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coefficients was also required (scaled by 2.29 for 13 and by 1.87 for 14) since these values are slightly overestimated by TD-
DFT calculations. However, the overall shapes of the theoretical spectra are relatively well-estimated (see Figures 6a and 
b). Although the reason for the overestimation in molar absorption coefficients in TD-DFT calculations is still unclear, the 
choice of basis set and solvation method may be responsible from a slight inaccuracy in dihedral angles that may facilitate 
donor-acceptor conjugation efficiency and increase the molar absorption coefficients. All push–pull chromophores 13–
18 possess charge-transfer bands originated from HOMO to LUMO transitions. The observed error in the calculated 
transitions are in the expected range for similar push–pull systems reported in the literature [48].

Quinoid character values (dr) are commonly used to predict the amount of charge transferred in push-pull systems 
[11,19]. If there is no charge-transfer, dr value equals 0 and represent a perfect benzene structure. On the other hand, fully 
quinoidal structures possess dr values in between 0.08–0.1. Bond lengths from optimized geometries of compounds 13–18 
have been used for the dr value calculations (Table 2). A substantial quinoid character values (dr = 0.045–0.049) were 
predicted for diethylaniline donor groups in all chromophores. A slight increase in dr values of TCNQ adducts was observed 
compared to TCNE adducts. The predicted quinoid characters were comparable to earlier reports on CA-RE products 
[11,19]. Inspired by the literature on strong D-A systems [49,50] these results were further confirmed by total average 
atomic charges (δ) by ESP fitting on donor, acceptor and PAH parts of push–pull chromophores. Atomic charges were 

Table 1. Molecular structures, HOMO and LUMO depictions, and ESP maps of 13–18. While the most negative areas are 
represented by red, the most positive areas are represented by blue color. ESP is mapped over the range –0.03 a.u (red). to 
0.03 a.u (blue). B3LYP/6-31G(d) level of theory was used for DFT calculations.
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calculated based on the ESP fitting scheme of Merz–Singh–Kollman (MK) [51]. All chromophores were divided into three 
parts: diethylaniline donor, PAH substituents, and cyano-based acceptor groups (Table 2). Accordingly, all chromophores 
possess charge-transfer from donor to acceptor units. The total average charge differences between donor and acceptor 
units are significantly higher in quinone based structures 13, 15, and 17. The most enhanced charge-transfer capacity 
were predicted for compound 13 with δ donor = 0.487 eV and δ acceptor = –0.614 eV. This result is fully consistent with 
the highest quinoidal character value calculated for chromophore 13 (dr = 0.049). In summary, chromophores obtained 
by [2+2] CA–RE of TCNQ are better chromophores in terms of charge-transfer interactions compared to chromophores 
obtained by [2+2] CA–RE of TCNE. Additionally, chromophores-substituted with 2-naphthyl group enhance donor-
acceptor properties compared to chromophores substituted with phenanthrene and 1-naphthyl. Presumably, deviation 
from planarity is the main reason behind this observation due to bulky phenantrene and geometrically constrained 
1-naphthyl substitutents. 

The successful utilization of organic molecules in nonlinear optics motivates researchers to develop rational design 
strategies [52,53]. The fast and inexpensive theoretical calculations compared to experimental measurements provide a 
great advantage for the design of NLOphores with tailor-made properties. The most common NLOphore structures are 
generally containing D-π-A-type molecular frameworks [54,55]. Strong charge-transfer interactions in push-pull systems 
13–18 motivated us to evaluate NLO properties using computational tools. To predict the NLO properties, DFT calculations 
have been applied on compounds 13–18 using basis set CAM-B3LYP/6-31++G(d,p) level of theory. The electronegativity 
(χ), global chemical hardness (η), global softness (σ), electric dipole moment μ (D), average polarizability [α(tot)], and first 
hyperpolarizability [β(tot)] values were calculated according to the equations (1–6) shown below. 
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Figure 6. a) Calculated (red-shifted by 0.6 eV, scaled by 1.87, red line) TD-DFT:CAM-B3LYP/6–31G(d) level of theory in CH2Cl2 
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Table 2. Calculated quinoidal character values (δr) and total average atomic charges (δ) by ESP fitting on 
donor, acceptor and PAH parts of push–pull chromophores 13–18.

