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1. Introduction
Oithonids are small cyclopoid copepods under 1 mm in 
size that are distributed throughout the world’s oceans 
(Nishida, 1985). They are primary consumers in marine 
ecosystems and provide a food source for higher trophic-
level animals. Oithona davisae Ferrari and Orsi, 1984 
occasionally inhabits eutrophic bays and coastal areas 
(Nishida, 1985; Uye and Sano, 1995). Although it is 
indigenous to the seas of Japan and China and other coastal 
areas (Hirakawa, 1988), it is an invasive species along the 
west coast of the United States (Ferrari and Orsi, 1984). 

Oithona davisae (Copepoda: Cyclopoida) is an alien 
species recently introduced to the Black Sea. Several 
specimens were first found in Sevastopol Bay in 2001 
(Zagorodnaya, 2002). Since 2005, this species has been 
routinely observed and has even dominated (during 
warm seasons) in Sevastopol Bay and the nearest coastal 
ecosystems (Gubanova and Altukhov, 2007; Selifonova, 
2009; Altukhov et al., 2014). It was registered later along 
the Romanian (Timofte and Tabarcea, 2012), Bulgarian 
(Mihneva and Stefanova, 2013), Georgian (Shvelidze, 
2016), and Turkish (Üstün and Terbıyık Kurt, 2016; Yıldız 
et al., 2017) coasts of the Black Sea. In 2014, O. davisae was 
first found in the subsurface layers of the Sea of Marmara, 

which are formed by Black Sea water (Doğan and Işinibilir, 
2016). The assumption that O. davisae has been transferred 
from the Black Sea to the Sea of Marmara can be confirmed 
by the coincidence of morphological and physiological 
characteristics of females; in addition, the same population 
structure of this species was synchronically studied in 
both seas (Isinibilir et al., 2016). Since O. davisae did not 
occur in European seas until 2003 (Saiz et al., 2003), one 
can suggest that the species was transported into the Black 
Sea with ship ballast waters, probably from southeastern 
Asia (Gubanova et al., 2014), where this copepod is 
prevalent (Ohtsuka and Nishida, 2017). Despite the fact 
that O. davisae is a warm-water species (Uye and Sano, 
1995), it has successfully acclimatized in the cold Black 
Sea due to its ability to survive low temperatures in the 
state of fertilized quasi-diapausing females (Hubareva 
and Svetlichny, 2013; Svetlichny et al., 2016), which 
can produce a new generation after the spring rise in 
temperature. The periods of seasonal succession of the O. 
davisae population in Sevastopol Bay were determined 
by Altukhov et al. (2014), Seregin and Popova (2016), 
and Svetlichny et al. (2016). The first period, from the 
middle of May until August–September, was characterized 
by an increase in the percentage of offspring at a low 
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population density for O. davisae. During the second 
later summer–autumn period, the abundance of this 
species reached the maximum value; during winter–early 
spring, the population density sharply decreased. It was 
shown that exclusive use of plankton nets did not allow 
proper analysis of the population dynamics of the small 
cyclopoid O. davisae due to pronounced underestimation 
of the number of early copepodite stages (Svetlichny et al., 
2016). A quantitative analysis of the abundance of nauplii 
may only be carried out by using bottle sampling. 

In the present paper, the results of long-term (2013–
2016) weekly studies of the dynamics of all developmental 
stages of O. davisae, sex composition of late developmental 
stages, fecundity, and mortality in Sevastopol Bay are 
reported. On the basis of these field data, an attempt to 
reveal the main seasonal and interannual relationships of 
population dynamics and to determine the duration and 
number of generations produced by O. davisae during 
the year was made. Adaptive changes in the life cycle of 
this species after its introduction into the Black Sea are 
discussed.

