Notes on multivalent Bazilevic functions defined by higher order derivatives

MOHAMED K. AOUF
ADELA O. MOSTAFA
TEODOR BULBOACA

Follow this and additional works at: https://journals.tubitak.gov.tr/math

Part of the Mathematics Commons

Recommended Citation
AOUF, MOHAMED K.; MOSTAFA, ADELA O.; and BULBOACA, TEODOR (2021) "Notes on multivalent Bazilevic functions defined by higher order derivatives," Turkish Journal of Mathematics: Vol. 45: No. 2, Article 1. https://doi.org/10.3906/mat-1911-6
Available at: https://journals.tubitak.gov.tr/math/vol45/iss2/1

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Mathematics by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Notes on multivalent Bazilević functions defined by higher order derivatives

Mohamed K. AOUF¹,*, Adela O. MOSTAFA¹, Teodor BULBOACĂ²
¹Department of Mathematics, Faculty of Science, Mansoura University, Mansoura, Egypt
²Faculty of Mathematics and Computer Science, Babeş-Bolyai University, Cluj-Napoca, Romania

Received: 02.11.2019 • Accepted/Published Online: 09.03.2020 • Final Version: 26.03.2021

Abstract: In this paper we consider two subclasses $\mathcal{B}(p,q,\alpha,\beta)$ and $\mathcal{B}_1(p,q,\alpha,\beta)$ of p-valently Bazilević functions defined by higher order derivatives, and we defined and studied some properties of the images of the functions of these classes by the integral operators $I_{n,p}$ and $J_{n,p}$ for multivalent functions, defined by using higher order derivatives.

Key words: p-valent functions, p-valent starlike and convex functions, Bazilević functions, higher order derivatives, integral operator

1. Introduction

Let us denote by $\mathcal{A}(p)$, $p \in \mathbb{N} := \{1,2,\ldots\}$, the class of multivalent analytic functions of the form

$$f(z) = z^p + \sum_{k=p+1}^{\infty} a_k z^k, \quad z \in \mathbb{U} := \{z \in \mathbb{C} : |z| < 1\},$$

and let $\mathcal{A} := \mathcal{A}(1)$.

For $0 \leq \gamma < p - q$, $p > q$, $p \in \mathbb{N}$, and $q \in \mathbb{N}_0 := \mathbb{N} \cup \{0\}$, we say that the function $f \in \mathcal{A}(p)$ is in the class $\mathcal{S}_{p,q}(\gamma)$ if it satisfies the inequality

$$\text{Re} \left(\frac{zf^{(1+q)}(z)}{f^{(q)}(z)} \right) > \gamma, \quad z \in \mathbb{U},$$

and is in the class $\mathcal{K}_{p,q}(\gamma)$ if it satisfies

$$\text{Re} \left(1 + \frac{zf^{(2+q)}(z)}{f^{(1+q)}(z)} \right) > \gamma, \quad z \in \mathbb{U}.$$

The classes $\mathcal{S}_{p,q}^*(\gamma)$ and $\mathcal{K}_{p,q}(\gamma)$, were introduced and studied by Aouf [5, 7, 8]. Note that $\mathcal{S}_{p,0}^*(\gamma) =: \mathcal{S}_p^*(\gamma)$ and $\mathcal{K}_{p,0}(\gamma) =: \mathcal{K}_p(\gamma)$, which are, respectively, the classes of p-valent starlike and convex functions of order γ, with $0 \leq \gamma < p$ (see Owa [17] and Aouf [1, 2, 10]).