Compound (δr) (Å) δ donor (eV) δ acceptor (eV) δ PAH (eV)
13 Ring I = 0.049, Ring II = 0.072 0.487 –0.614 0.124
14 Ring III = 0.048 0.388 –0.573 0.188
15 Ring I = 0.048, Ring II = 0.071 0.463 –0.476 0.012
16 Ring III =0.045 0.362 –0.456 0.094
17 Ring I = 0.047, Ring II = 0.071 0.494 –0.434 –0.071
18 Ring III = 0.045 0.360 –0.452 0.094
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β = [(βxxx + βxyy + βxzz)2 + (βyyy + βxxy + βyzz)2 + (βzzz + βxxz + βyyz)2]1/2  (1)
α = 1/3 (αxx+ αyy + αzz)       (2)
μ = [(μx)

2 + (μy)
2 +( μz)

2]1/2        (3)
χ = –1/2 (EHOMO + ELUMO)       (4)
η = –1/2 (EHOMO–ELUMO)       (5)
σ = 1/ η         (6)
Overall results are summarized in Table 3. Molecular geometry is crucial as it dictates the NLO properties of the 

compounds. There are several strategies to modulate NLO responses, such as changing solvent choice, altering donor-
acceptor strength, or π-linker length. In this study, we mainly focused on the effect of PAH rings on average polarizability 
[α(tot)] and first hyperpolarizability [β(tot)] values. When we compare TCNE and TCNQ adducts, the lowest [α(tot)] and 
[β(tot)] values were predicted for chromophores 13 and 14, which possess naphthalene groups substituted at two positions. 
For the rest of the compounds, differences in [α(tot)] and [β(tot)] values are not very significant. Compounds with the bulky 
phenanthrene or naphthene group substituted at one position exhibited almost similar NLO responses. This prediction 
can be supported by the calculated and optically measured band gaps for 13 and 14. The HOMO-LUMO energy gap 
for 13 is significantly larger compared to 15 and 17. A similar trend can also be seen in TCNQ adducts. We found a 
general trend by which β(tot) increases with the size of the spacer between donor and acceptor groups as can be seen by 
higher β(tot) values in TCNQ products compared to those of TCNE products. We presume that smaller band-gap results in 
more efficient charge transfer and, as a result, larger NLO responses, as can be seen in Table 2. Optimized structures also 
displayed significant deviation from planarity in the case of compounds 15 (33 o), 17 (34 o), 16 (31 o), 18 (33.2 o) compared 
to 13 (28 o), and 14 (18 o). Accordingly, we have shown that substituent groups can play an important role in modulating 
NLO properties of push-pull type chromophores, although they are mainly utilized as solubilizing groups or side groups 
to improve the physical properties of chromophores. The highest predicted β(tot) value in this study is 537.842 × 10–30 esu 
for chromophore 17. That value is 8150 times larger than the benchmark NLO material urea, β(tot) value of 0.066 × 10–30 
esu, calculated at the CAM-B3LYP/6-31++G(d,p) [22]. In the final part, the chemical properties of chromophores will be 
discussed using equations (4–6). The results are very promising when compared with the literature. For example, push-
pull system, p-nitroaniline, possesses β(tot) value of 9.2 × 10–30 esu [56]. Similarly, [60] fullerene-fused dihydrocarboline 
derivative is calculated to have β(tot) value of 54 x 10–30 esu [57]. In another study, β(tot) values of 21 – 286 × 10–30 esu are 
reported for push-pull 1,3-thiazolium-5-thiolates [58].

Koopmans’ theorem states that HOMO and LUMO energies are related to ionization potential and electron affinity, 
respectively. Accordingly, the Mulliken electronegativity (χ) can be estimated by equation 4. Besides electronegativity, 
chemical hardness (η) is another term to be used for chemical behavior predictions of materials. Global hardness is directly 
related to the HOMO-LUMO gap and can be defined as the resistance of an atom to charge-transfer. Equations 4 and 5 
show that larger HOMO-LUMO gaps are required to improve hardness values. Compounds 14, 16, 18 are predicted to 
have higher global hardness values with their larger band gaps compared to 13, 15, and 17. An opposite trend can be seen 
in global softness (σ), values as expected from Equation 6. In summary, compounds 13, 15, and 17 are expected to be more 
reactive compared to 14, 16, and 18.

Table 3. The electric dipole moment μ (D), EHOMO, ELUMO, ∆E (EHOMO–ELUMO), electronegativity (χ), global 
chemical hardness (η), global softness (σ), average polarizability [α(tot)], first hyperpolarizability [β(tot)] at the 
CAM-B3LYP/6-31++G(d,p) level of theory in CH2Cl2.

