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Abstract: We give the solution of a classical problem of Approximation Theory on sharp asymptotic of the Lebesgue
constants or norms of the Fourier-Laplace projections on the real projective spaces Pd(R) . In particular, these results
extend sharp asymptotic found by Fejer [2] in the case of S1 in 1910 and by Gronwall [4] in 1914 in the case of S2 . The
case of spheres, Sd , complex and quaternionic projective spaces, Pd(C) , Pd(H) and the Cayley elliptic plane P16(Cay)

was considered by Kushpel [8].
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1. Introduction
Let Pd(R) be the real d -dimensional projective space, ν its normalized volume element, ∆ its Laplace-
Beltrami operator. It is well-known that the eigenvalues θm , m = 2k , k = 0, 1, 2, · · · of ∆ are discrete,
nonnegative, and form an increasing sequence 0 ≤ θ0 ≤ θ2 ≤ · · · ≤ θ2k ≤ · · · with +∞ as the only
accumulation point. Corresponding eigenspaces H2k , are finite dimensional, d2k = dimH2k < ∞ , orthogonal,
and L2(Pd(R), ν) = ⊕∞

2k=0H2k . Let {Y 2k
j }d2k

j=1 be an orthonormal basis of H2k . Let φ be a continuous function

on Pd(R) , φ ∈ C(Pd(R)) with the formal Fourier expansion

φ ∼ c0 +
∑
k∈N

d2k∑
j=1

c2k,j(φ)Y
2k
j , c2k,j(φ) =

∫
Pd(R)

φ Y 2k
j dν.

Consider the sequence of Fourier sums

S2n(φ, x) = c0 +

n∑
k=1

d2k∑
j=1

c2k,j(φ)Y
2k
j (x), n ∈ N.

The main aim of this article is to establish sharp asymptotic for the sequence of Lebesgue constants defined as

L2n

(
Pd(R)

)
:= ∥S2n

∣∣C (Pd(R)
)
→ C

(
Pd(R)

)
∥, n → ∞.

In the case of the circle, S1 , the following result has been found by Fejer [2] in 1910

Ln

(
S1
)
=

1

π

∫ π

−π

|Dn(t)|dt =
4

π2
lnn+O(1), n → ∞,
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where Dn(t) = 1/2 +
∑n

k=1 cos kt is the Dirichlet kernel. In the case of S2 , the two-dimensional unit sphere
in R3 , the estimates of Ln

(
S2
)

have been established by Gronwall [4]. Namely, it was shown that

Ln

(
S2
)
= n1/2 2

π3/2

∫ π

0

√
cot
(η
2

)
dη +O(1)

= n1/2 2
3/2

π1/2
+O(1), n → ∞.

Lebesgue constants on more general manifolds, Md , were considered by Kushpel [8]. Namely, in the case of the
real spheres Sd , d ≥ 3 , complex and quaternionic projective spaces, Pd(C) and Pd(H) respectively, and the
Cayley elliptic plain P16(Cay) it was shown that

Ln

(
Md
)
= K(Md)n(d−1)/2 +O

{
1, d = 2, 3

n(d−3)/2, d ≥ 4

}
,

where

K(Sd) =
2Γ
(
d−1
4

)
Γ
(
d+1
4

)
π3/2

(
Γ
(
d
2

))2 , d = 2, 3, 4, · · · ,

K(Pd(C)) =
2Γ
(
d−1
4

)
Γ
(
3
4

)
π3/2Γ

(
d
2

)
Γ
(
d+2
4

) , d = 4, 6, 8, · · · ,

K(Pd(H)) =
Γ
(
d−1
4

)
πΓ
(
d
2

)
Γ
(
d+5
4

) , d = 8, 12, 16, · · · ,

K(P16(Cay)) =
11 · 21/2

2949120 · π1/2
.

2. Elements of harmonic analysis

The real projective spaces Pd(R) can be obtained by identifying the antipodal points on Sd . This quotient
space of the sphere is homeomorphic with the collection of all lines passing through the origin in Rd . Also,
Pd(R) can be defined as the cosets of the orthogonal group O(d+ 1) , i.e.

Pd(R) =
O(d+ 1)

O(1)×O(d)
.