*Correspondence: mkaouf127@yahoo.com

2010 AMS Mathematics Subject Classification: 30C45

This work is licensed under a Creative Commons Attribution 4.0 International License.
Definition 1.1 (i) A function \(f \in \mathcal{A}(p) \) is said to be \(p \)-valently Bazilević functions defined by higher order derivative of type \(\alpha \) (\(\alpha > 0 \)) and order \(\beta \) (\(0 \leq \beta < p - q, \ p > q \)), if there exists a function \(g \in S_{p,q}^*(0) =: S_{p,q}^* \) such that

\[
\Re \left[\frac{z f^{(1+q)}(z)}{f^{(q)}(z)} \left(\frac{f^{(q)}(z)}{g^{(q)}(z)} \right)^\alpha \right] > \beta, \ z \in \mathbb{U},
\]

where the power is the principal one, and we denote by \(B(p,q,\alpha,\beta) \) to the class of such functions.

(ii) Further, let \(B_1(p,q,\alpha,\beta) \subseteq B(p,q,\alpha,\beta) \) the subclass of functions for which \(g \in \mathcal{A}(p) \), such that \(g^{(q)}(z) = \delta(p,q)z^{p-q} \), and therefore \(g \in S_{p,q}^* \), where

\[
\delta(p,q) = \frac{p^!}{(p-q)^!}, \ (p > q).
\]

Remark that for special choices of the parameters we obtain the following previously studied subclasses of \(B(p,q,\alpha,\beta) \) and \(B_1(p,q,\alpha,\beta) \):

(i) \(B(p,0,\alpha,\beta) := B(p,\alpha,\beta) \), the class of \(p \)-valently Bazilević functions of type \(\alpha \) (\(\alpha > 0 \)) and order \(\beta \) (\(0 \leq \beta < p \)) (see Irmak et al. [14], Goswami and Bansal [13], Aouf [6] and Owa [19]);

(ii) \(B_1(p,0,\alpha,\beta) := B_1(p,\alpha,\beta) \) (see Owa [19] and Aouf [6]);

(iii) \(B(1,0,\alpha,\beta) := B(\alpha,\beta) \) and \(B_1(1,0,\alpha,\beta) := B_1(\alpha,\beta) \) (see Owa and Obradović [20]);

(iv) \(B(p,q,1,\beta) := C_{p,q}(\beta) = \left\{ f \in \mathcal{A}(p) : \Re \left[\frac{z f^{(1+q)}(z)}{g^{(q)}(z)} \right] > \beta, \ z \in \mathbb{U}, \ g \in S_{p,q}^* \right\} \) (see Aouf [4]), and \(C_{p,0}(\beta) := C_p(\beta) \) (see Aouf [3, 9]).

2. Integral operator \(I_{n,p}f^{(q)} \)

Unless stated otherwise, we assume that \(\alpha > 0, \ p \in \mathbb{N}, \ q \in \mathbb{N}_0, \ p > q, \ 0 \leq \beta < p - q, \ z = re^{i\theta} \in \mathbb{U}, \) and all the powers are the principal ones.

For \(f \in \mathcal{A}(p) \), we define the integral operator \(I_{n,p}f^{(q)} \) by

\[
I_{0,p}f^{(q)}(z) := \left(\frac{f^{(q)}(z)}{\delta(p,q)z^{p-q}} \right)^\alpha,
\]

and

\[
I_{n,p}f^{(q)}(z) := z^{-1} \int_0^1 I_{n-1,p}f^{(q)}(t)dt, \ n \in \mathbb{N}.
\]

Note that the integral operator \(I_{n,p}f^{(0)} := I_{n,p}f \) (\(f \in \mathcal{A}(p) \)) was studied by Owa [17, 18] and the integral operator \(I_{n,1}f := I_nf \) (\(f \in \mathcal{A} \)) was studied by Halenbeck [12], Thomas [25] and Halim and Thomas [11].

