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Figure 5. Seismotectonic maps of the earthquakes discussed in the text (the position of each map inset is shown in Figure 1). (a) 
The April 30th, 1954, Sophades earthquake showed coseismic ruptures (inset from the Hellenic Cadastral photomosaic) in a more 
NW-SE direction (Papastamatiou and Mouyiaris, 1986; Pavlides, 1993; Palyvos et al., 2010) than the E-W-striking srecognised faults 
in the area. (b) The ‘blind’, pure strike-slip, NE-SW-striking fault that produced the June 8th, 2008 Andravida-Movri earthquake. (c) 
The September 7th, 1999, Athens earthquake occurred by a previously unknown fault and had a minor surficial rupturing. Due to its 
proximity to the metropolitan city of Athens (the urban fabric is shown with yellowish polygons), the damages were rather significant. 
(d) A complex ground rupture pattern after the May 13th, 1995, Kozani-Grevena earthquake which was also associated with partial 
reactivation of adjacent faults. (e) The March 4th, 1981, Kaparelli earthquake was the 3rd strongest shock of the Alkyonides sequence. 
The coseismic ruptures did not remain along a straight line but followed different paths due to local geological conditions. (f) The 
complex coseismic rupture pattern of the June 20th, 1978, Thessaloniki earthquake and its connection with the NW-SE-trending alpine 
structures. Earthquake epicentres: (a) Papazachos and Papazachou (1993), (b, d, f) IG-NOA catalogue, (c) Papadimitriou et al. (2002), 
(e) Jackson et al. (1982). Focal mechanisms: (a) McKenzie (1972), (b) Regional Centroid Moment Tensor (RCMT) catalogue (Pondrelli, 
2002), (c) Louvari and Kiratzi (2001), (d) Kiratzi and Louvari (2003), (e) Ekstrom and England (1989) and EMMA catalogue (Vannucci 
and Gasperini, 2004), (f) Braunmiller and Nabelek (1996). Fault symbols as in Figure 2.
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geological and seismic data close to the source, make it 
challenging for scientists to pinpoint the finer details of the 
radiated seismic energy.

It is worth mentioning that the seismic history in some 
of the case study areas (Kozani, Athens and probably 
Andravida) is not always adequate for estimating the 
seismic hazard. In more particular, the Kozani broader 
area was considered as rigid aseismic block or low 
seismicity region (Voidomatis, 1989; Papazachos, 1990), 
and the broader area of the metropolitan city of Athens 
was also considered as one of low seismic activity, given 
that important historical or instrumental seismic records 
were missing (Papadimitriou et al., 2002; Pavlides et al., 
2002). The importance of the methodology and sources of 
information used for assessing seismic hazard is quantified 
and well discussed by Caputo et al. (2015).

Identifying the weak zones and the associated 
earthquake patterns is one of the goals of current and 
future seismic deployments. The goal of future attempts 
is to generate improved 3D images of the faults beneath 
the surface, especially those without surficial features 
and geomorphic marks. High resolution geophysical 
tomographies (data) are needed. With a denser array of 
seismic sensors, new research could also more accurately 
locate future earthquakes, which will help scientists 
determine the hazard in specific regions. It is such an 
important issue for geoscientists and engineers, to know 
what we are up against to, and to model what could happen 
if we do have to face a strong earthquake.

Additionally, there are hidden active faults that lie 
very close or within a broad distributed zone throughout 
towns and cities like Larissa or megacities like Athens 
(earthquake of 1999), İzmir, İstanbul and most cities along 
the North Anatolia Fault segments, where is potential for 
ground displacements beneath the downtown corridor 
where high-rise buildings either have been or will be 
constructed in the future.

The recent earthquake’s proximity to, sometimes 
densely, inhabited areas, like the 2017 Kos-Bodrum Mw6.4  
earthquake, occurred offshore between the Kos Island 
in Greece and Bodrum town on the Turkish coast (e.g., 
Karasözen et al., 2018; Sboras et al., 2020), the 2020 Samos 
Mw7.0 earthquake, occurred again offshore and caused 
extensive damage in İzmir (e.g., Akinci et al., 2021; Sboras 
et al., this volume), and the 2021, Tyrnavos-Elassona 
Mw6.3 earthquake, just 15 km away from Larissa with 
major impact in local villages, are extremely valuable for 
the seismic hazard community. All these recently emerging 
data can be a crucial input in active fault databases aiming 
at contributing to the SHA, to simulate the ground motions 
and consequently enhance the building codes. Using this 
experience and knowledge, the scientific community can 

be more suspicious and develop further multidisciplinary 
investigations, the engineers can improve new building 
designs and fortify the old constructions, and the state 
(in terms of administration, security corps and public 
services) with the citizens and can be better prepared for a 
new seismic crisis. 

5. Concluding remarks
The experience of the March 2021 Tyrnavos-Elassona 
earthquake sequence, added to the knowledge of past 
surprising events and combined with the ever-increasing 
new knowledge from the scientific community worldwide, 
rose new problems that require rational answers, such as: 

When and how do old, nonpreferably oriented to the 
modern stress field, faults rupture? How does rupture 
propagate, both horizontally and upwards, and how does 
it affect adjacent new, or old, faults (triggering effects on 
inherited structures)? How is the morphology affected, 
or in other words, when do normal faults occur along the 
margins of obvious geomorphological depressions (e.g., 
basins, valleys, etc.) and when do they occur in unexpected 
locations (e.g., mountainous areas)? Which are the best 
stand-alone or combined methods for detecting and 
recognising faults that are well hidden, either by natural 
processes or human interventions?

Any answer to any of the above questions can crucially 
contribute to a twofold hazard estimation: the ground 
motion simulation as deduced from deterministic seismic 
hazard assessment (DSHA), and the surface faulting 
hazard (Guerrieri et al., 2015) or surface fault rupture 
hazard (Boncio et al., 2012), a crucial assessment for 
building and infrastructure design considering that a 
possible fault displacement could damage the foundations 
of any technical construction. The estimation of both types 
of hazards is vital for places where the risk is high, such 
as critical facilities and/or urban areas. Hence, a special 
attention is needed to be given (i) on the role of inherited 
structures in seismogenesis deviating from standard 
rules, especially blind faults in mountains without any 
morphotectonic feature, and (ii) on the unknown hidden 
active faults and their role in SHA, especially close or 
under the modern urban areas and along lifelines.

New methodologies and scientific tools are needed 
to identify the weak zones and the associated earthquake 
patterns. 
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