Let

π : O(d+ 1) → O(d+ 1)

O(1)×O(d)

be the natural mapping and e be the identity of O(d + 1) . The point o = π(e) , which is invariant under
all motions of O(1) × O(d) is called the pole (or the north pole) of Pd(R) . On Pd(R) there is an invariant
Riemannian metric d(·, ·) , an invariant Haar measure dν and an invariant second order differential operator,
the Laplace-Beltrami operator ∆ . A function Z(·) : Pd(R) → R is called zonal if Z(h−1·) = Z(·) for any
h ∈ O(1)×O(d) . For more details see, e.g., Cartan [1], Gangolli [3], and Helgason [5, 6].
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A function on Pd(R) is invariant under the left action of O(1)×O(d) on Pd(R) if and only if it depends
only the distance of its argument from o . Since the distance of any point of Pd(R) from o is at most π/2 ,
it follows that a spherical function Z on Pd(R) can be identified with a function Z̃ on [0, π/2] . Let θ be the
distance of a point from o . We may choose a geodesic polar coordinate system (θ,u) , where u is an angular
parameter. In this coordinate system, the radial part ∆θ of the Laplace-Beltrami operator ∆ has the expression

∆θ =
1

A(θ)

d

dθ

(
A(θ)

d

dθ

)
,

where A(θ) is the area of the sphere of radius θ in Pd(R) . It is interesting to remark that an explicit form
the function A(θ) can be computed using methods of Lie algebras (see Helgason [6], p.251, [5], p.168 for the
details). It can be shown that

A(θ) = ωd(sin θ)
d−1,

where ωd is the area of the unit sphere in Rd . Now we can write the operator ∆θ (up to some numerical
constant) in the form

∆θ =
1

(sin θ)d−1

d

dθ
(sin θ)d−1 d

dθ
.

Using a simple change of variables t = cos θ , this operator takes the form (up to a positive multiple),

∆t = (1− t2)−(d−2)/2 d

dt
(1− t2)d/2

d

dt
. (2.1)

We will need the following statement Szegö [9], p.60:

Lemma 2.1 The Jacobi polynomials y = P
(α,β)
k satisfy the following linear homogeneous differential equation

of the second order:

d

dt
((1− t)α+1(1− t)β+1y

′
) + k(k + α+ β + 1)(1− t)α(1 + t)βy = 0.

Hence, the eigenfunctions of the operator ∆t , which has been defined in (2.1) are well-known Jacobi

polynomials P
(α,β)
k (t) , and the corresponding eigenvalues are θk = −k(k+α+β+1) , where α = β = (d−2)/2 . In

this way, zonal functions on Pd(R) can be easily identified since the elementary zonal functions are eigenfunctions
of the Laplace–Beltrami operator. Note that, on the real projective spaces, Pd(R) , the only polynomials of even
degree, appear because, due to the identification of antipodal points on Sd , only the even order polynomials

P
(α,α)
2k , k = 0, 1, 2, · · · can be lifted to be functions on Pd(R) . Let Z2k , k ∈ N , with Z0 ≡ 1 be a zonal function

corresponding to the eigenvalue θ2k = −2k(2k + d − 1) and Z̃2k be the corresponding functions induced on
[0, π/2] by Z2k . Then, Koornwinder [7],

Z̃2k(θ) = C2k

(
Pd(R)

)
P

((d−2)/2,(d−2)/2)
2k (cos θ). (2.2)

Remark that, for any k ∈ N , the polynomial P ((d−2)/2,(d−2)/2)
k is just a multiple of the Gegenbauer polynomial

P
(d−1)/2
k . A detailed treatment of the Jacobi polynomials can be found in Szegö [9]. In particular, the Jacobi
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polynomials P
(α,β)
k (t) , α > −1, β > −1 are orthogonal with respect to ωα,β(t) = c−1(1 − t)α(1 + t)β on

(−1, 1) . The above constant c can be found using the normalization condition
∫
Pd(R) dν = 1 for the invariant

measure dν on Pd(R) and a well-known formula for the Euler integral of the first kind

B(p , q) =

∫ 1

0

ξp−1(1− ξ)q−1dξ =
Γ(p)Γ(q)

Γ(p+ q)
, p > 0, q > 0. (2.3)

Applying (2.3) and a simple change of variables we get

1 =

∫
Pd(R)

dν =

∫ 1

0

ω(d−2)/2,(d−2)/2(t)dt = c−1

∫ 1

0

(1− t2)(d−2)/2dt,

so that,

c =

∫ 1

0

(1− t2)(d−2)/2dt = 2d−2 (Γ(d/2))
2

Γ(d)
. (2.4)

We normalize the Jacobi polynomials as follows:

P
(α,β)
k (1) =

Γ(k + α+ 1)

Γ(α+ 1)Γ(k + 1)
.

This way of normalization is coming from the definition of Jacoby polynomials using the generating function
Szegö [9], p.69. In particular,

P
((d−2)/2,(d−2)/2)
2k (1) =

Γ(2k + d/2)

Γ(d/2)Γ(2k + 1)
.