For \(f \in \mathcal{A}(p) \), Owa [19] proved the following result:

Theorem A If \(f \in B_1(p,0,\alpha,\beta) := B_1(p,\alpha,\beta) \) (\(p \in \mathbb{N}, \ \alpha > 0, \ 0 \leq \beta < p \)), then

\[
\Re I_{n,p}f(z) \geq \gamma_n(r) > \gamma_n(1), \ z \in \mathbb{U}, \ (n \in \mathbb{N}_0)
\]

where

\[
\beta \leq \frac{\beta}{p} < \frac{\beta}{p} + \left(1 - \frac{\beta}{p} \right) \left(-1 + 2p\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}p^{k-1}}{k^n(k - 1 + p\alpha)} \right).
\]

625
The equality in (2.1) is attained for the function f given by

$$f(z) = \left\{ \alpha \int_0^z t^{p\alpha - 1} \left[\beta + (p - \beta) \frac{1 - t}{1 + t} \right] dt \right\}^{\frac{1}{\alpha}}.$$

Also, for $f \in \mathcal{A}(p)$, Owa [18] proved that:

Theorem B If $f \in \mathcal{A}(p)$ satisfies

$$\text{Re} \left\{ \frac{zf'(z)}{pf(z)} \left(\frac{f(z)}{2^p} \right)^{\alpha} \right\} > 0, \quad z \in \mathbb{U}, \quad (\alpha > 0),$$

then

$$\text{Re} I_{n,p,f}(z) \geq \gamma_n(r) > \gamma_n(1), \quad z \in \mathbb{U}, \quad (n \in \mathbb{N}_0) \quad (2.2)$$

and

$$0 < \gamma_n(r) := -1 + 2p\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k^n(k - 1 + p\alpha)} < 1.$$

The equality in (2.2) is attained for the function f given by

$$f(z) = \left(p\alpha \int_0^z t^{p\alpha - 1} \left(\frac{1 - t}{1 + t} \right) dt \right)^{\frac{1}{\alpha}}.$$

The main result regarding this integral operator is the next theorem:

Theorem 2.1 If $f \in B_1(p,q,\alpha,\beta)$, then

$$\text{Re} I_{n,p,f^{(q)}}(z) \geq \gamma_{p,q}^n(r) > \gamma_{p,q}^n(1), \quad z \in \mathbb{U}, \quad r = |z|, \quad (n \in \mathbb{N}_0) \quad (2.3)$$

and

$$\frac{\beta}{p - q} < \gamma_{p,q}^n(r) := \frac{\beta}{p - q} + \left(1 - \frac{\beta}{p - q} \right) \left(-1 + 2(p - q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k^n[k - 1 + (p - q)\alpha]} \right). \quad (2.4)$$

The equality in (2.3) is attained for the function $f \in \mathcal{A}(p)$ given by

$$f^{(q)}(z) = \delta(p,q) \left\{ \alpha \int_0^z t^{(p-q)\alpha - 1} \left[\beta + (p - q - \beta) \frac{1 - t}{1 + t} \right] dt \right\}^{\frac{1}{\alpha}}.$$

Proof Since $f \in B_1(p,q,\alpha,\beta)$, then we have

$$\text{Re} h(z) > \frac{\beta}{p - q}, \quad z \in \mathbb{U},$$

626
where the function h is defined by

$$h(z) = \frac{f^{(1+q)}(z)}{\delta(p, q + 1)z^{p-q-1}} \left(\frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} \right)^{\alpha-1}, \quad z \in \mathbb{U},$$

and $h(0) = 1$. Thus, it is easy to check that

$$\left(\frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} \right)^{\alpha} = \frac{(p-q)\alpha}{z^{(p-q)\alpha}} \int_{0}^{z} t^{(p-q)\alpha-1} h(t)dt, \quad z \in \mathbb{U},$$

that is

$$\text{Re} \int_{0}^{r} f^{(q)}(z) = \text{Re} \left(\frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} \right)^{\alpha} = \text{Re} \left[\frac{(p-q)\alpha}{z^{(p-q)\alpha}} \int_{0}^{z} t^{(p-q)\alpha-1} h(t)dt \right], \quad z = re^{i\theta}. \quad (2.5)$$