2. Materials and methods 
2.1. Sampling
Zooplankton samples were collected weekly by integrated 
horizontal tows of 20 m in warm seasons and 40 m in 
cold seasons, from a depth of 0.5–1.0 m with a speed of 
about 0.5 m s–1 using a plankton net (mouth diameter 
0.3 m, mesh size 100 µm) from 14 January 2013 until 27 
December 2016 at a permanent station with a depth of 3 
m located opposite the exit of Sevastopol Bay (Svetlichny 
et al., 2016). Beginning on 8 August 2014, synchronous 
seawater samplings were conducted by gradually filling a 
6-L plastic bottle along the net track from the same depth 
to determine the precise number of nauplii and early 
copepodite stages of O. davisae. 

The samples were concentrated in a 20-mL volume 
beaker using inverse filtration through a sieve (mesh 
size 20 µm). After filtration, dead O. davisae (immobile 
specimens with signs of decomposition) that had 
aggregated at the bottom of the beaker were counted 
and removed. To reduce motility of live copepods and to 
prevent ovigerous females from dropping egg sacs, the 
individuals were anesthetized by magnesium chloride 
solution (final concentration of 9 g L–1). After that, 
the numbers of live immobile ortho- and metanauplii, 
copepodites I–V (the sum of CI and CII and separately 
CIII, CIV, and CV), adult females and males, ovigerous 
(with ovisacs) females, and eggs in egg sacs (clutch size) 
were counted in all samples, or in 1/4–1/12 subsamples 
(if the number of animals exceeded ~800 and 2000 
individuals in the sample, respectively) using a Bogorov 
chamber under a dissecting microscope. 

2.2. Calculation of the population density of different 
developmental stages
The numbers of O. davisae copepodites and adults 
were calculated using the net retention coefficient (K) 
calculated as the mean bottle/net ratio (K = Nb/Nn) 
between the density of individuals collected with the bottle 
container (Nb, ind m–3) and the density of individuals 
collected by the net (Nn, ind m–3) for each stage during all 
studied periods. Using the mean net retention coefficient 
minimizes the effect of random factors (for example, 
nonuniform distribution of organisms in the water) on 
separate hauls using the net and bottles. Mean values of 
К (n ≈ 70) amounted to 5.7 ± 2.9 for CI and CII, 2.8 ± 1.8 
for CIII, 2.1 ± 1.1 for CIV, and 1.5 ± 0.4 for F, M, and CV 
with close body size. The propriety of using the constant 
net retention coefficients may be confirmed by the linear 
correlation (R2 = 0.89–0.95) between Nn and Nb (Figure 1) 
within the wide range of densities (200–200,000 ind m–3) 
of different fractions of O. davisae.

The density of nauplii was calculated from the field 
samples collected with the bottles. To determine the 
size of copepods, the prosome length, total body length, 
and width were measured dorsally to the nearest 5 µm 
in randomly selected anesthetized specimens under a 
light microscope using an eyepiece micrometer at 210× 
magnification. 

Sex differences in O. davisae copepodites V were 
determined using the sex variations described in the 
closely related O. brevicornis (see Uchima, 1979).  
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Figure 1. Relationships between the total densities (ind m–3) of 
females, males, and copepodites V ( ), early copepodites I–II (◊), 
and late nauplii ( ) collected with the net and bottle sampler.
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2.3. Estimation of the egg production of O. davisae fe-
males in the field 
The average egg production rate (AEPR, eggs female–1 day–

1) in situ was calculated on the basis of the field net samples 
using the modified equation of Uye and Sano (1995):

AEPR = CS × OF × TF-1 × DE
–1,

where CS is the clutch size (eggs female–1), OF is the number 
of ovigerous females, TF is the number of total females 
(females m–3), and DE is the embryonic development time, 
calculated as:

DE = 1.31 × 104 × (T + 12.3)2.6 (Uye and Sano, 1995),
where T is the temperature (°C). 

Statistical evaluation of the data was conducted by a 
one-way analysis of variance and Student’s t-test. Values 
presented in the figures and tables are means ± SD.

3. Results  
According to the pronounced dynamics of the abundance 
of copepodite stages (Figure 2A), age composition, 

physiological state of females, and egg production (Figures 
2B–2D), and the numbers of ortho- and metanauplii 
(Figure 3) during the studied period, four phases of the 
annual cycle of O. davisae in Sevastopol Bay were recorded. 

