II) and the O on the surface of CSs [14]. 
3.1.6. XPS
The surface features and atomic valence states of Ni(II)/CSs nanocomposites were characterized by XPS, as illustrated in 
Figures 6a–6d. The wide-range spectrum of the Ni(II)/CSs is exhibited in Figure 6a; Ni, O, and C elements can be found 
in Ni(II)/ CSs. As show in Figure 6b, the high-resolution C 1s spectrum of the Ni(II)/CSs can be deconvolved into three 
peaks for C-C, C-O, and C=O bonds that located at 284.8, 286.4, and 288.1 eV, respectively [44]. The existence of C-O 
and C=O bonds are attributed to the carbonyl groups and hydroxyl groups on the surface of the CSs, which matches the 
FT-IR results. Figure 6c displays the deconvolved spectrum of Ni 2p. The peaks with the binding energy of 856.1 and 873.8 
eV belong to the Ni 2p3/2 and Ni 2p1/2 peaks of Ni(OH)2, respectively. The peaks located at 861.6 and 879.8 eV are satellite 
peaks attributed to the Ni 2p3/2 and Ni 2p1/2 peaks of NiO, respectively [45,46]. Figure 6d shows the O 1s spectra of Ni(II)/
CSs. The O 1s spectrum is fitted into three peaks with the binding energies at 529.8 eV, 531.9 eV, and 532.9 eV. The peak at 
529.8 eV can be assigned to the lattice oxygen (OL), the residual peaks at 531.9 and 532.9 eV are generally associated with 
oxygen vacancies (OV) and surface species (e.g., hydroxyl) [46].
3.2. Electrochemical test
3.2.1. Performances of different electrodes
In order to prove the catalytic oxidation of methanol by catalysts, different electrodes were prepared for cyclic voltammogram 
testing, as shown in Figure 7. The bare glassy carbon electrode and the pure carbon spheres electrode have no catalytic 
effect. Nickel acetate electrode was also prepared, but its peak current density of methanol oxidation at the potential at 0.57 
V was only about 18.64 mA/cm2. Compared with other electrodes, the Ni(II)/CSs electrode showed much higher activity 
for methanol oxidation, over which the peak current density reached about 34.54 mA/cm2, Obviously, the nickel-based 
catalysts is greatly enhanced with the support of carbon spheres. The catalytic mechanism of the anode catalyst on the 
oxidation reaction of methanol in an alkaline environment is as follows [47]: 

M + H2O → M(OH)ads + H+ + e– (1)                                                

NiOOH + CH3OH 
dehydrogenation

 NiOOH(CO)ads + H+ + e– (2)                                                                                                 
NiOOH(CO)ads + NiOOH + OHads→ CO2 + Ni(OH)2 + H2O (3)             
The methanol molecules are adsorbed on the surface of catalyst, and then are dehydrogenated to produce intermediate 

species (CO)ads. The adsorbed CO species react with the surface hydroxyl group to form CO2 and release the surface 

Figure 5. FT-IR spectra of CSs and Ni(II)/CSs.
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catalytic active sites. The above reaction (3) is the rate determining step of methanol oxidation reaction [20]. That is to say, 
the content of the surface hydroxyl is one of the key points of accelerating methanol oxidation reaction. 

The mechanism of methanol oxidation over the Ni(II)/CSs catalysts has been shown in Scheme. In this process, Ni(II) 
is the main catalyst, catalyzing methanol dehydrogenation to generate adsorbed CO as the reaction (2) mentioned above. 
The carbon spheres is the cocatalyst, the hydroxyl group on the surface of the carbon spheres reacts with the adsorbed 
CO to convert (CO)ads into CO2 and release the surface catalytic active sites at the same time, as the reaction (3) above. In 
fact, FT-IR spectra and XPS results prove the existence of surface hydroxyl groups on Ni(II)/CSs, which can remove CO 
intermediates and prevent catalyst poisoning, thus improving the catalytic oxidation activity of methanol.
3.2.2. Performance of CSs in different sizes 
In order to explore the supporting properties of four carbon spheres of different sizes, their electrochemical properties 
were tested as shown in Figure 8. It can be seen that the activities of the four catalysts decrease gradually with the increase 
of carbon sphere diameter. This is probably the smaller the diameter of the carbon sphere, the larger the specific surface 
area, the stronger the catalytic effect. Therefore, the catalyst with the smallest diameter was selected for the subsequent 
electrochemical test.
3.2.3. Performance of different scanning laps
Under different scanning laps, Figure 9 depicts the changes of the oxidation peak current density of methanol. On 10th 
lap, peak current density can reach more than 42.46 mA/cm2. When the number of scanning laps increased from 10 to 
60, the peak current density of methanol anodic oxidation gradually decreased, indicating that the methanol oxidation 
reaction had not reached a stable state. When the number of scanning laps changed from 60 to 100, the anodic oxidation 
peak current density only decreased by about 4%, indicating that the methanol oxidation reaction over the catalyst 