Substituting $t = re^{i\theta}$ in (2.5), we have

$$\text{Re} \int_{0}^{r} f^{(q)}(z) = \frac{(p-q)\alpha}{r^{(p-q)\alpha}} \int_{0}^{r} r^{(p-q)\alpha-1} \text{Re} h (re^{i\theta}) d\rho, \quad z = re^{i\theta}. \quad (2.6)$$

It is well-known that for $q \in \mathcal{A}$, with $\text{Re} q(z) > 0$ for all $z \in \mathbb{U}$, (see [16, p. 532]) the next inequality holds:

$$\text{Re} q(z) \geq \frac{1-r}{1+r}, \quad |z| = r < 1, \quad (2.7)$$

therefore

$$\text{Re} h(z) \geq \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q} \right) \frac{1-r}{1+r}, \quad |z| = r < 1. \quad (2.8)$$

From (2.6) and (2.8) we obtain

$$\text{Re} \int_{0}^{r} f^{(q)}(z) \geq \frac{(p-q)\alpha}{r^{(p-q)\alpha}} \int_{0}^{r} r^{(p-q)\alpha-1} \left[\frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q} \right) \frac{1-r}{1+r} \right] d\rho$$

$$= \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q} \right) \left[-1 + \frac{2(p-q)\alpha}{r^{(p-q)\alpha}} \int_{0}^{r} r^{(p-q)\alpha-1} d\rho \right], \quad |z| = r < 1. \quad (2.9)$$

Taking $\rho = r\varphi$ in (2.9) we deduce

$$\text{Re} \int_{0}^{r} f^{(q)}(z) \geq \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q} \right) \left[-1 + 2(p-q)\alpha \int_{0}^{1} \frac{\varphi^{(p-q)\alpha-1}}{1 + r\varphi} d\varphi \right], \quad |z| = r < 1,$$

and using that

$$\int_{0}^{1} \frac{\varphi^{(p-q)\alpha-1}}{1 + r\varphi} d\varphi = \int_{0}^{1} \left[\varphi^{(p-q)\alpha-1} \sum_{s=0}^{\infty} (-1)^{s} r^{s} \varphi^{s} \right] d\varphi = \sum_{k=1}^{\infty} \frac{(-1)^{k+1} r^{k-1}}{(p-q)\alpha + k - 1},$$

627
we have
\[
\text{Re} I_{n,p,f(q)}(z) \geq \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left[-1 + 2(p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k-1 + (p-q)\alpha}\right] = \gamma_{p,q}^0(r), \ |z| = r < 1.
\]

It easy to see that
\[
\text{Re} I_{n+1,p,f(q)}(z) = \text{Re} \left[\frac{1}{z} \int_0^r I_{n,p,f(q)}(t)dt\right] = \frac{1}{r} \int_0^r \text{Re} I_{n,p,f(q)}(\rho e^{i\theta})d\rho
\]
\[
\geq \frac{1}{r} \int_0^r \left\{ \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left[-1 + 2(p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k-1 + (p-q)\alpha}\right]\right\} d\rho
\]
\[
= \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left[-1 + 2(p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k(k-1 + (p-q)\alpha)}\right] = \gamma_{p,q}^{n+1}(r), \ |z| = r < 1.
\]

and by mathematical induction, we conclude that
\[
\text{Re} I_{n+1,p,f(q)}(z) = \text{Re} \left[\frac{1}{z} \int_0^r I_{n,p,f(q)}(t)dt\right] = \frac{1}{r} \int_0^r \text{Re} I_{n,p,f(q)}(\rho e^{i\theta})d\rho
\]
\[
\geq \frac{1}{r} \int_0^r \left\{ \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left[-1 + 2(p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k(k-1 + (p-q)\alpha)}\right]\right\} d\rho
\]
\[
= \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left[-1 + 2(p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k(k-1 + (p-q)\alpha)}\right] = \gamma_{p,q}^{n+1}(r), \ |z| = r < 1.
\]

