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Figure 3. The velocity-depth functions (a) that are used to generate the HVSR or ellipticity curves 
(b), and the RWD curves (c) for SM-1 and SM-2.
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Figure 4. A simplified geological map of the Bursa Basin, and a simplified vertical column indicating the geological units at the 
study site labeled T051, where the array measurements were performed.
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velocity bound, since +35% of the reference model fell too 
short to cover the velocities of the sharp contrast when 
compared with the true model for SM-2, as in Figure 5b. 
Therefore, the upper velocity bounds for both models were 
assigned to be twice the layer velocities of the reference 
model that would be expected to produce a broad enough 
search space for SM-2 than that required for SM-1. A wide 
enough search space ensures covering the excess velocities 
and abrupt interfaces that may present in the data. Figure 
6 illustrates the 10-layered reference model and parameter 
search space obtained from the field data using the same 
approach. It is important to emphasize the importance of 
the synthetic examples, as SM-2 guided us using a broad 
enough search space for the field data application.

The number of iterations was set to 200 for SM-1 and 
SM-2, and 1000 for the field data application, which was 
assumed to be large enough to determine the stability of 
the PSO algorithm and also obtain all possible solutions. 
The number of particles was set to 100 for SM-1 and SM-2 
(thicknesses and velocities for 5 layers), and 200 for the 
field data application (thicknesses and velocities for 10 
layers), which was chosen to be 10-fold the number of 
model parameters, as suggested by Pace et al. (2019). To 
keep the searching capability of the system under control 

and prevent explosion of the swarm, learning coefficients 
of 2.05, constriction factor of 0.729, and grid numbers of 
30 were used in each objective function, as suggested by 
Coello Coello and Reyes-Sierra (2006).
5.2. Synthetic models
Figure 7 illustrates the results of the joint solution for 
the synthetic RWD and HVSR curves generated from 
SM-1. The assigned parameter search space in Figure 
7a, grid numbers, and number of iterations appeared 
to successfully reproduce the true model illustrated in 
Figures 7b and 7c. As pointed out by Dal Moro (2010), 
the symmetric distribution of the Pareto front in Figure 
7d (rescaled in Figure 7e) indicated that particles clustered 
towards the Pareto front with a balanced motion of the 
particles in the adopted search space was an indicator of a 
properly accomplished solution. The adopted search space 
for the true model appeared to create a well-balanced 
search space for the gradient-type velocity model. The 
Pareto fronts extracted from the last iteration in Figure 7e 
were very close to each other, which was an indication of 
the convergence to the true model.

Figure 8 illustrates the results for SM-2, which account 
for the sharp velocity contrast. Figures 8b and 8c show 
that the synthetically generated observations matched 
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Figure 5. The true model, reference velocity model, and parameter search space for SM-1 (a) and SM-2 
(b), each with numerical values of the search spaces tabulated on the top. 
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perfectly with the model output and that our choice for 
the search space and the other settings were reasonable. 
Figures 8d and 8e show that particles clustered towards the 
Pareto front solutions fit successfully with the distribution 
slanted toward the RWD-axis. As common knowledge in 
Pareto-based multiobjective particle swarm optimization, 
particles fronting towards the RWD-axis correspond to 
good solutions with a small misfit between the observed 
and calculated HVSR curves, while particles close to the 
HVSR-axis are related with a good RWD match in a similar 
way. Distribution of this type, as in Figure 8d, indicated 
nonunique solution. This suggested that there were more 
solutions satisfying the HVSR objective function than 
were equally compared to the RWD objective function 
for the case having a sharp peak in the HVSR curve when 
compared to SM-1 in Figure 7d. Hence, the nonsymmetry 
of the Pareto distribution was not only related to a properly 
accomplished inversion (Dal Moro, 2008), but also to the 
characteristic of the HVSR inversion in the case of having 
sharp velocity contrast. Obviously, several alternative 
models can be considered as a final model, when a 
single objective function is used based on the HVSR 
misfit with its several local minima. Moreover, the global 
minimum converges successfully at higher iterations with 

