














8

Table 1. Average genetic distances (Kimura 2-parameters) among Scorpaena species and their haplotypes with GenBank accession numbers.

GenBank S. elongata S. maderensis S. notata S. porcus S. scrofa
Species | Haplotypes | Accession
Numbers Hapl Hap2 Hap3 Hapl Hap2 Hap3 Hapl Hap2 Hap3 Hap4 Hapl Hap2 Hap3 Hap4 Hap5 Hap1 Hap2 Hap3

,:;: Hapl MZ673813
5 |Hap2 MZ673814 | 0.00154
o | Hap3 MZ673815 | 0.00307 |0.00153
% |Hapl MZ673825 | 0.08437 | 0.08264 |0.08263
.§ Hap2 MZ673826 | 0.10000 |0.09824 |0.09822 |0.01707
55 Hap3 MZ673827 | 0.10000 |0.09824 |0.09822 |0.02341 | 0.00617

Hapl MZ673828 | 0.13151 |0.13341 |0.13521 | 0.14936 | 0.15672 | 0.16060
o | Hap2 MZ673829 | 0.13161 |0.13352 | 0.13532 | 0.14737 | 0.15473 | 0.15859 | 0.00772
f  |Hap3 MZ673830 | 0.13544 |0.13736 |0.13917 | 0.15314 | 0.16053 | 0.16444 |0.00772 | 0.00617
& | Hapa MZ673831 | 0.13532 |0.13724 |0.13905 | 0.15322 | 0.16060 | 0.16452 | 0.00308 |0.01084 |0.00462

Hapl MZ673817 | 0.12510 |0.12702 | 0.12879 |0.14795 | 0.15544 | 0.15740 | 0.05743 | 0.06244 |0.05908 |0.05743

Hap2 MZ673818 | 0.12894 | 0.13086 | 0.13265 | 0.14795 |0.15544 | 0.15740 | 0.05743 |0.06244 |0.05908 | 0.05743 | 0.00308
. |Hap3 MZ673819 | 0.12484 |0.12674 |0.12852 | 0.14429 | 0.15174 | 0.15369 | 0.05910 | 0.06413 |0.06075 |0.05910 | 0.00462 | 0.00616
g Hap4 MZ673820 | 0.12702 |0.12894 |0.13072 | 0.14602 | 0.15349 | 0.15544 | 0.05910 | 0.06413 |0.06075 | 0.05910 |0.00462 |0.00154 |0.00462
& |Haps MZ673821 | 0.12307 |0.12497 | 0.12674 |0.14419 |0.15164 | 0.15359 | 0.05745 | 0.06247 |0.05910 |0.05745 | 0.00307 | 0.00618 |0.00154 |0.00462

Hap1 MZ673822 | 0.05461 | 0.05630 |0.05624 | 0.11089 |0.12528 |0.12159 | 0.13681 |0.12744 | 0.13500 | 0.14064 | 0.13250 |0.13638 |0.13415 |0.13444 |0.13236
“§‘ Hap2 MZ673823 | 0.05123 |0.05291 |0.05454 |0.11089 |0.12528 |0.12159 | 0.13301 |0.12370 |0.13121 |0.13681 |0.12866 | 0.13250 |0.13031 |0.13058 |0.12852 | 0.00308
& | Hap3 MZ673824 | 0.04793 | 0.04961 |0.05123 |0.10914 |0.12349 | 0.11980 | 0.13482 |0.12736 | 0.13491 | 0.13863 | 0.13044 |0.13429 |0.13209 |0.13236 | 0.13031 |0.00617 |0.00307

Zfl"c‘;;'ﬁ;’r'l"‘: JN312280 | 0.23622 | 0.23622 | 0.23826 | 0.26389 |0.27313 | 0.26837 | 0.22827 |0.22186 | 0.22625 |0.22827 | 0.21263 |0.21701 | 0.21442 |0.21482 | 0.21244 | 0.21660 |0.21224 | 0.21461
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Table 2. Interspecific genetic distance (Kimura 2-parameters) and standard error values of five Scorpaena species with the outgroup.