If we define the function \(\Phi_{p,q}^{n,\alpha}\) by
\[
\Phi_{p,q}^{n,\alpha}(r) = (p-q)\alpha \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k(k-1 + (p-q)\alpha)}, \ 0 < r < 1,
\]
according to the result of Thomas [25, page 20] we get \(\frac{1}{2} < \Phi_{p,q}^{n,\alpha}(r) < 1\), and this inequality implies our conclusion (2.4). Moreover,
\[
r\Phi_{p,q}^{n,\alpha}(r) = \int_0^r \Phi_{p,q}^{n-1,\alpha}(\rho)d\rho, \ n \in \mathbb{N},
\]
thus \((\Phi_{p,q}^{n,\alpha}(r))^\prime < 0\) and \(\gamma_{p,q}^{n}(r)\) decreases with \(r\) as \(r \to 1\) for fixed \(n\), and increases to 1 when \(n \to \infty\) for fixed \(r\), which completes our proof.

Remark 2.2 (i) Taking \(q = 0\) in Theorem 2.1 we obtain Theorem A of Owa [19];

(ii) Putting \(\beta = q = 0\) in Theorem 2.1 we obtain Theorem B due to Owa [18];

628
Taking $\beta = q = 0$ and $p = 1$, in Theorem 2.1 we obtain the result of Thomas [25] and Halim and Thomas [11];

For $\beta = q = 0$ and $p = 1$, Theorem 2.1 reduces to the result of Hallenbeck [12];

Our result of Theorem 2.1 with (i) $q = 0$, (ii) $q = \beta = 0$, (iii) $q = \beta = 0$ and $\alpha = p^{-1}$ ($p \in \mathbb{N}$) improve the results of Owa [19, Lemma 4, Corollaries 3 and 4, respectively].

Putting $q = 0$ and $\alpha = 1$ in Theorem 2.1 we get the following special case:

Corollary 2.3 If $f \in \mathcal{A}(p)$ satisfies

$$\text{Re} \frac{f'(z)}{z^{p-1}} > \beta, \ z \in \mathbb{U}, \ (0 \leq \beta < p)$$

then

$$\text{Re} I_{n,p}f(z) \geq \gamma_n^p(r) > \gamma_n^p(1), \ z \in \mathbb{U}, \ r = |z|, \ (n \in \mathbb{N}_0) \quad (2.10)$$

and

$$\frac{\beta}{p} < \gamma_n^p(r) = \frac{\beta}{p} + \left(1 - \frac{\beta}{p}\right) \left(-1 + 2p \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k^n(k-1+p)}\right).$$

The equality in (2.10) is attained for the function

$$f(z) = z^p + 2(p - \beta) \sum_{k=1}^{\infty} (-1)^k \frac{z^{p+k}}{p+k}.$$

Remark 2.4 Our result of Corollary 2.3 is an improvement of the result of Saitoh [24, Theorem 1, with $j = 1$ and Corollary 2], and of Aouf [6, Theorem 2, with $\alpha = n = 1$]

For the special case $\alpha = \frac{1}{p-q}$; ($p > q$) Theorem 2.1 reduces to the next special case:

Corollary 2.5 If $f \in \mathcal{A}(p)$ satisfies

$$\text{Re} \left[\frac{f^{(1+q)}(z)}{f^{(q)}(z)} \left(\frac{f^{(q)}(z)}{\delta(p,q)}\right)^{\frac{1}{p-q}} \right] > \beta, \ z \in \mathbb{U}, \ (0 \leq \beta < p-q)$$

then

$$\text{Re} I_{n,p}f^{(q)}(z) \geq \gamma_{p,q}^n(r) > \gamma_{p,q}^n(1), \ z \in \mathbb{U}, \ r = |z|, \ (n \in \mathbb{N}_0) \quad (2.11)$$

and

$$\frac{\beta}{p-q} < \gamma_{p,q}^n(r) = \frac{\beta}{p-q} + \left(1 - \frac{\beta}{p-q}\right) \left(-1 + 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1}r^{k-1}}{k^{n+1}}\right) < 1.$$