1) The latent period was from April until July–August. 
The surface temperature increased from 8–10 °С up to 
the maximum values (27.5 °С in August 2014 and 2015); 
however, the population density was relatively low. Total 
abundance of copepodites and adults (TCS) did not 
exceed 8 ind × 103 m–3, except at the beginning of summer 
2016, when the number of TCS and total population 
abundance with nauplii (TP) rose to 28 and 124 ind × 103 
m–3, respectively. Nevertheless, during this initial annual 
cycle phase, the share of ovigerous females (up to 50%), 
clutch size (22 ± 3 eggs female–1), and egg production rate 
(up to 6 eggs females–1 day–1) reached maximum levels. 
At the end of May–June, the first maximum of the share 
of males among adults (Figure 4A), varying from 33% in 
2014 to 66% in 2015, was observed. 
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Figure 2. Interannual and seasonal population dynamics during 2013–2016: A) number of copepodites and adults, ind 103 m–3 
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2) The phase of the maximum population growth from 
August–September until November–end of December was 
accompanied by a decrease in egg production characteristics 
(Figure 2C), while the temperature gradually reduced to 
10–12 °С. Two or three annual peaks in the numbers of all 
copepodite developmental stages, associated with peaks in 
the numbers of nauplii, were registered during that period. 
In 2013, the maximum number of TCS reached 32.5 ind 
× 103 m–3, while the mean number from September until 
December amounted to 14.5 ± 10.6 ind × 103 m–3. During 
the following 2 years, the maximum and mean numbers 
of TCS showed slight trends of increasing; in 2016, they 
elevated sharply up to 99.2 and 42.0 ± 29.8 ind × 103 
m–3, respectively (Figure 2A), while the total population 
abundance including nauplii was equal to 554 ind × 103 
m–3, with the mean value of 216.3 ± 167.4 ind × 103 m–3 
for the period of reproduction (Figure 3). At the end of 
this phase and the beginning of the following one, the 
maximum mortality of females, second peak of the share of 
males (about 40% of the number of adults), and maximum 
mortality of males (Figure 4B), varying from 15% in 2013 
to 37.5% in 2014, were observed.  

3) The degradation of the population from the end of 
November–beginning of December until the middle of 
February–March was followed by the dramatic decrease 
in the total abundance of O. davisae to 228 ± 150 ind m–3 

and gradual elimination of adult males, copepodites, and 
nauplii from the population. 

4) Survival of fertilized females (Svetlichny et al., 
2016) occurred during the cold period of winter and the 
beginning of spring (7.5–9.5 °С). This phase of the life cycle 
decreased from 2.5 months (end of February–beginning of 
May) in 2013 to about 1 month (beginning–end of April) 
in 2016 (Figure 2A). During this period, ovigerous females 
with 1–6 eggs occurred rarely, while nauplii, copepodites, 
and adult males were absent.   

4. Discussion
Among the great number of cyclopoid copepods 
inhabiting the European seas and inner water bodies, only 
two species, Oithona similis and O. nana, occurred in the 
Black Sea up to the end of the 20th century. According 
to the model of the formation of copepod species 
composition in the Black Sea by its Mediterraneanization 
(Puzanov, 1967; Kovalev et al., 1999), the prognosis of 
possible changes in the biodiversity of copepods from this 
region at the present time did not include the invasion of 
other cyclopoid copepod species from the Mediterranean 
Sea to the Black Sea, at least not the stenohaline and 
osmoconformic representatives of the genus Oithona 
(Monchenko, 2001). In fact, O. davisae, transported into 
the Black Sea from the Indo-Pacific region (Gubanova et 
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al., 2014), has turned out to be a widely euryhaline species 
capable of osmoregulation within a salinity range of 12–40 
psu (Svetlichny and Hubareva, 2014). However, O. davisae 
is a typical estuarine thermophilic copepod. In the areas 
of its native habitat, the water temperature decreases to 
10 °С only for short periods (Uye and Sano, 1995), while 
in the Black Sea, the mean temperature does not exceed 8 
°С from February until the end of April. Since cyclopoid 
copepods are not able to produce resting eggs (Alekseev 
and Starobogatov, 1996), they cannot survive the cold 
season at the stage of diapausing eggs, as the invader A. 
tonsa (Gubanova, 2000) or other seasonal calanoid species 
can. No evidence of any diapause stage exists for copepods 
from the family Oithonidae (Marcus, 1996). Nevertheless, 
the unique ability of females of O. davisae fertilized in 
winter to keep the sperm alive in a spermatheca for 2.5 
months (Svetlichny et al., 2016) allows the birth of new 
generations at the spring temperature increase. The 
formation of such a type of reproduction may be due to, 
on the one hand, an adaptation to the periods when the 
population densities decrease to the critical minimum 
below which mate encounters are too rare to allow 
population maintenance (Kiørboe, 2006), and on the 
other hand the likely shorter lifespans of males, based on 
the high energetic cost of mating (Kiørboe, 2007; Ceballos 
and Kiørboe, 2011; Saiz et al., 2017). 