S. elongata S. maderensis S. notata S. porcus S. scrofa D. brachypterus
S. elongata 0.0123 0.0161 0.0157 0.0093 0.0228
S. maderensis 0.0936 0.0164 0.0163 0.0141 0.0239
S. notata 0.1353 0.1569 0.0094 0.0155 0.0217
S. porcus 0.1277 0.1517 0.0598 0.0158 0.0211
S. scrofa 0.0527 0.1187 0.1334 0.1320 0.0204
D. brachypterus 0.2369 0.2685 0.2262 0.2143 0.2145

Lower left diagonal: Genetic distance; Upper right diagonal: standard error values.
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Hap4 MZ673820 |
JN312280.1 | Dendrochirus brachypterus
(Outgroup)

Scorpaena porcus

Figure 2. Phylogenetic tree based on Neighbour Joining method analysis of COI gene for five Scorpaena species and their haplotypes.
Only bootstrap values greater than 50 were shown (1000 replicates). D. brachypterus was used as an outgroup.

sister group to S. elongata. Also, S. maderensis was the
sister lineage of this group (Figure. 2). Besides, aligned
sequences of the Scorpaena species in the study were
compared with existing data from the barcode of life data
(BOLD) and GenBank databases. The dataset for COI
included 18 individuals sequenced by this study and 65
individuals from BOLD and GenBank (COI sequences,
652 bp) belonging to 27 Scorpaena species (Figure. 3).
NJ tree was constructed under the assumption of the
Kimura 2 parameter model to evaluate the phylogenetic
relationships among Scorpaena species (Figure. 3).
Barcode gap and threshold values were calculated
according to Kimura 2 parameters, and no overlap
was found between intraspecific and interspecific
genetic distances in the five Scorpaena species (Table 3).

According to these results, the highest intraspecific and
lowest interspecific threshold values of S. elongata were
determined as 0.003074 and 0.052731, respectively (Table
3). Besides, the highest intraspecific and lowest interspecific
threshold values of S. maderensis were determined as
0.023413 and 0.052731, respectively (Table 3). Moreover,
the highest intraspecific and lowest interspecific threshold
values of S. notata were determined as 0.010840 and
0.052731, respectively (Table 3). Furthermore, the highest
intraspecific and lowest interspecific threshold values
of S. porcus were determined as 0.006180 and 0.052731,
respectively (Table 3). Besides, the highest intraspecific
and lowest interspecific threshold values of S. scrofa were
determined as 0.006170 and 0.052731, respectively (Table
3).
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KC501408.1 Turkey
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Figure 3. Phylogenetic tree based on Neighbour Joining method analysis of COI sequences of Scorpaena species obtained in the present
study and found in GenBank and BOLD Systems. Only bootstrap values greater than 50 are shown. D. brachypterus was used as an
outgroup.
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3.2. Morphometric analysis
Descriptive statistics regarding the left and right otolith
measurements and shape indices of the five Scorpaena
species are present in Table 4. No significant differences
were observed between the otolith morphometric
measurements of females and males in the Scorpaena
species (t-test, p > 0.05). Since the difference between right
and left otoliths in most of the otolith measurements and
shape indices for Scorpaena species was found statistically
significant (Paired-t test, p < 0.05), the left and right otoliths
of both sexes were pooled and used in the present study.
One-way ANOVA results on the otolith measurements
and shape indices showed that all the variables significantly
differed among Scorpaena species (p < 0.05; Table 4).
Average shapes of the otoliths were reproduced
by Principal Components Analysis (PCA) using the
Fourier descriptors and otolith shape indices with the
morphometric measurements. The first eleven principal

components of the analysis were significant, and they were
selected to construct the discriminant functions in the
study. They were displayed detailed differences for each
Scorpaena species (Figure. 4).