13 14 15 16 17 18

μ (D) 27.9240 19.8620 27.8594 19.9083 26.5140 20.3709
EHOMO (eV) –5.38 –5.72 –5.41 –5.70 –5.41 –5.69
ELUMO (eV) –3.51 –3.15 –3.69 –3.40 –3.68 –3.41
∆E (eV) 1.87 2.57 1.72 2.30 1.73 2.28
χ (eV) 4.445 4.435 4.550 4.550 4.545 4.550
η (eV) 0.935 1.285 0.860 1.150 0.865 1.140
σ (eV–) 1.0695 0.7782 1.1627 0.8695 1.1560 0.8771
α(tot) (×10–24 esu) 135.891 85.746 136.768 83.060 148.505 94.295
β(tot) (×10–30 esu) 451.403 198.435 536.872 228.638 537.842 239.935
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4. Conclusions
In this study, 6 new polycyclic aromatic hydrocarbon-substituted push–pull chromophores have been synthesized using 
click-type [2+2] cycloaddition-retroelectrocyclization. The synthetic approach worked smoothly under ambient laboratory 
conditions without requiring heat or catalyst. Optoelectronic properties of the highly-colored chromophores were 
investigated by using both experimental (UV/vis spectroscopy) and computational methods. Solvatochromism and pH 
studies were performed for all 6 chromophores. Computational studies (TD-DFT, electrostatic potential maps, HOMO-
LUMO orbital depictions) were further confirmed that all chromophores undergo intramolecular charge transfer. The 
HOMO-LUMO energy gap of dye 13 is found to have the largest energy gap resulting in worse charge-transfer properties 
as compared to 15 and 17. A similar trend was also observed for chromophores 14, 16, and 18. PAH-substituted push-pull 
chromophores are predicted to have significant NLO properties, and these properties can simply be tuned by changing 
substituent PAH structures. The present study provides valuable knowledge for the design and synthesis of new NLOphore 
systems in the near future.
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Supporting Materials 
 

 

1. Theoretical calculations 
 

All structures are confirmed ground-state minima according to the analysis of their 

analytical frequencies computed at the same level, which show no imaginary frequencies. 

All reported energies are zero-point corrected free enthalpies ΔG (sum of electronic and 

thermal free enthalpies) at 298 K. On the optimized molecular structures of 13–18 at the 

B3LYP/6-31G(d) level of theory with the CPCM solvation model in CH2Cl2, the vertical 

optical transitions were calculated by time-dependent density functional theory (TD-DFT) 

at the CAM-B3LYP/6–31G(d) level of theory, again with the CPCM solvation model in 

CH2Cl2 using the software package Gaussian 09 [1]. 
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Table S1. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 13.  

 

 

Exptl.: λ = 695 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.01 618 1.1233 H!L 
2 3.00 414 0.3493 H!L+1, H–1!L 
3 3.02 411 0.2294 H–1!L, H!L+1 
4 3.29 377 0.2333 H–2!L 

 
Orbital  E (eV) 

HOMO–1 

 

–6.26 

HOMO 

 
 
 
 
 

–5.38 

LUMO 

 

–3.51 

LUMO+1 

 

–2.59 

CN

CN

N
CN

NC
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Table S2. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 14.  

 

Exptl.: λ = 474 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 2.77 447 0.3766 H!L 
2 3.32 373 0.5636 H!L+1, H–1!L 
3 3.39 366 0.3593 H–1!L, H!L+1 
4 3.83 323 0.2033 H–2!L 

 
Orbital  E (eV) 

HOMO–1 

 

–6.34 

HOMO 

 
 
 
 
 

–5.72 

LUMO 

 

–3.15 

LUMO+1 

 

–2.51 

 

NC

CN

CN

CN

N
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Table S3. Depiction of calculated HOMOs and LUMOs over optimized ground-state 

geometries, transition energies (E), and oscillator strengths (f) for 15.  

 

Exptl.: λ = 739 nm (in CH2Cl2) 

Excited state ΔE (eV) λ (nm) f Assignments 
1 1.88 661 0.9645 H!L 
2 2.74 452 0.1042 H–1!L 
3 2.94 421 0.3718 H–1!L, H–2!L 
4 3.21 386 0.4657 H!L+1 

 
Orbital  E (eV) 

HOMO–1 

 

–6.30 

HOMO 

 
 
 

–5.41 

LUMO 

 

–3.69 

LUMO+1 

 

–2.39 

CN

CN

N
CN

NC