During 2013–2016, we established the trends of 
changes in population abundance and the duration of the 
overwintering period in females (Figure 2), which can 
be explained by the interannual variations in seasonal 

temperature dynamics (Figure 5). From January to the 
middle of April 2013, the minimum temperatures (not 
higher than 8 °С) were recorded, which were close to 
2005–2009 values (Svetlichny et al., 2016). In 2014–2016, 
the winter–spring temperatures were 1.2 ± 0.8 °С higher 
than those in 2013, which seemed to result in slower 
elimination of early developmental stages, decrease in 
the duration of the wintering phase of fertilized females, 
and earlier start of spring–summer latent phase in the 
population development. At the end of July–beginning of 
August 2014–2016, and from the middle of September to 
the middle of October, the water temperatures were 1.7 
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± 0.6 °С and 3.0 ± 1.9 °С higher, respectively, than those 
in 2013. This led to earlier attainment of the maximum 
population abundance and higher absolute total number of 
O. davisae, especially in early October 2016 (554 ind × 103 
m–3), when due to an abnormally high water temperature 
(25–26.5 °С) from the middle until the end of June, the 
total population abundance amounted to 124 ind × 103 m–3 

while the number of copepodites and adults was equal to 
27 ind × 103 m–3, which was close to the peak abundance of 
these stages (32.5 ind × 103 m–3) during the September and 
November maximums in 2013. 

A similar correlation between the rise in the mean 
temperature and the increase in the mean annual number 
of O. davisae was observed during 2010–2015 near the exit 
of Sevastopol Bay by Seregin and Popova (2016). Based 
solely on bottle sampling (1–6 L), the authors reported the 
2-year cycle changes in the maximum seasonal numbers of 
O. davisae in Sevastopol Bay. 

A maximum number of O. davisae was registered by 
Seregin and Popova (2016) in September 2014 (1250 ind 
× 103 m–3). In September 2014, we also recorded the peak 
abundance, which was significantly lower (345 ind × 103 
m–3), probably due to the differences in location and depth 
of the stations. According to Seregin and Popova (2016), 
88%–93% of the total population number in the period 
of its maximum development consisted of the nauplii. 
These data are in agreement with our results. Moreover, 
according to our study, among the nauplii the mean 
annual share of orthonauplii amounted to 77.8 ± 19.1%, 
reaching 90% during the periods of maximum population 
abundance. Similar to this finding, among copepodites 
and adults the mean annual share of copepodite stages I–
III constituted 47.6 ± 29.4% (taking into account the net 
retention coefficients) and increased up to 90% during the 
reproductive period.  

One can suggest that during the earlier long-term 
studies in Sevastopol Bay (Altukhov et al., 2014) using net 
hauls with a mesh size of 150 μm (when only the adults 
and copepodites IV–V were registered), not more than 
10% of the O. davisae population was analyzed. According 
to these authors, the maximum number of preadults and 
adults in 2005–2009 varied from 21 to 91 ind × 103 m–3. 
Consequently, during that period, the population density 
of O. davisae may have exceeded 1 million ind m–3 due to 
uncounted nauplii and early copepodite stages.