UPGMA cluster analysis, using Euclidean distance, for
otolith shape clearly distinguished the Scorpaena species.
The dendrogram is based on Fourier coefficients and six
otolith shape indices with four otolith morphometric
variables (Figure. 5). Five Scorpaena species examined as
a result of cluster analysis formed two groups. In the first
group, the S. porcus lineage separated from the S. notata.
In this second group, S. maderensis is also separated
from S. elongata and S. scrofa (Figure. 5). The canonical
discriminant analysis explains the interspecific variability
among Scorpaena species based on the otolith shape indices
with otolith measurements and otolith Fourier coefficients.
The first four canonical discriminant functions (F1:49.1%,
Wilks A=0.010, p < 0.001; F2:40.3%; Wilks A=0.068, p <

Table 3. Intraspecific and interspecific genetic distances (Kimura 2-parameters) and their descriptive statistical values used for the

barcoding gap of the five Scorpaena species.

Intraspecific
Interspecific

S. elongata S. maderensis S. notata S. porcus S. scrofa
Average 0.001537 0.011665 0.005734 0.003638 0.003079 0.116184
Standard Deviation 0.001255 0.010540 0.003540 0.001982 0.002520 0.036048
Standard Error 0.000627 0.005270 0.001340 0.000598 0.001260 0.011399
Minimum 0 0 0 0 0 0.052731
Maximum 0.003074 0.023413 0.010840 0.006180 0.006170 0.156985

Table 4. Descriptive statistics of left and right otolith measurements and shape indices (Mean+SD) with Tukey’s HSD comparisons for

the five Scorpaena species.

Species OA OL oP ow AR EL FF RD C R

S. elongata 12.7942.62° | 6.59+0.64° | 16.35+1.85¢ | 2.82+0.27¢ | 2.34£0.10° | 0.40+0.02¢| 0.59+0.04* | 0.37+0.03" | 21.20+1.26¢ | 0.67+0.03"
S. maderensis 8.73+0.72¢ |5.72+0.14° | 14.27+0.54¢ | 2.25+0.10° | 2.55+0.11° | 0.44+0.02* | 0.54+0.05" | 0.34:0.02" | 23.47+2.26° | 0.68+0.05°
S. notata N 11.67+2.97¢ | 7.76+1.02" | 16.85+2.14" | 3.37+0.46" | 2.31+0.18° | 0.40£0.02¢| 0.49+0.04¢ | 0.23+0.02¢ | 25.59+1.99* | 0.42+0.04¢
S. porcus :% 11.02+1.334 | 6.42+0.52¢ | 16.64+1.08"| 2.51+0.22¢ | 2.56+0.16" | 0.42+0.02° | 0.49+0.03¢ | 0.33+0.03¢ | 25.52+1.50*"| 0.66+0.07°
S. scrofa E 23.7142.79* | 9.36+0.67° | 24.33+2.02* | 3.88+0.29* | 2.42+0.16° | 0.41£0.03¢ [ 0.51+0.05° | 0.34+0.03%| 25.12+2.47° | 0.65+0.05°
S. elongata 12.71+2.60° | 6.58+0.64° | 16.32+1.86¢ | 2.81+0.27° | 2.34+0.10° | 0.40£0.02¢| 0.59+0.04* | 0.37+0.03* | 21.28+1.29° | 0.67+0.03°
S. maderensis 8.76+0.72° |5.71+0.17¢ | 14.32+0.46% | 2.25+0.09¢ | 2.54+0.11* | 0.43£0.02* | 0.54+0.05" | 0.34+0.03" | 23.52+2.19° | 0.68+0.05°
S. notata z 11.70+2.98° | 7.76+1.02° | 16.88+2.19° | 3.37+0.47° | 2.31+0.17¢ | 0.40£0.02¢| 0.50+0.04¢ | 0.23+0.02¢ | 25.50+2.06° | 0.43+0.04°
S. porcus 2 11.03+1.34 | 6.41£0.55¢ | 16.62+1.12°| 2.52+0.22¢ | 2.55+0.17* | 0.4240.02° | 0.49+0.03¢ | 0.33+0.03¢ | 25.48+1.51° | 0.66+0.07°
S. scrofa p%o 23.67+2.79* | 9.36+0.69* | 24.28+2.00° | 3.86+0.30° | 2.43+0.16° | 0.42+0.03¢ [ 0.51+0.05° | 0.34+0.03" | 25.07+2.44° | 0.65+0.04°

