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Abstract: In this paper we consider two subclasses B(p, q, α, β) and B1(p, q, α, β) of p-valently Bazilević functions
defined by higher order derivatives, and we defined and studied some properties of the images of the functions of these
classes by the integral operators In,p and Jn,p for multivalent functions, defined by using higher order derivatives.

Key words: p-valent functions, p-valent starlike and convex functions, Bazilević functions, higher order derivatives,
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1. Introduction
Let us denote by A(p) , p ∈ N := {1, 2, . . . } , the class of multivalent analytic functions of the form

f(z) = zp +

∞∑
k=p+1

akz
k, z ∈ U := {z ∈ C : |z| < 1},

and let A := A(1) .
For 0 ≤ γ < p − q , p > q , p ∈ N , and q ∈ N0 := N ∪ {0} , we say that the function f ∈ A(p) is in the

class S∗p,q(γ) if it satisfies the inequality

Re
zf (1+q)(z)

f (q)(z)
> γ, z ∈ U,

and is in the class Kp,q(γ) if it satisfies

Re

(
1 +

zf (2+q)(z)

f (1+q)(z)

)
> γ, z ∈ U.

The classes S∗p,q(γ) and Kp,q(γ) , were introduced and studied by Aouf [5, 7, 8]. Note that S∗p,0(γ) =: S∗p(γ) and
Kp,0(γ) =: Kp(γ) , which are, respectively, the classes of p -valent starlike and convex functions of order γ , with
0 ≤ γ < p (see Owa [17] and Aouf [1, 2, 10]).
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Definition 1.1 (i) A function f ∈ A(p) is said to be p -valently Bazilević functions defined by higher order
derivative of type α , (α > 0) and order β (0 ≤ β < p− q , p > q ), if there exists a function g ∈ S∗p,q(0) =: S∗p,q
such that

Re

[
zf (1+q)(z)

f (q)(z)

(
f (q)(z)

g(q)(z)

)α
]
> β, z ∈ U,

where the power is the principal one, and we denote by B(p, q, α, β) to the class of such functions.
(ii) Further, let B1(p, q, α, β) ⊂ B(p, q, α, β) the subclass of functions for which g ∈ A(p) , such that

g(q)(z) = δ(p, q)zp−q , and therefore g ∈ S∗p,q , where

δ(p, q) =
p!

(p− q)!
, (p > q).

Remark that for special choices of the parameters we obtain the following previously studied subclasses
of B(p, q, α, β) and B1(p, q, α, β) :

(i) B(p, 0, α, β) =: B(p, α, β) , the class of p -valently Bazilević functions of type α (α > 0) and order β

(0 ≤ β < p) (see Irmak et al. [14], Goswami and Bansal [13], Aouf [6] and Owa [19]);
(ii) B1(p, 0, α, β) =: B1(p, α, β) (see Owa [19] and Aouf [6]);
(iii) B(1, 0, α, β) =: B(α, β) and B1(1, 0, α, β) =: B1(α, β) (see Owa and Obradović [20]);

(iv)B(p, q, 1, β) =: Cp,q(β) =

{
f ∈ A(p) : Re

zf (1+q)(z)

g(q)(z)
> β, z ∈ U, g ∈ S∗p,q

}
(see Aouf [4]), and

Cp,0(β) =: Cp(β) (see Aouf [3, 9]).

2. Integral operator In,pf
(q)

Unless stated otherwise, we assume that α > 0 , p ∈ N , q ∈ N0 , p > q , 0 ≤ β < p − q , z = reiθ ∈ U , and all
the powers are the principal ones.

For f ∈ A(p) , we define the integral operator In,pf
(q) by

I0,pf
(q)(z) :=

(
f (q)(z)

δ(p, q)zp−q

)α

,

and

In,pf
(q)(z) := z−1

∫ 1

0

In−1,pf
(q)(t)dt, n ∈ N.

Note that the integral operator In,pf
(0) =: In,pf (f ∈ A(p)) was studied by Owa [17, 18] and the integral

operator In,1f =: Inf (f ∈ A) was studied by Halenbeck [12], Thomas [25] and Halim and Thomas [11].
For f ∈ A(p) , Owa [19] proved the following result:
Theorem A If f ∈ B1(p, 0, α, β) =: B1(p, α, β) (p ∈ N , α > 0 , 0 ≤ β < p), then

Re In,pf(z) ≥ γn(r) > γn(1), z ∈ U, (n ∈ N0) (2.1)

where
β

p
< γn(r) :=

β

p
+

(
1− β

p

)(
−1 + 2pα

∞∑
k=1

(−1)k+1rk−1

kn(k − 1 + pα)

)
.
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The equality in (2.1) is attained for the function f given by

f(z) =

α

z∫
0

tpα−1

[
β + (p− β)

1− t

1 + t

]
dt


1
α

.