The equality in (2.11) is attained for the function $f \in \mathcal{A}(p)$ given by

$$f^{(q)}(z) = \delta(p,q) \left\{ \left(\frac{2\beta}{p-q} - 1\right) z + 2 \left(1 - \frac{\beta}{p-q}\right) \log(1 + z) \right\}^{p-q}.$$
Remark 2.6 For the special case \(q = 0 \), the result of Corollary 2.5 is an improvement of the result due to Owa [19, Corollary 7].

Putting \(p = 1 \) and \(q = 0 \) in Corollary 2.5 we get:

Corollary 2.7 If \(f \in \mathcal{A} \) satisfies
\[
\text{Re} f'(z) > \beta, \ z \in \mathbb{U}, \ (0 \leq \beta < 1)
\]
then
\[
\text{Re} I_n f(z) \geq \gamma_n(r) > \gamma_n(1), \ z \in \mathbb{U}, \ r = |z|, \ (n \in \mathbb{N}_0)
\]
and
\[
\beta < \gamma_n(r) = \beta + (1 - \beta) \left(-1 + 2 \sum_{k=1}^{\infty} \frac{(-1)^{k+1} r^{k-1}}{k^{n+1}} \right).
\]
The equality in (2.12) is attained for the function
\[
f(z) = (2\beta - 1)z + 2(1 - \beta) \log(1 + z).
\]

Remark 2.8 (i) The result of Corollary 2.7 was also obtained by Owa [19, Corollary 8], Hallenbeck [12, with \(n = \beta = 0 \)], Ling et al. [15, Corollary 3], and Patel and Rout [21, Corollary 3];

(ii) The above corollary improve the results of Owa and Obradović [20, Theorem 4 with \(\alpha = 1 \) and Corollary 4], Saitoh [23, Corollary 3], Saitoh [24, Corollary 8 with \(\lambda = 1 \)], and Ponnusamy and Karunakran [22, with \(k = m = 1 \)].

3. Integral operator \(J_n f^{(q)} \)

For \(f \in \mathcal{A}(p) \), we define the integral operator
\[
J_0 f^{(q)}(z) := \frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}},
\]
and
\[
J_n f^{(q)}(z) := \frac{a + 1}{z^{a+1}} \int_0^z t^a J_{n-1} f^{(q)}(t) dt, \ (a > -1, \ n \in \mathbb{N}).
\]

For the operator \(J_n f^{(q)} \) we obtained the next result:

Theorem 3.1 If \(f \in \mathcal{A}(p) \) satisfies
\[
\text{Re} \frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} > \alpha, \ z \in \mathbb{U}, \ (\alpha < 1),
\]
then
\[
\text{Re} J_n f^{(q)}(z) \geq \gamma_n(r) > \gamma_n(1), \ z \in \mathbb{U}, \ r = |z|, \ (n \in \mathbb{N}_0)
\]
and

\[0 < \gamma_n(r) := 1 + 2(a + 1)^n(1 - \alpha) \sum_{k=1}^{\infty} \frac{(-r)^k}{(k + a + 1)^n} < 1. \]

The equality in (3.1) is attained for the function \(f \in A(p) \) given by

\[f^{(q)}(z) = \delta(p, q)z^{p-q} \left[\alpha + (1 - \alpha) \frac{1 - z}{1 + z} \right]. \]

