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(Malekzadeh-Shafaroudi and Karimpour, 2015) and to the 
Goloujeh district of NW Iran (Mehrabi et al., 2016). The 
light sulfur isotope values could be the result of changes in 
the oxidation state due to hydrothermal fluid boiling and 
selective oxidation of H2

34S, as observed in Valles Caldera 
(McKibben and Eldridge, 1990), the Fakos Peninsula 
(Fornadel et al., 2012), and Kuh-Pang (Rajabpour et al., 
2017). Deposition of specular hematite in quartz veins 
and bladed calcite (now replaced by pyrite), simultaneous 
with chalcopyrite mineralization, can be taken as evidence 
of the role of boiling in the formation of this deposit 
(Simmons and Christenson, 1994; Hedenquist et al., 2000; 
Leach and Corbett, 2008; Hanilçi et al., 2015; Wang et 
al., 2019). On the other hand, Leach and Corbett (2008) 
pointed out that the formation of some minerals such as 
hematite, kaolinite, and carbonates may suggest the mixing 
of magmatic-sourced fluids with oxidized meteoric waters.

7.2. Sulfur isotope geothermometry 
Three sphalerite-galena pairs (from stage 4), showing three 
different types of textural relationships, were analyzed to 
determine equilibrium isotope temperatures. Sample Qo5 
from the banded ore, sample L5-2 from the brecciated 
ore where clasts of sulfide ore minerals are cemented by 
quartz, and sample L8-3-2 from the massive ore were 
analyzed. Mineral pairs in all samples show equilibrium 
boundaries under the microscope. The sphalerite-galena 
pairs from Zehabad, using the equations from Ohmoto 
and Rye (1979), yielded temperatures from 276 to 288 ± 20 
°C, which fall within the typical formation temperatures 
of IS epithermal deposits (Sillitoe and Hedenquist, 2003). 
7.3. Ore deposition processes and mineralization type
Upon brecciation and fracturing, hydrothermal fluids may 
undergo boiling due to sudden pressure drop; gaseous 

Figure 14. Carbonatization: A) calcite vein in andesitic tuff; B) open space filling texture of rhodochrosite; C) early lead-
zinc mineralization cross-cut and brecciated by quartz-calcite vein in argillized dacitic tuff. Cal: calcite, Qz: quartz, K-Fsp: 
K-feldspar, Rds: rhodochrosite.
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phases such as CO2 and H2S leave the system, leading 
to precipitation of chalcedony, bladed calcite, and gold 
(Buchanan, 1981; Henley, 1984; Hedenquist et al., 2000; 
Poliquin, 2004; Gülyuz et al., 2018). Gold precipitation 
occurs at this stage, and then the ƒO2 decreases and sulfide 
minerals form as fracture fillings. It seems that bladed 
crystals of pyrite fill the bladed calcite casts by replacing 
them and depositing immediately after boiling. 

According to Sillitoe and Hedenquist (2003), based on 
the sulfidation state of the hypogene sulfide assemblages, 
epithermal deposits are divided into three types: high 
sulfidation (HS), intermediate sulfidation (IS), and low 
sulfidation (LS). 

The Zehabad deposit could be regarded as an IS 
epithermal mineralization. Intermediate-sulfidation 
epithermal deposits occur in neutral stress to mildly 
extensional arc and compressive back-arc settings during 

arc volcanism (Sillitoe and Hedenquist, 2003). These 
deposits contain chalcopyrite, tetrahedrite-tennantite 
(which form from IS-state liquid; Einaudi et al., 2003; 
Sillitoe and Hedenquist, 2003), and Fe-poor sphalerite, 
dominantly formed by magmatic fluids (Einaudi et al., 
2003). Quartz and illite are the major alteration and gangue 
minerals (Wang et al., 2019). Intermediate-sulfidation 
epithermal deposits contain more abundant base-metal 
sulfides and illite. 

Recently, Wang et al. (2019) described the characteristics 
of IS deposits in more detail. They suggested that IS 
deposits form from the mixing of magmatic and meteoric 
fluids in andesitic rocks that may be cogenetic with deeper 
porphyry-related intrusions. The presence of Fe-poor 
sphalerite indicates relatively lower oxidation states of ore-
bearing fluids, while sphalerites in HS epithermal deposits 
are Fe-rich. One of the most important differences between 

Table. The δ34S values for sulfide samples from the Zehabad deposit.

Sample Average fluid 
temperature Chalcopyrite Sphalerite Galena 1000 ln α Hydrothermal

fluid (‰, CDT)

K6 207 -6.3 0.4 -6.7
K13b 207 -0.8 0.4 -1.2
K13g 207 -3.1 0.4 -3.5
K18 207 -7.7 -2.8 -4.9
Qo5 229 -5.1 0.4 -5.5
Qo5 229 -6.9 -2.5 -4.4
Qo10 229 -4.7 0.2 -4.9
Qo18 229 -4.5 0.4 -4.9
L5-2 226 -10.0 -2.6 -7.4
L5-2 226 -7.6 0.4 -8.0
L6-3 226 -6.2 0.4 -6.6
L6-5 226 -10.1 -2.6 -7.5
L8-1-1 226 -9.4 -2.6 -6.8
L8-3-1 226 -8.3 0.2 -8.5
L8-3-2 226 -8.6 -2.6 -6.0
L8-3-2 226 -6.3 0.4 -6.7
L8-3-6 226 -6.1 0.4 -6.5
L8-3-6 226 -6.7 0.2 -6.9
L8-3-7 226 -4.8 0.2 -5.0
L8-3-7 226 -3.2 0.4 -3.6
L9-1 226 -6.3 0.2 -6.5
L9-1 226 -5.3 0.4 -5.7
L9-2 226 -5.0 0.4 -5.4
L9-4 226 -5.2 -2.6 -2.6

-5.3
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IS epithermal deposits when compared with HS and 
LS deposits is the predominance of Mn-carbonate (and 
silicate) gangue such as rhodochrosite and widespread 
illite alteration. 