Also, for f ∈ A(p) , Owa [18] proved that:
Theorem B If f ∈ A(p) satisfies

Re

[
zf ′(z)

pf(z)

(
f(z)

zp

)α]
> 0, z ∈ U, (α > 0),

then
Re In,pf(z) ≥ γ̃n(r) > γ̃n(1), z ∈ U, (n ∈ N0) (2.2)

and

0 < γ̃n(r) := −1 + 2pα

∞∑
k=1

(−1)k+1rk−1

kn(k − 1 + pα)
< 1.

The equality in (2.2) is attained for the function f given by

f(z) =

pα

z∫
0

tpα−1

(
1− t

1 + t

)
dt

 1
α

.

The main result regarding this integral operator is the next theorem:

Theorem 2.1 If f ∈ B1(p, q, α, β) , then

Re In,pf
(q)(z) ≥ γn

p,q(r) > γn
p,q(1), z ∈ U, r = |z|, (n ∈ N0) (2.3)

and

β

p− q
< γn

p,q(r) :=
β

p− q
+

(
1− β

p− q

)(
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1rk−1

kn[k − 1 + (p− q)α]

)
. (2.4)

The equality in (2.3) is attained for the function f ∈ A(p) given by

f (q)(z) = δ(p, q)

α

z∫
0

t(p−q)α−1

[
β + (p− q − β)

1− t

1 + t

]
dt


1
α

.

Proof Since f ∈ B1(p, q, α, β) , then we have

Reh(z) >
β

p− q
, z ∈ U,
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where the function h is defined by

h(z) =
f (1+q)(z)

δ(p, q + 1)zp−q−1

(
f (q)(z)

δ(p, q)zp−q

)α−1

, z ∈ U,

and h(0) = 1 . Thus, it is easy to check that

(
f (q)(z)

δ(p, q)zp−q

)α

=
(p− q)α

z(p−q)α

z∫
0

t(p−q)α−1h(t)dt, z ∈ U,

that is

Re I0,pf
(q)(z) = Re

(
f (q)(z)

δ(p, q)zp−q

)α

= Re

 (p− q)α

z(p−q)α

z∫
0

t(p−q)α−1h(t)dt

 , z = reiθ. (2.5)

Substituting t = ρeiθ in (2.5), we have

Re I0,pf
(q)(z) =

(p− q)α

r(p−q)α

r∫
0

ρ(p−q)α−1 Reh
(
ρeiθ

)
dρ, z = reiθ. (2.6)

It is well-known that for q ∈ A , with Re q(z) > 0 for all z ∈ U , (see [16, p. 532]) the next inequality
holds:

Re q(z) ≥ 1− r

1 + r
, |z| = r < 1, (2.7)

therefore

Reh(z) ≥ β

p− q
+

(
1− β

p− q

)
1− r

1 + r
, |z| = r < 1. (2.8)

From (2.6) and (2.8) we obtain

Re I0,pf
(q)(z) ≥ (p− q)α

r(p−q)α

r∫
0

ρ(p−q)α−1

[
β

p− q
+

(
1− β

p− q

)
1− ρ

1 + ρ

]
dρ

=
β

p− q
+

(
1− β

p− q

)−1 +
2(p− q)α

r(p−q)α

r∫
0

ρ(p−q)α−1

1 + ρ
dρ

 , |z| = r < 1. (2.9)

Taking ρ = rφ in (2.9) we deduce

Re I0,pf
(q)(z) ≥ β

p− q
+

(
1− β

p− q

)−1 + 2(p− q)α

1∫
0

φ(p−q)α−1

1 + rφ
dφ

 , |z| = r < 1,

and using that
1∫

0

φ(p−q)α−1

1 + rφ
dφ =

1∫
0

[
φ(p−q)α−1

∞∑
s=0

(−1)srsφs

]
dφ =

∞∑
k=1

(−1)k+1rk−1

(p− q)α+ k − 1
,
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we have

Re I0,pf
(q)(z) ≥ β

p− q
+

(
1− β

p− q

)[
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1rk−1

k − 1 + (p− q)α

]
= γ0

p,q(r), |z| = r < 1.