OL: Otolith length; OW: Otolith width; OA: Otolith area; OP: Otolith perimeter; AR: Aspect ratio; EL: Ellipticity; FF: Form factor; RD:
Roundness; C: Circularity; R: Rectangularity. Values in rows with different superscript lower case letters are significantly different (p <

0.05).
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s

Figure 4. Average shapes of the otoliths in the five Scorpaena species,
based on mean Fourier descriptors. a) S. elongata, b) S. maderensis, c)

S. porcus, d) S. notata, e) S. scrofa.

0.001; F3:8.9%; Wilks A=0.400, p < 0.001; F4:1.8%; Wilks
A=0.826, p < 0.001) were used in the analysis. The CDA
produced an overall classification success rate of 96.3%
with the highest rate for S. scrofa (98.8%), followed by S.
maderensis (97.5%), S. notata (96.6%), S. elongata (94.6%),
and with the lowest rate for S. porcus (94.4%) (Table 5).

4. Discussion

Fishes of the Scorpaenidae are important for global fisheries
as well as in rocky-benthic-reef communities (Stewart
and Hughes, 2010). The genus Scorpaena is distributed
throughout the temperate and tropical seas of the world
(Hureau and Litvinenko, 1986; Froese and Pauly, 2021).
It is known that Scorpaena species are difficult to identify
at the species level using visual observation alone, due to
coloration similarities and overlapping morphological
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features in different habitats (Hureau and Livtinenko, 1986;
Akalin et al., 2011; Froese and Pauly, 2021). For instance,
S. porcus can be confused with other Scorpaena species in
terms of both coloration and morphological characters. S.
porcus was known as the black scorpionfish, but in a study
conducted in the eastern English Channel, a sample of a
red-colored fish was reported to be molecularly S. porcus
species (Mahé et al., 2014). Besides, there were overlaps
in dorsal fin rays and morphometric features of Scorpaena
species (Akalin et al.,, 2011; Froese and Pauly, 2021), and
these overlaps were more common in juvenile samples
(Akalin et al., 2011). Insufficient work was done for the
identification and discrimination of Scorpaena species on
Turkish coasts. Hence, the current study was focused on
the discrimination and identification of Scorpaena species
in the different localities of Turkish coasts. The species
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Figure 5. The dissimilarity of Scorpaena species based on the Euclidian distance,
grouping by hierarchical cluster analysis (UPGMA).

Table 5. Cross-validated classification matrix of the canonical discriminant functions between Scorpaena species

base on the otolith shape analysis.

Species S. elongata S. maderensis S. notata S. porcus S. scrofa
S. elongata 94.6(227) 0 0 0 5.4(13)

S. maderensis 2.5(6) 97.5(234) 0 0 0

S. notata 0 0 96.6(309) 3.4(11) 0

S. porcus 0 5.6(18) 94.4(302) 0

S. scrofa 1.2(3) 0 0 0 98.8(237)
Overall classification success is 96.3%.

The correct classifications percentages and numbers are in bold; the number of individuals is given in parentheses.

identification and phylogenetic relationships based on
traditional and molecular methods are mostly compatible,
and they perform together to give more harmonious results
(Ward et al., 2005). Therefore, in this study, molecular
and otolith shape analyzes were used together for the
discrimination and identification of five Scorpaena species
from the Black Sea, Sea of Marmara, Mediterranean Sea,
and the Aegean Sea. To the best of our knowledge, this
is the first study to distinguish five Scorpaena species
sampled from eight sites in four seas by both otolith shape
and molecular analysis.