The accelerated growth of the O. davisae population in 
the summer periods of 2014–2016 after a latent period of 
development was due to a sharp increase in the number 
of nauplii, which is an attribute of opportunistic species 
using the r-reproduction strategy. The r-strategists are 
characterized by higher fecundity rates. However, an egg-
carrying species such as O. davisae has a relatively low egg 
production rate, which is a typical element of k-strategy. 

That low egg production rate probably explains the sharp 
aging of the population and a decrease in density upon the 
arrival of winter.

A small number of fertilized females that had survived 
winter (not more than 300 ind m–3 in the studied area) 
began to produce eggs in egg sacs in the middle of March 
at the stable temperature of about 10 °C. After this peak 
in abundance, the first peak of the number of nauplii 
was observed in April, and then peaks in the numbers 
of all copepodite stages were registered. Since the period 
of laying eggs was synchronized with the temperature, 
we recorded the chain of consistent generations during 
all developmental periods. For example, based on the 
alternation of the peak numbers of different developmental 
stages shown in Figure 6, we distinguished three first 
generations of O. davisae in 2014.    

The convenience of this approach is due to the fact 
that the contribution of any developmental stage to the 
population does not depend upon random variations 
in its number. The number of generations of O. davisae 
during 2014–2016 interpreted using the same approach is 
shown in Figure 7. Since the samples were collected every 
7 days, the inaccuracy of the evaluation did not exceed 
±3.5 days. 

The analysis conducted allowed distinguishing 4 
generations in the latent period of 2014–2016 with a 
duration of 60 days at low temperatures from March 
until May, and with the duration of 21 days at the high 
temperatures before the beginning of the phase of 
maximum population growth (Figure 7), 3–4 generations 
in the peak number period from 3 to 4 weeks (probably 
less than 3 weeks, but the frequency of sampling prohibited 
more precise determination), and 2–3 generations in 
winter, with a duration of 76 days. According to our 
estimation, O. davisae produced 10–11 generations in 
Sevastopol Bay during the reproductive period. The mean 
generation time from egg to adult (Dg) significantly 
decreased from 61 ± 12 to 22 ± 3 days while the mean 
temperature when the generation developed increased 
from 9.1 ± 0.5 to 25.6 ± 0.9 °С, in accordance with the 
equation of Beleradek:  Dg = 39430(T+15)–2.05. 

At the low temperature of 10 °С, the Dg obtained in 
our study slightly exceeded the Dg of O. davisae from 
Fukuyama Harbor and Tokyo Bay (56.2 and 44.4 days, 
respectively) (Uye and Sano, 1998), but was about 2-fold 
higher at the high temperature (Figure 8). This discrepancy 
may be explained on the one hand by overestimation at 
the high temperature in our study (due to an insufficient 
frequency of samplings), or on the other hand by the 
fact that the values reported by Uye and Sano (1998) 
were obtained using individuals of O. davisae reared at 
a stable temperature and under food-satiated laboratory 
conditions. 
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Figure 6. Shares (%) of females with egg sacs in the total number of females ( ), nauplii 
in the total population abundance (- - - -), and CI + II ( ), CIII ( ), CIV ( ), and CV 
( ) in the total number of copepodites during the first three generations of Oithona 
davisae in March–July 2014.

F
CV
CIV
CIII
CI+CII
N
Fe g g s

D
ev

el
op

m
en

t s
ta

ge
s

F
CV
CIV
CIII
CI+CII
N
Fe g g s

Months

F
CV
CIV
CIII
CI+CII
N
Fe g g s

J     F   M   A    M   J     J     A   S    O   N   D   
�
�

A

B

C

Figure 7. Number of generations in Oithona davisae in 2014 (A), 
2015 (B), and 2016 (C) distinguished on the basis of the maxi-
mum share of ovigerous females (Feggs, % of the total number of 
females), nauplii (N, % of the total population number), early 
copepodites of I and II stages (CI + II, % of the total number 
of copepodites), copepodites of III–V stages (CIII, CIV, and CV, 
respectively, % of the total number of copepodites), and females 
(F, % of the abundance of all copepodite stages). The solid lines 
show the succession of developmental stages within one gen-
eration (bold lines indicate the generations with the maximum 
numbers). The dotted lines show the relations between the gen-
erations.