It easy to see that

Re I1,pf
(q)(z) = Re

1
z

z∫
0

I0,pf
(q)(t)dt

 =
1

r

r∫
0

Re I0,pf
(q)
(
ρeiθ

)
dρ

≥ 1

r

r∫
0

{
β

p− q
+

(
1− β

p− q

)[
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1ρk−1

k − 1 + (p− q)α

]}
dρ

=
β

p− q
+

(
1− β

p− q

)[
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1rk−1

k(k − 1 + (p− q)α)

]
= γ1

p,q(r), |z| = r < 1,

and by mathematical induction, we conclude that

Re In+1,pf
(q)(z) = Re

1
z

z∫
0

In,pf
(q)(t)dt

 =
1

r

r∫
0

Re In,pf
(q)
(
ρeiθ

)
dρ

≥ 1

r

r∫
0

{
β

p− q
+

(
1− β

p− q

)[
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1rk−1

kn[k − 1 + (p− q)α]

]}
dρ

=
β

p− q
+

(
1− β

p− q

)[
−1 + 2(p− q)α

∞∑
k=1

(−1)k+1rk−1

kn(k − 1 + (p− q)α)

]
= γn+1

p,q (r), |z| = r < 1.

If we define the function Φn,α
p,q by

Φn,α
p,q (r) = (p− q)α

∞∑
k=1

(−1)k+1rk−1

kn[k − 1 + (p− q)α]
, 0 < r < 1,

according to the result of Thomas [25, page 20] we get 1

2
< Φn,α

p,q (r) < 1 , and this inequality implies our

conclusion (2.4). Moreover,

rΦn,α
p,q (r) =

r∫
0

Φn−1,α
p,q (ρ)dρ, n ∈ N,

thus
(
Φn,α

p,q (r)
)′

< 0 and γn
p,q(r) decreases with r as r → 1 for fixed n , and increases to 1 when n → ∞ for

fixed r , which completes our proof. 2

Remark 2.2 (i) Taking q = 0 in Theorem 2.1 we obtain Theorem A of Owa [19];
(ii) Putting β = q = 0 in Theorem 2.1 we obtain Theorem B due to Owa [18];
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(iii) Taking β = q = 0 and p = 1 , in Theorem 2.1 we obtain the result of Thomas [25] and Halim and
Thomas [11];

(iv) For β = q = 0 and p = α = 1 , Theorem 2.1 reduces to the result of Hallenbeck [12];
(v) Our result of Theorem 2.1 with (i) q = 0 , (ii) q = β = 0 , (iii) q = β = 0 and α = p−1 (p ∈ N)

improve the results of Owa [19, Lemma 4, Corollaries 3 and 4, respectively].

Putting q = 0 and α = 1 in Theorem 2.1 we get the following special case:

Corollary 2.3 If f ∈ A(p) satisfies

Re
f ′(z)

zp−1
> β, z ∈ U, (0 ≤ β < p)

then
Re In,pf(z) ≥ γn

p (r) > γn
p (1), z ∈ U, r = |z|, (n ∈ N0) (2.10)

and
β

p
< γn

p (r) =
β

p
+

(
1− β

p

)(
−1 + 2p

∞∑
k=1

(−1)k+1rk−1

kn(k − 1 + p)

)
.

The equality in (2.10) is attained for the function

f(z) = zp + 2(p− β)

∞∑
k=1

(−1)k
zp+k

p+ k
.

Remark 2.4 Our result of Corollary 2.3 is an improvement of the result of Saitoh [24, Theorem 1, with j = 1

and Corollary 2], and of Aouf [6, Theorem 2, with α = n = 1 ]

For the special case α =
1

p− q
, (p > q ) Theorem 2.1 reduces to the next special case:

Corollary 2.5 If f ∈ A(p) satisfies

Re

[
f (1+q)(z)

f (q)(z)

(
f (q)(z)

δ(p, q)

) 1
p−q

]
> β, z ∈ U, (0 ≤ β < p− q)

then
Re In,pf

(q)(z) ≥ γn
p,q(r) > γn

p,q(1), z ∈ U, r = |z|, (n ∈ N0) (2.11)

and
β

p− q
< γn

p,q(r) =
β

p− q
+

(
1− β

p− q

)(
−1 + 2

∞∑
k=1

(−1)k+1rk−1

kn+1

)
< 1.

The equality in (2.11) is attained for the function f ∈ A(p) given by

f (q)(z) = δ(p, q)

{(
2β

p− q
− 1

)
z + 2

(
1− β

p− q

)
log(1 + z)

}p−q

.
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Remark 2.6 For the special case q = 0 , the result of Corollary 2.5 is an improvement of the result due to Owa
[19, Corollary 7].

Putting p = 1 and q = 0 in Corollary 2.5 we get:

Corollary 2.7 If f ∈ A satisfies
Re f ′(z) > β, z ∈ U, (0 ≤ β < 1)

then
Re Inf(z) ≥ γn(r) > γn(1), z ∈ U, r = |z|, (n ∈ N0) (2.12)

and

β < γn(r) = β + (1− β)

(
−1 + 2

∞∑
k=1

(−1)k+1rk−1

kn+1

)
.