Figure 6. XPS spectrum of Ni(II)/CSs: (a) full-wide scanned spectrum, (b) C 1s spectra, (c) Ni 2p spectra, (d) O 1s spectra. 
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reached a relatively stable state in this stage. Therefore, the number of scanning turns is chosen to be 60 in the following 
electrochemical test.
3.2.4. Performances of different nickel contents
As shown in Figure 10, catalysts with different nickel contents also have different effects on methanol oxidation. When the 
nickel contents are 2% and 3%, the peak current densities are only about 19.22 mA/cm2 and 20.35 mA/cm2, respectively. 
The peak current density reaches a maximum of 34.54 mA/cm2 when nickel content is 5%. However, when the nickel 
content continued to increase to 6% and above, the anodic oxidation peak current density gradually decreased, which may 
result from CO poisoning caused by excessive Ni(II) leading to the faster dehydrogenation of methanol to form more CO 
intermediates without being eliminated timely by the surface hydroxyl groups.
3.2.5. Performances of different methanol concentrations
The composition of electrolyte is also an important factor affecting the catalytic effect of the catalyst. The content of 
sodium hydroxide remains unchanged and the catalytic performances with different methanol concentrations are shown 
in Figure 11. When the methanol concentration changes from 1.25 M to 1.75 M, the peak current density gradually 
increases. However, when the methanol concentration was further increased to 2.25 M, the peak current density decreased 

Figure 7. CVs of different electrodes in 1.5 M NaOH and 1.5 M CH3OH.

Scheme. Schematic illustration for the Ni(II)/CSs enhancing the activity in MOR.
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Figure 10. CVs of Ni(II)/CSs with different Ni contents in 1.5 M 
NaOH and 1.5 M CH3OH.

Figure 8. CVs of catalysts prepared from carbon spheres of 
different diameters in 1.5 M NaOH and 1.5 M CH3OH.

Figure 9. CVs of Ni(II)/CSs with different scanning laps in 1.5 
M NaOH and 1.5 M CH3OH.
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with the increase of methanol concentration. Naturally, the current density reached a maximum of 34.54 mA/cm2 when 
the concentration of methanol electrolyte was 1.75 M. It is worth noting that when the methanol electrolyte is in a high 
concentration (1.75–2.25 M), the peak current density decreases because excessive methanol produces too much CO 
intermediates and thus accelerates the catalyst poisoning.
3.2.6. Performances of different sodium hydroxide concentrations
NaOH plays an important role in providing an alkaline environment for the catalytic oxidation of methanol. As shown in 
Figure 12, at the constant concentration of methanol, the peak current density gradually increases as the concentration of 
NaOH increases. The maximum value of the current density is 34.54 mA/cm2 at 1.75 M NaOH concentration. However, 
the current density decreases when the concentration of NaOH exceeds 1.75 M due to the competitive adsorption of OH- 

with methanol.
3.2.7. Stability
Figure 13 shows the chronoamperometry curves for pure NiAc and Ni(II)/CSs to evaluate their stability. The test was 
measured at 0.6 V for 10,000 s in 1.75 M CH3OH and 1.75 M NaOH solution. It can be clearly seen from the figure that 
the current response of Ni(II)/CSs electrode is significantly higher than that of (CH3COO)2Ni electrode, which means the 
Ni(II)/CSs catalyst has higher electrocatalytic activity in methanol oxidation reaction. The high current response at the 
initial stage is due to the double charging process. The rapid current decrease in the following few minutes is caused by 

Figure 11. CVs of Ni(II)/CSs in solutions of 1.5 M NaOH and 
different CH3OH concentrations.