10 15 20 25 30
Te mpe ra ture , °C

10

20

40

60

80

8

G
en

er
at

io
n 

tim
e,

 d
ay

s

D=39430(T+15)-2.05

Y = e xp(-0.060 * X) * 97.8

Figure 8. Relationships between the mean generation time and 
the mean development temperature in Sevastopol Bay ( ) and 
Fukuyama Harbor (----) (Uye and Sano, 1998).



SVETLICHNY et al. / Turk J Zool

691

The dinoflagellate Oxyrrhis marina and some ciliates 
are known to be the main components of O. davisae’s 
natural diet (Saiz et al., 2014). Therefore, successful 
development of this species in the Black Sea in the period 
when the share of the small phyto- and zooflagellates in 
the phytoplankton community increased (Nesterova 
et al., 2008) may not be accidental. Nevertheless, that 
component of the microplankton community seems 
not to be sufficient for O. davisae to gain the same rates 
of growth and production in the Black Sea as in Japan’s 
inner seas (Uye and Sano 1995, 1998). Additionally, there 
are differences in the seasonal character of the population 
dynamics of O. davisae in Sevastopol Bay and Fukuyama 
Harbor. According to Uye and Sano (1995), the main 
period of O. davisae population development in Fukuyama 
Harbor starts in June, just after the phytoplankton bloom, 
while in the Black Sea the maximum number of the same 
species can be observed not earlier than August. The 
first maximums of the share of ovigerous females (about 
50%) in both bays were registered in April–May. The 
maximum clutch size in Fukuyama Harbor was reported 
in May–June (about 30 eggs female–1) and agreed with the 
maximum number of females, while in Sevastopol Bay two 
peaks were recorded, in May–June (22 ± 3 eggs female–1) at 
the extremely low population density and in October (up 
to 15 ± 3 eggs female–1) at the highest population density 
(Figure 2). The egg production rate of Black Sea O. davisae 
depended on the temperature (Figure 9) to the same 
extent as for the same species in Fukuyama Harbor (Uye 
and Sano, 1995). However, in Fukuyama Harbor, the egg 
production rate reached the highest value (up to 11.6 eggs 
female–1 day–1) at the maximum abundance of O. davisae, 
while in Sevastopol Bay the maximum egg production rate 
(up to 6 eggs female–1 day–1) was observed at an extremely 
low population number during the latent period (Figure 
2). 

The latent character of the development of O. davisae 
during the spring–summer period indicates a potential for 
increase in the development period for 5 months. However, 
to achieve this, an increase in the winter temperature up to 
10 °С and a decrease in another environmental parameter 
that may inhibit the development of this species in spring 
and summer would be needed. Uye and Sano (1995) 
reported that in Fukuyama Harbor during midsummer, 
the O. davisae population is reduced due to predation by 

the lobate ctenophore Bolinopsis mikado. In the Black Sea, 
the population of O. davisae may be controlled by another 
lobate ctenophore, Mnemiopsis leidyi, which appeared 
in that region in the 1980s. This thermophilic species 
occurs in small numbers in the plankton even in winter 
and the beginning of spring. Depending on the time of 
seasonal increase in temperature, the development of M. 
leidyi begins in April (Louppova and Arashkevich, 2008) 
or May–June (Shiganova et al., 2014). The maximum 
annual abundance of this species near Sevastopol Bay 
was registered in July–August (Finenko et al., 2013). Such 
seasonal patterns in M. leidyi’s abundance may result in 
limiting the development of the O. davisae population 
in spring and summer or increasing the abundance of 
this copepod at the end of summer and autumn, when 
the population of M. leidyi is suppressed by the invasive 
predator ctenophore Beroe ovata. 
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