The equality in (2.12) is attained for the function

f(z) = (2β − 1)z + 2 (1− β) log(1 + z).

Remark 2.8 (i) The result of Corollary 2.7 was also obtained by Owa [19, Corollary 8], Hallenbeck [12, with
n = β = 0 ], Ling et al. [15, Corollary 3], and Patel and Rout [21, Corollary 3];

(ii) The above corollary improve the results of Owa and Obradović [20, Theorem 4 with α = 1 and
Corollary 4], Saitoh [23, Corollary 3], Saitoh [24, Corollary 8 with λ = 1 ], and Ponnusamy and Karunakran
[22, with k = m = 1 ].

3. Integral operator Jnf
(q)

For f ∈ A(p) , we define the integral operator

J0f
(q)(z) :=

f (q)(z)

δ(p, q)zp−q
,

and

Jnf
(q)(z) :=

a+ 1

za+1

z∫
0

taJn−1f
(q)(t)dt, (a > −1, n ∈ N).

For the operator Jnf
(q) we obtained the next result:

Theorem 3.1 If f ∈ A(p) satisfies

Re
f (q)(z)

δ(p, q)zp−q
> α, z ∈ U, (α < 1),

then
Re Jnf

(q)(z) ≥ γn(r) > γn(1), z ∈ U, r = |z|, (n ∈ N0) (3.1)
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and

0 < γn(r) := 1 + 2(a+ 1)n(1− α)

∞∑
k=1

(−r)k

(k + a+ 1)n
< 1.

The equality in (3.1) is attained for the function f ∈ A(p) given by

f (q)(z) = δ(p, q)zp−q

[
α+ (1− α)

1− z

1 + z

]
.

Proof For n = 0 the implication is trivial. For n = 1 , if we denote

g(z) =
1

α

[
f (q)(z)

δ(p, q)zp−q
− α

]
, z ∈ U,

then, from our assumption we have Re g(z) > 0 , z ∈ U , and g(0) = 1 . Using the inequality (2.7) for the
function g and letting z = reiθ and t = ρeiθ , for a > −1 we get

Re J1f
(q)(z) = Re

a+ 1

za+1

z∫
0

taJ0f
(q)(t)dt

 ≥ a+ 1

ra+1

r∫
0

ρa
[
α+ (1− α)

1− ρ

1 + ρ

]
dρ

=
a+ 1

ra+1

r∫
0

ρa

[
1 + 2(1− α)

∞∑
k=1

(−ρ)k

]
dρ = 1 +

2(a+ 1)(1− α)

ra+1

r∫
0

∞∑
k=1

(−1)kρk+adρ

= 1 + 2(a+ 1)(1− α)

∞∑
k=1

(−r)k

k + a+ 1
, |z| = r,

thus (3.1) holds for n = 1 . Further, assuming that (3.1) holds for a fixed n ∈ N , we have

Re Jn+1f
(q)(z) = Re

a+ 1

za+1

z∫
0

taJnf
(q)(t)dt

 =
a+ 1

ra+1

r∫
0

ρa Re Jnf
(q)
(
ρeiθ

)
dρ

≥ a+ 1

ra+1

r∫
0

(
ρa + 2(a+ 1)n(1− α)

∞∑
k=1

(−1)kρk+a

(k + a+ 1)n

)
dρ

= 1 + 2(a+ 1)n+1(1− α)

∞∑
k=1

(−r)k

(k + a+ 1)n+1
= γn+1(r), |z| = r.

Moreover, it is easy to see that 0 < γn < 1 , which completes our proof. 2

Taking α =
p− q

p− q + β
, (p > q, β > 0) in the above theorem we get the next special case:

Corollary 3.2 If f ∈ A(p) satisfies

Re
f (q)(z)

δ(p, q)zp−q
>

p− q

p− q + β
, z ∈ U, (β > 0),
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then
Re Jnf

(q)(z) ≥ γn(r) > γn(1), z ∈ U, r = |z|, (n ∈ N0) (3.2)

and

0 < γn(r) := 1 +
2β(a+ 1)n

p− q + β

∞∑
k=1

(−r)k

(k + a+ 1)n
< 1.

The equality in (3.2) is attained for the function f ∈ A(p) given by

f (q)(z) =
δ(p, q)zp−q

p− q + β

1 + β + (1− β)z

1 + z
.

Remark 3.3 Putting q = 0 in Theorem 3.1 and in Corollary 3.2 we obtain the results of Owa [18, Theorem 2
and Corollary 4] and Owa [19, Theorem 2 and Corollary 10].
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