Figure 12. CVs of Ni(II)/CSs in solutions of 1.5 M CH3OH and 
different NaOH concentrations.
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the rapid formation of poisoning intermediates of the methanol oxidation. Then the (CO)ads is eliminated by the surface 
hydroxyl to generate CO2 and the reaction reaches a relatively stable state. As shown in the figure, after a long period of 
testing, the current over the Ni(II)/CSs catalyst keeps high and stable, which proves the highly efficient cocatalysis of 
the surface hydroxyl on the CSs [48]. Therefore, the results indicated that the Ni(II)/CSs have good catalytic activity and 
stability for methanol oxidation.

In addition, the comparison of the methanol oxidation activity between Ni(II)/CSs with the latest reported nickel-
based electrocatalysts is listed in Table [49–54]. Obviously, the methanol oxidation over the NiPt-based alloy catalysts is 
carried out under acidic conditions. Although the catalytic activity of these materials is comparatively low, its advantage 
lies in the lower onset potential. The reaction over non-Pt Ni-based materials is carried out under alkaline solutions. The 
activities of these materials are much higher than that of NiPt-based catalysts, but their onset potentials are comparatively 
high. In comparison with the non-Pt catalysts, the Ni(II)/CSs catalyst has the advantages of high current density, low onset 
potential, and simple and low-cost synthesis method.

4. Conclusion
Reaction time modulation of the hydrothermal carbonization process led to size-controlled growth of CSs ranging from 
approximately 80 to 500 nm in diameter. Ni(II)/CSs were loaded by hydrothermal treatments and used as the anode 
catalyst of direct methanol fuel cell. The results of SEM and TEM show the successful preparation of carbon spheres 
with different particle diameters and the tendency of the increase in particle size and the decrease in overall regularity of 
the carbon spheres after Ni(II) modification. FT-IR spectroscopy and XPS spectroscopy indicate that there were a large 
number of hydroxyl groups on the surface of the catalyst, which can accelerate the elimination of CO intermediates and 
improve the catalytic efficiency. XPS research also shows that nickel exists in the catalyst in the form of divalent nickel ions. 

Figure 13. Chronoamperometric curve of NiAc and Ni(II)/CSs 
in 1.75 M CH3OH and 1.75 M NaOH at 0.60 V vs. Ag/AgCl.

Table. Comparison of Ni(II)/CSs catalyst with other catalysts

Catalyst Electrolyte Current density
(mA/cm2)

Onset potential
(V) References

Ni(II)/CSs 1.75 M NaOH 34.54 mA/cm2 0.3 vs. Ag/AgCl This work
Pt3Ni 0.1 M HClO4 1.21 mA/cm2 0.6 vs. RHE 49
Pt94Ni6UNWs 0.5 M H2SO4 0.968 mA/cm2 0.25 vs. Ag/AgCl 50
Pt@mPtNiCBs 0.5 M H2SO4 1.58 mA/cm2 0.2 vs. Ag/AgCl 51
Ni-BTC 2 M NaOH 27.16 mA/cm2 0.45 vs. Hg/HgO 52
NiO NTs-400 1 M KOH 24.3 mA/cm2 1.33 vs. RHE 53
NiCo2O4/Ni(OH)2 1 M KOH 132 mA/cm2 0.3 vs. Ag/AgCl 54
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The results of cyclic voltammetry showed that compared with the unloaded NiAc, the electrocatalytic efficiency of Ni(II)/
CSs on methanol oxidation was significantly improved. This was mainly due to the synergistic effect of the hydroxyl group 
on the surface of the carbon sphere and Ni(II), which improved the efficient conversion of CO to CO2. The electrochemical 
performance test also showed that the maximum oxidation peak current density reached 34.54 mA/cm2 over the Ni(II)/
CSs catalysts when the nickel content was 5wt% under the electrolyte solution of 1.75 M CH3OH and 1.75 M NaOH, and 
the chronoamperometry test showed that the Ni(II)/CSs had good stability. Therefore, the Ni(II)/CSs catalysts can be used 
as a potential catalysts for the catalytic oxidation of methanol.
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