Intermediate-sulfidation epithermal deposits usually 
occur in association with calc-alkaline volcano-plutonic 
complexes in magmatic arcs (Sillitoe, 2010), but some 
intermediate-sulfidation deposits also occur in back-arc 
(e.g., Çöpler deposit; Imer et al., 2013, 2016), or collisional 
or postsubduction tectonic settings (e.g., Roşia Montană; 
Heinrich and Neubauer, 2002; Richards, 2009; Wang et al., 
2019). These deposits form in <1 km depth, contain Zn-
Pb-Cu-Ag±Au, and may be located alongside porphyry 
Cu-Au deposits (Imer et al., 2013, 2016; Sillitoe et al., 
2013).

Zehabad possesses characteristics of most IS epithermal 
deposits, as described in detail by various researchers 
(Hedenquist et al., 2000; Sillitoe and Hedenquist, 
2003; Wang et al., 2019). This is evidenced by: 1) index 
epithermal textures such as hydrothermal veins and 
breccias with vug infill, comb, banding, crustiform, and 
cockade textures; 2) hydrothermal alteration represented 
by sericite-quartz-pyrite-carbonate; 3) relatively high base 
metal (e.g., Cu, Pb, and Zn) abundance; 4) ore assemblage 
characterized by chalcopyrite, Fe-poor sphalerite, galena, 
gold, tennantite-tetrahedrite, and other sulfosalts; 5) 
range of sulfur isotope compositions between –0.8‰ 
and –10.1‰ (avg. –5.8‰) showing a possible magmatic 
source for ore-bearing hydrothermal fluids; 6) relatively 
high temperature range of 276–288 ± 20 °C hydrothermal 
fluids; and 7) presence of shallow-level intrusive bodies 
adjacent to ore-bearing veins. 

The galena-sphalerite pair minerals yielded a 
temperature of mineralization in the range of 275–285 °C, 
which is typical of epithermal type deposits (e.g., Yilmaz et 
al., 2007, 2010; Kouhestani et al., 2012, 2015; Mohammadi-
Niaei et al., 2015). The distribution of silicification together 
with mineralization, the sericite-quartz-pyrite-carbonate 
zone close to the veins, and the propylitic zone away 
from the veins are consistent with the characteristics of IS 
epithermal deposits.

The distribution pattern of hydrothermal alteration at 
the Zehabad deposit is indicative of epithermal features, 
and alteration minerals indicate the near-neutral to 
mildly acidic pH conditions for ore fluids. According to 
microscopic and field studies, there are quartz, kaolinite, 
locally dickite, smectite, siderite, illite, carbonate 
(dominated by calcite and minor rhodochrosite), and 
chalcedony as alteration minerals at the Zehabad deposit 
that are an index of slightly acidic conditions with 
temperatures in the range of 180–310 °C (Henley and Ellis, 
1983; Reyes, 1990; Thompson and Thompson, 1998) and 
magmatic source (Simmons and Browne, 2000; Wang et 
al., 2019). Widespread illite alteration shows the less acidic 
nature of fluids. Based on Corbett and Leach (1998), the pH 
of the argillic alteration is in the range of 4–6, while phyllic 
(illite/muscovite-quartz-pyrite + anhydrite + carbonate) 
alteration forms in the pH range of 5–6, implying weakly 
acidic fluids.

According to Wang et al. (2019), major gangue 
minerals in IS epithermal deposits are quartz, illite, and 
carbonate, particularly Mn-carbonate, and the presence 
of base metal sulfides suggests that the ore-forming fluids 
probably have salinities between 1 and 10 wt.% NaCl 
equiv. At the Zehabad deposit, the abundance of galena 
and sphalerite implies that the fluids were probably saline, 
because base metals can only be efficiently transported by 
chloride complexes. In addition, the sulfur isotope results 
are in accordance with a magmatic source for sulfur.

8. Conclusions
The Zehabad deposit occurred in the Eocene volcanic 
rocks of NW Iran. Late Eocene intrusive bodies in this 
area that belong to the Arasbaran-Tarom high potassium 
calc-alkaline batholith have similar petrographic and 
geochemical characteristics as well as geodynamic 
positions. Arasbaran-Tarom shows arc magmatism 
signatures. The deposit contains chalcopyrite, galena, 
Fe-poor sphalerite, tennantite-tetrahedrite, pyrite, 
sulfosalts, and gold minerals. Arsenopyrite and 
pyrrhotite were not observed at the deposit. Quartz, 
kaolinite, dickite, smectite, siderite, illite, calcite (and 
minor rhodochrosite), and chalcedony are the most 
important gangue minerals. There are no alunite and 
adularia as alteration or mineralization products in the 

Figure 15. Histogram showing range of δ34S values from sulfide 
minerals from different stages of mineralization at the Zehabad 
deposit.
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area, but illite has a widespread presence. Mineralization 
is accompanied by silicification. Bladed calcite and 
banding textures imply that the Zehabad deposit formed 
from boiling. The range of sulfur isotope data from the 
separated minerals (chalcopyrite, sphalerite, and galena) 
occurs within –0.8‰ to –10.1‰. Our study shows that 
the sphalerite-galena pairs formed at 276–288 °C. We 
suggest that the Zehabad deposit is the largest discovered 
intermediate-sulfidation base and precious metal 
epithermal deposit in the western Alborz-Azerbaijan 
structural zone of NW Iran.
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