S. elongata, S. scrofa, S. notata, S. maderensis, and S.
porcus species belonging to the Scorpaenidae family
were investigated by 16S rDNA sequences from the
Mediterranean Sea (Turan et al.,, 2009). However, there
is no detailed comparison of these species on the Turkish
coast of these four seas with respect to the COI gene
region. The mitochondrial cytochrome oxidase subunit
I (COI) is considered one of the most reliable genes for
the discrimination and identification and characterization

of many animals, such as fish (Hebert et al., 2003; Ward
et al.,, 2005). There is a great deal of data in molecular
databases on the COI gene regions of Scorpaena species
such as S. notata, S. porcus, and S. scrofa. However, the COI
sequences data of S. maderensis and S. elongata species are
not currently available in GenBank nor BOLD database.
This study provides evidence that the COI gene could be
an effective tool to discriminate the five Scorpaena species
distributed in four Turkish seas. In the present study,
five Scorpaena species from Turkish coasts were found
genetically distinct from each other based on COI a gene
sequence.

Turan et al. (2009) investigated the systematic status
of S. elongata, S. maderensis, S. notata, S. porcus, and §.
scrofa by using mitochondrial 16S rDNA from Iskenderun
Bay in the Mediterranean Sea. According to the 16S rDNA
molecular analysis of thirteen individuals sampled from the
iskenderun Bay in the Mediterranean, it was reported that
there were six haplotypes in total, two from the S. elongata
species and one each from the Scorpaena species. Turan
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et al. (2009) reported the lowest genetic divergence was
detected between S. notata and S. porcus, while the highest
genetic divergence was detected between S. maderensis
and S. notata. According to the molecular analysis results
of the COI gene regions of the five Scorpaena species
evaluated in the present study, it was determined that
the closest species were S. elongata and S. scrofa, and the
most distant species were S. maderensis and S. notata
(Table 2, Figure 2). However, according to mitochondrial
16S rDNA analysis, in a study conducted on Scorpaena
samples from the Pula (Croatia), S. porcus and S. scrofa
were phylogenetically close species, while the S. notata
was the distant one (Saju et al., 2014). Arculeo and Brutto
(2014) compared the mitochondrial 12S rRNA regions
of S. notata, S. porcus, and S. scrofa from Mediterranean
waters. In that study, the most distant species were S.
scrofa and S. porcus, and the closest species were S. notata
and S. scrofa, contrary to Saju et al’s (2014) study. In the
present study, it was concluded that among these three
Scorpaena species (S. notata, S. scrofa, and S. porcus), the
closest species are S. notata and S. porcus, while S. scrofa is
quite different from these species. When the current study
is compared with the two studies mentioned above, it is
thought that these differences are caused by habitat and
genetic region differences other as well as environmental-
ecological factors.

A BOLD and GenBank evaluation revealed that the
COI sequence of the Scorpaena species examined in the
present study was quite similar to the previously published
sequence (Figure. 3). As a result of the evaluation of the
phylogenetic relationship of 83 individuals from 27 species
belonging to the genus Scorpaena from different habitats
in many countries, it was revealed that there were deep
divergences between species and minimal differences
within species (Figure. 3). In the Mediterranean and
Aegean seas, several barcoding studies have been carried
out on S. scrofa and S. porcus species among Scorpaena
species (Keskin and Atar 2013; Landi et al., 2014). The
mean genetic intraspecific distances of S. elongata, S.
maderensis, S. notata, S. porcus, and S. scrofa species
evaluated in the present study are 0.001537, 0.011665,
0.005734, 0.003638, and 0.003079, respectively. Keskin
and Atar (2013) reported the mean intraspecific genetic
distance from 0.040 to 0.062 for S. scrofa specimens. In
previous DNA barcoding studies on fish species, the
mean intraspecific genetic distance was calculated as
< 1% (Ward et al., 2005; Hubert et al., 2008; Nwani et
al., 2011). For instance, Rasmussen et al. (2009) made
molecular analyzes based on the COI gene region of six
Oncorhynchus species such as O. tshawytscha, O. nerka, O.
keta, O. kisutch, O. gorbuscha, and O. mykiss distributed in
North America. The intraspecific genetic distance values
for these six Oncorhynchus species were ranged from 0.04
to 0.40 (Rasmussen et al., 2009).
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Many studies have reported that a good barcode should
have a greater interspecific distance than intraspecific
variation and exhibit a pattern commonly known as the
barcode gap (Hebert et al., 2003; Meyer and Paulay 2005;
Hajibabaei et al., 2007). Investigators have recommended
that the genetic distance between species should be much
greater than the intraspecific genetic distance, and species’
limits are based on an average genetic distance of >2%
among individuals in different species (Hebert et al., 2003;
Ward, 2009). For the five studied Scorpaena species in the
present study, the interspecific distances were greater than
0.02 and they were ranged from 0.052731 to 0.156985.
Besides, for the five Scorpaena species studied in our study,
the genetic distance between species was found to be
considerably greater than the intraspecific genetic distance
(Table 3). According to our data set, no intraspecific-
interspecific distance overlap was detected, and a distinct
barcoding gap was found between interspecific and
intraspecific distances in each Scorpaena species. Similar
results were observed by Keskin and Atar (2013), who
studied the commercially important fish species in Turkey.
Results of the current study indicate that the COI gene
sequence can be effectively used to identify the five species
of genus Scorpaena by DNA barcoding.