The Hilbert space L2(Pd(R)) with usual scalar product

⟨f, g⟩ =
∫
Pd(R)

f(x)g(x)dν(x)

has the decomposition

L2(Pd(R)) =
∞⊕
k=0

H2k,

where H2k is the eigenspace of the Laplace–Beltrami operator corresponding to the eigenvalue θ2k = −2k(2k+

α+β+1) . Let {Y 2k
j }d2k

j=1 be an orthonormal basis of H2k . The following addition formula is known, Koornwinder
[7],

d2k∑
j=1

Y 2k
j (x)Y 2k

j (y) = Z̃2k(cos θ), (2.5)

where θ = d(x, y) or comparing (2.5) with (2.2) we get

d2k∑
j=1

Y 2k
j (x)Y k

j (y) = Z̃k(cos θ) = C2k(Pd(R))P (α,β)
2k (cos θ). (2.6)

See Helgason [5, 6], Cartan [1], Koornwinder [7], and Gangolli [3] for more information concerning the
harmonic analysis on homogeneous spaces.
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3. The result
Theorem 3.1 In our notations

L2n

(
Pd(R)

)
= n(d−1)/2 2Γ

(
d−1
4

)
πΓ
(
d
2

)
Γ
(
d+1
4

) +O

{
n(d−2)/2, d = 2,
n(d−3)/2, d ≥ 3

}
, d = 2, 3, 4, · · · .

Proof We will need an explicit representation for the constant C2k(Pd(R)) defined in (2.6). Putting y = x

in (2.6) and then integrating both sides with respect to dν(x) we get

d2k = dimH2k =

d2k∑
j=1

∫
Pd(R)

|Y 2k
j (x)|2dν(x)

= C2k(Pd(R))P ((d−2)/2,(d−2)/2)
2k (1). (3.1)

Taking the square of both sides of (2.6) and then integrating with respect to dν(x) we find

d2k∑
j=1

|Y 2k
j (y)|2 = C2

2k(Pd(R))
∫
Pd(R)

(
P

((d−2)/2,(d−2)/2)
2k (cos d(x, y))

)2
dν(x). (3.2)

Since dν is shift invariant then∫
Pd(R)

(
P

((d−2)/2,(d−2)/2)
2k (cos(d(x, y)))

)2
dν(x) = c−1

∥∥∥P ((d−2)/2,(d−2)/2)
2k

∥∥∥2
2
,

where the constant c is defined by (2.4) and (see Szegö [9], p.68)

∥∥∥P ((d−2)/2,(d−2)/2)
2k

∥∥∥2
2
=

∫ 1

0

(
P

((d−2)/2,(d−2)/2)
2k (t)

)2
(1− t2)(d−2)/2dt

=
2d−2

4k + d− 1

(Γ(2k + d/2))2

Γ(2k + 1)Γ(2k + d− 1)
.

So that, (3.2) can be written in the form

d2k∑
j=1

|Y 2k
j (y)|2 = c−1C2

2k(Pd(R))
∥∥∥P ((d−2)/2,(d−2)/2)

2k

∥∥∥2
2
.

Integrating the last line with respect to dν(y) we obtain

d2k = c−1C2
2k(Pd(R))

∥∥∥P (α,β)
2k

∥∥∥2
2
.

It is sufficient to compare this with (3.1) to obtain

C2k(Pd(R)) =
cP

((d−2)/2,(d−2)/2)
2k (1)∥∥∥P ((d−2)/2,(d−2)/2)
2k

∥∥∥2
2

. (3.3)
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We get now an integral representation for the Fourier sums S2n(φ, x) of a function φ ∈ L∞(Pd(R)) ,

S2n(φ, x) = c0(φ) +

n∑
k=1

d2k∑
j=1

c2k,j(φ)Y
2k
j (x)

=

∫
Pd(R)

φ(y)Y 0
1 (y)dν(y) +

n∑
k=1

d2k∑
j=1

(∫
Pd(R)

φ(y)Y 2k
j (y)dν(y)

)
Y 2k
j (x)

=

∫
Pd(R)

n∑
k=0

 d2k∑
j=1

Y 2k
j (y)Y 2k

j (x)

φ(y)dν(y)

=

∫
Pd(R)

n∑
k=0

Zx
2k(y)φ(y)dν(y)

=

∫
Pd(R)

K2n(x, y)φ(y)dν(y), (3.4)

where

K2n(x, y) =

n∑
k=0

Zx
2k(y). (3.5)

By (2.2) and (3.3) we have

K2n(x, y) = c

n∑
k=0

P
((d−2)/2,(d−2)/2)
2k (1)∥∥∥P ((d−2)/2,(d−2)/2)
2k

∥∥∥2
2

P
((d−2)/2,(d−2)/2)
2k (cos d(x, y)).