multiobjective particle swarm optimization. As illustrated 
in Figure 8, the curves generated from the Pareto front 
models obtained in the last iteration fit well with the 
observed curves and provide identical models. 
5.3. Field data from the Bursa Basin
Figure 9 illustrates results from the Bursa Basin, in which 
the respective parameter search space was constrained 
using the experience gained, especially from the synthetic 
model, SM-2. The Pareto distribution of the particles 
obtained from the last iteration in Figure 9a exhibits the 
nonsymmetry slanted over the RWD axis, indicating 
nonunique solutions. Figures 9b and 9c compare and 
contrast the reproduced and observed RWD and HSVR 
curves, labeled A, B, and C, using the velocity models in 
Figure 9d with the same labels over the Pareto front. The 
misfits for these velocity models were reasonably close 
to each other, as tabulated in Table, where the best was 
the Pareto optimum solution marked as A, with a misfit 
value of 1.33 for the RWD curve and 0.068 for the HVSR 
curve. Although the presented neighboring solutions, B 
and C, produced a fit that was very close to the solution 
that was presented as the best, a slight mismatch appears 
to be visible at higher and lower frequencies in the RWD 
curve, and higher frequencies in the HVSR curve. On the 
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other hand, the HVSR objective function alone appeared 
to provide pronounced velocity contrasts, because the 
shape of the HVSR curve was sensitivity to the velocity 
contrasts of the velocity-depth model. Therefore, utility of 
the Pareto-based multiobjective function provided a better 
constrained shear wave velocity model that was capable of 
reproducing the observed data set. 

The final velocity model, marked as A in Figure 9d, 
appeared to represent the geology at the T051 location in 
Figure 4, where the geologic units consisted of, from the 
top to the bottom, Quaternary alluvium deposit, Miocene 
and Pliocene sediments, and Mesozoic and Paleozoic base. 
Two distinct velocity contrasts, at depths of 75 m and 175 
m, appeared to be consistent with the 3-layered simplified 

column of the geological units from the surface geology. 
The top layer, which extends down to 75 m, with an 
average shear wave velocity of ~350 m/s, may reasonably 
be interpreted as a Quaternary alluvium deposit. The layer 
starting at 75 m and extending to 175 m, with a shear 
wave velocity of ~750 m/s, coincides with the Miocene 
and Pliocene sedimentary unit, and the half-space below 
175 m, with a shear wave velocity of ~1200 m/s, is the 
Mesozoic and Paleozoic base. 

6. Conclusion
We presented Pareto-based multiobjective particle swarm 
optimization applied on RWD and HVSR synthetic 
curves, and a sample data set obtained from the Bursa 

Figure 7. Results for SM-1. Shear wave velocity-depth model obtained from the Pareto optimum particle and the parameter search 
space (a); the fit between the observed and calculated RWD (b), and HVSR and Rayleigh wave ellipticity curves (c); the Pareto optimum 
solution marked as + and Pareto front (dark dots) with the Pareto distribution (light dots) for all iterations (d); and the Pareto optimum 
solution (+) with Pareto front at the last iteration (e).
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Basin for the purpose of better understanding the 
concept of parameter search space, and the applicability 
of the method on the field data. There were a number of 
conclusions that can be drawn from this study: 1) with 
the utility of this method, it is possible to analyze each 
solution from the individual objective functions separately 
using the Pareto front approach; 2) setting the parameter 
search space broad enough for the shear wave velocity 
model provides convenience for an optimum solution; 
3) the automated technique we developed to define the 
parameter search space, instead of setting a search interval 
manually for shear wave velocities and the depths for each 

layer, proved to be a useful approach; 4) it is possible to 
significantly reduce the computing time by limiting the 
parameter search space using the rough estimation from 
the dispersion curve; 5) in Pareto-based multiobjective 
particle swarm optimization, the balanced change in 
Pareto distribution is not only related to a well-defined 
parameter search space, but also to the number of trade-
off solutions in each objective function; 6) nonsymmetry 
in Pareto distribution can be utilized to investigate the 
nonuniqueness of a model; and 7) the results we obtained 
from the field data application was satisfying, and were 
consistent with the vertical geological structure at the site. 

Figure 8. Results for SM-2. Shear wave velocity-depth model obtained from Pareto front particles and the parameters search space (a); 
the fit between the observed and calculated RWD (b), and HVSR and Rayleigh wave ellipticity curves (c); the Pareto optimum solution 
marked as +, and Pareto front (dark dots) with the Pareto distribution (light dots) for all iterations (d); and the Pareto optimum solution 
(+) with Pareto front at the last iteration (e).
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Figure 9. The results obtained for site T051. (a) Pareto distribution of the last iteration with the Pareto front particles labeled A, B, and 
C that are shared correspondingly in all of the following plots; (b) the fit between the observed and calculated RWD curves; (c) the fit 
between the observed HVSR and Rayleigh wave ellipticity; and (d) the shear wave velocity models with the one labeled A being the 
optimum solution.

Table. Misfit values obtained from the optimal solution A and 
a comparison with the neighboring misfit values of B and C in 
Figure 9a. 

Misfit function A B C

RWD 1.33 1.058 2.6
HVSR 0.068 0.08 0.064
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