In the literature reviews, it was determined that
otoliths are used intensely in studies on the age and
growth characteristics of species belonging to the genus
Scorpaena (La Mesa et al., 2010; Sahin et al., 2019). Many
studies were conducted in the last two decades claim
that otolith characteristics are genetically encoded for
some fish species and therefore they were stated to have
phylogenetic signals (Tuset et al., 2008; Teimori et al.,
2014; Tuset et al, 2016). Otoliths are species-specific
bony structures, and they are used to discriminate fish
species and stocks in many studies (Tuset et al., 2008;
Bostanci et al., 2015; Bostanci and Yedier, 2018; Yedier,
2021). Similarly, in our study, it was observed that otoliths,
among five Scorpaena species, can be used in species
discrimination, thanks to their unique characteristics.
When the mean values of the otolith shape indices of these
five Scorpaena species are evaluated comparatively, the
aspect ratio value is the smallest in the S. notata and the
largest in the S. porcus. The ellipticity value is the smallest
in the S. elongata and the highest in the S. maderensis. The
form factor value is the smallest in the S. notata and S.
porcus and the highest in the S. elongata. The roundness
value is the smallest in the S. notata and the highest in
the S. elongata. The circularity value is in the smallest S.
elongata and the highest in S. notata. The rectangularity
value is the smallest in the S. notata and the highest in the
S. maderensis. There is a limited number of studies on the
use of otoliths in intraspecific discrimination of Scorpaena
species. Intraspecific discrimination was made on both
left and right otoliths values of S. porcus from Hammam
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Fiber, Rafraf, and Djerba areas on the Tunisian coast.
In that study, the otoliths can be used to discriminate S.
porcus populations from the Tunisian coast (Trojette et al.,
2014). Although some morphological and morphometric
data of the otoliths of the five Scorpaena species examined
within the scope of the study were given in the otolith
atlas of Tuset et al.(2008), no study was found in the
literature on the interspecific differentiation of Scorpaena
species, which were evaluated in detail using otolith shape
analysis. In the present study, the otolith shape analyses,
including otolith shape indices with otolith morphometric
measurements and Fourier coefficients, demonstrate the
obvious interspecific variation of sagittal otolith shape
and provide an eflicient tool for the discrimination and
identification of five Scorpaena species. Wilk lambda
(\) value varies between 0 and 1, and the better the
discriminating power of the CDA is when it is close to 0
(Pothin et al.,, 2006). In the current study, the Wilk lambda
(\) values are determined as 0.010, 0.068, 0.400, and 0.826.
These lambda values also support high accuracy in species
discrimination. In the present study, the CDA performed
on the otolith harmonics and shape indices produced the
correct classification of the five species as high as 96.3%.
Similarly, high accuracy was reported in many studies
with different fish species such as Sebastes (Zhuang et al.,
2015), Alburnus (Bostanci et al., 2015), Sicyopterus (Lord
et al., 2012), and Caspian gobies (Bani et al., 2013). Such
high accuracy indicates that there is clear discrimination
between these five Scorpaena species based on otolith
shape. It also provides robust evidence for the validation
of these species. The data collected in the current study,
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