Let us denote

G(α,β)
n (γ, δ) =

n∑
k=0

P
(α,β)
k (γ)P

(α,β)
k (δ)∥∥∥P (α,β)

k

∥∥∥2
2,∗

,

where ∥∥∥P (α,β)
k

∥∥∥2
2,∗

=

∫ 1

−1

(
P

(α,β)
k (t)

)2
(1− t)α(1 + t)βdt

Then by Szegö [9], p.71,

G(α,β)
n (γ, 1) =

n∑
k=0

P
(α,β)
k (γ)P

(α,β)
k (1)∥∥∥P (α,β)

k

∥∥∥2
2,∗

= 2−α−β−1 Γ(n+ α+ β + 2)

Γ(α+ 1)Γ(n+ β + 1)
P (α+1,β)
n (γ). (3.6)

Remark that, Szegö [9],

P
(α,β)
k (γ) = (−1)kP

(β,α)
k (−γ) (3.7)
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for any γ ∈ R and k ∈ N . By the definitions of the norms ∥ · ∥2 and ∥ · ∥2,∗∥∥∥P ((d−2)/2,(d−2)/2)
2k

∥∥∥2
2,∗

= 2
∥∥∥P ((d−2)/2,(d−2)/2)

2k

∥∥∥2
2
, (3.8)

for any k ∈ N since P
((d−1)/2,(d−1)/2)
2k is an even function. Comparing (3.6) - (3.8) we get an explicit

representation for the kernel function (3.5) in the integral representation (3.4), i.e.,

K2n(x, y) = c2−α−β−12
Γ(2n+ α+ β + 2)

Γ(α+ 1)Γ(2n+ β + 1)
× P

(α+1,β)
2n (cos d(x, y)) + P

(β,α+1)
2n (cos d(x, y))

2

= c2−d+1 Γ(2n+ d)

Γ(d/2)Γ(2n+ d/2)
×
(
P

(d/2,(d−2)/2)
2n (cos d(x, y)) + P

((d−2)/2,d/2)
2n (cos d(x, y))

)
(3.9)

since α = β = (d− 2)/2 . It is known, Szegö [9], p.196, that for 0 < η < π ,

P (α,β)
n (cos η) = n−1/2 κ(α,β)(η) cos(Nη + γ) +O(n−3/2), (3.10)

where

κ(α,β)(η) = π−1/2
(
sin

η

2

)−α−1/2 (
cos

η

2

)−β−1/2

,

N = n+
α+ β + 1

2
= n+

d− 1

2
,

and

γ = −α+ 1/2

2
π.

Let η = d(x, y) and o be the north pole of Pd(R) , then from (3.9), (3.10) and since K2n is a zonal function
and dν is shift invariant we get

∥S2n

∣∣C (Pd(R)
)
→ C

(
Pd(R)

)
∥ = sup

{∫
Pd(R)

|K2n(x, y)|dν(y) : x ∈ Pd(R)

}

=

∫
Pd(R)

|K2n(o, y)|dν(y)

=
c2−d+1Γ(2n+ d)

Γ(d/2)Γ(2n+ d/2)
×
∫
Pd(R)

∣∣∣P (d/2,(d−2)/2)
2n (cos(d(o, y))) + P

((d−2)/2,d/2)
2n (cos(d(o, y)))

∣∣∣ dν(y)
=

2−d+1Γ(2n+ d)

Γ(d/2)Γ(2n+ d/2)
In

where

In :=

∫ 1

0

∣∣∣P (d/2,(d−2)/2)
2n (t) + P

((d−2)/2,d/2)
2n (t)

∣∣∣ (1− t2)(d−2)/2dt

=

∫ π/2

0

∣∣∣P (d/2,(d−2)/2)
2n (cos η) + P

((d−2)/2,d/2)
2n (cos η)

∣∣∣ (sin η)d−1dt
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=
2d/2+1/2

π1/2(2n)1/2

∫ π/2

0

(sin η)(d−3)/2

∣∣∣∣cos((2n+
d− 1

2

)
η − (d+ 1)π

4

)∣∣∣∣ dη +O(n−3/2).

Applying a simple Tylor series arguments and an elementary estimates of the derivative of the function
(sin η)(d−3)/2 , we get

In =
2d/2+1

π3/2n1/2

∫ π/2

0

(sin η)(d−3)/2dη +

{
O(n−1/2), d = 2,
O(n−1), d ≥ 3

}
.

2
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