Proof For \(n = 0 \) the implication is trivial. For \(n = 1 \), if we denote

\[g(z) = \frac{1}{\alpha} \left[\frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} - \alpha \right], \quad z \in \mathbb{U}, \]

then, from our assumption we have \(\text{Re} g(z) > 0, \quad z \in \mathbb{U}, \) and \(g(0) = 1 \). Using the inequality (2.7) for the function \(g \) and letting \(z = re^{i\theta} \) and \(t = \rho e^{i\theta} \), for \(a > -1 \) we get

\[
\text{Re} J_{n+1} f^{(q)}(z) = \text{Re} \left(\frac{a+1}{\rho^{a+1}} \int_0^r \frac{t^a J_n f^{(q)}(t) dt}{\rho^{a+1}} \right) \geq \frac{a+1}{\rho^{a+1}} \int_0^r \rho^a \left[\alpha + (1 - \alpha) \frac{1 - \rho}{1 + \rho} \right] d\rho \\
= \frac{a+1}{\rho^{a+1}} \int_0^r \rho^a \left[1 + 2(1 - \alpha) \sum_{k=1}^{\infty} (-\rho)^k \right] d\rho = 1 + \frac{2(a+1)(1-\alpha)}{r^{a+1}} \int_0^r \sum_{k=1}^{\infty} (-1)^k \rho^{k+a} d\rho \\
= 1 + 2(a + 1)(1 - \alpha) \sum_{k=1}^{\infty} \frac{(-r)^k}{k + a + 1}, \quad |z| = r,
\]

thus (3.1) holds for \(n = 1 \). Further, assuming that (3.1) holds for a fixed \(n \in \mathbb{N} \), we have

\[
\text{Re} J_{n+1} f^{(q)}(z) = \text{Re} \left(\frac{a+1}{\rho^{a+1}} \int_0^r \frac{t^a J_n f^{(q)}(t) dt}{\rho^{a+1}} \right) = \frac{a+1}{\rho^{a+1}} \int_0^r \rho^a \text{Re} J_n f^{(q)} (\rho e^{i\theta}) d\rho \\
\geq \frac{a+1}{\rho^{a+1}} \int_0^r \rho^a + 2(a + 1)^n(1 - \alpha) \sum_{k=1}^{\infty} \frac{(-1)^k \rho^{k+a}}{(k + a + 1)^n} d\rho \\
= 1 + 2(a + 1)^{n+1}(1 - \alpha) \sum_{k=1}^{\infty} \frac{(-r)^k}{(k + a + 1)^{n+1}} \gamma_{n+1}(r), \quad |z| = r.
\]

Moreover, it is easy to see that \(0 < \gamma_n < 1 \), which completes our proof. \(\square \)

Taking \(\alpha = \frac{p-q}{p-q+\beta} \), \(p > q, \beta > 0 \) in the above theorem we get the next special case:

Corollary 3.2 If \(f \in A(p) \) satisfies

\[\text{Re} \frac{f^{(q)}(z)}{\delta(p, q)z^{p-q}} = \frac{p-q}{p-q+\beta}, \quad z \in \mathbb{U}, \quad (\beta > 0), \]

631
then
\[\text{Re} J_n f^{(q)}(z) \geq \gamma_n(r) > \gamma_n(1), \quad z \in \mathbb{U}, \quad r = |z|, \quad (n \in \mathbb{N}_0) \tag{3.2} \]
and
\[0 < \gamma_n(r) := 1 + \frac{2\beta(a+1)^n}{p - q + \beta} \sum_{k=1}^{\infty} \frac{(-r)^k}{(k+a+1)^n} < 1. \]

The equality in (3.2) is attained for the function \(f \in \mathcal{A}(p) \) given by
\[f^{(q)}(z) = \frac{\delta(p,q)z^{p-q} - 1 + \beta + (1 - \beta)z}{1 + z}. \]

Remark 3.3 Putting \(q = 0 \) in Theorem 3.1 and in Corollary 3.2 we obtain the results of Owa [18, Theorem 2 and Corollary 4] and Owa [19, Theorem 2 and Corollary 10].

References

