Effects of Selenium and Vitamin E Supplementation on Concentrations of Plasma Thyroid Hormones in Lambs

Mustafa NAZIROĞLU, Mehmet ÇAY
Fırat University, Veterinary Faculty, Department of Physiology, Elazığ-TURKEY

Veysel TAHAN
Süleyman Demirel Univ., Medical Faculty, Department of Biochemistry, Isparta-TURKEY

Ramazan BAL
Department of Physiological Sci. The Medical School, Newcastle, ENGLAND

Namık DELİBAŞ
Süleyman Demirel Univ., Medical Faculty, Department of Biochemistry, Isparta-TURKEY

Received: 27.11.1996

Abstract: An attempt was made to determine the effects of selenium and vitamin E supplementation on thyroid hormones in lambs. Sixteen Akkaraman lambs were used and divided equally into four groups. One group was used as a control. Second group was fed with selenium (sodium selenite, 0.3 mg kg\(^{-1}\) feed). Third group was fed with vitamin E (DL-\(\alpha\)-tocopheryl acetate, 250 mg kg\(^{-1}\) feed) and fourth group was fed with selenium (sodium selenite, 0.3 mg kg\(^{-1}\) feed) + vitamin E (DL-\(\alpha\)-tocopheryl acetate, 250 mg kg\(^{-1}\) feed) supplemented diet. Serum selenium, vitamin E and plasma thyroxine (T\(_4\)) and tri-iodo-thyronine (T\(_3\)) were measured at Ist, 5th, 10th weeks.

Levels of T3 were slightly increased and both levels of T4 and ratio of T4/ T3 were slightly decreased when vitamin E, selenium and vitamin E plus selenium were supplemented to the diets of lambs. The levels of serum vitamin E were significantly higher (p<0.01) in vitamin E and vitamin E plus selenium supplemented groups than that in the control group. However, the levels of serum selenium were significantly higher (P<0.05, P<0.01) in both vitamin E and selenium supplemented lambs than that of control.

Results in this study, there was no effects of selenium and vitamin E supplementation on plasma thyroid hormones in lambs. However, vitamin E had an increasing effect on serum selenium level, despite that selenium did not effect serum vitamin E levels.

Key Words: Selenium, vitamin E, thyroxine (T\(_4\)), tri-iodo-thyronine (T\(_3\)), Lamb.

Kuzularda Rasyona E vitamini ve Selenyum Katılmasıın Plazma Tiroid Hormonu Düzeyleri Üzerine Etkileri

Özet: Bu çalışmada kuzuların rasyonuna ilave olarak E vitamini ve selenyum katılmasıın plazma tiroid hormonları ile kan serumu E vitamini ve selenyum düzeyleri üzerine etkilerinin araştırılması amaçlandırıldı. Araştırmada onaltı Akkaraman kuzu kullanıldı ve dördür kuzudan oluşmuş üre düört grup oluşturuldu. Birinci grup kontrol grubu olarak kullanıldı. İkinci grupta kuzulara selenyum (0.3 mg sodyum selenit/ kg yem), üçüncü gruptaki kuzulara E vitamini (250 mg DL-\(\alpha\)-tokoferil asetat/kg yem), geriye kalan döger d kuzuya ise selenyum ve E vitamini kombinasyonu (0.3 mg sodyum selenit + 250 mg DL-\(\alpha\)-tokoferil asetat) içeren rasyon verildi. Tüm hayvanların 1., 5. ve 10. haftalarda kan örnekleri alınarak plazma ve serum örnekleri edildi. Alınan plazma örneklerinde toplam T\(_4\) ve T\(_3\) düzeyleri, serum örneklerinde ise E vitamini ve selenyum miktarları belirlendi.

Araştırmada, E vitamini ve selenyum uygulanan gruplarda plazma T\(_3\) düzeylerinin hafif düzeyde arttığı ve yine plazma T\(_4\) düzeyi ile T\(_4\)/T\(_3\) oranının hafif düzeyde azaldığı gözlandı. Rasyona E vitamini, E vitamini + selenyum ilave edilen gruptaki kuzularda serum E vitamini diğer gruplara göre ise arttı. Rasyona selenyum ve E vitamini ilave edilen üç grupta da serum T\(_3\) düzeyi yüksek bulundu (P<0.01). Bununla birlikte, kontrol grubuna kıyasla, rasyona selenyum ve E vitamini ilave edilen üç grupta da serum T\(_3\) düzeyi yüksek bulundu (P<0.05, P<0.01).

Araştırmada sonuç olarak; kuzuların rasyonuna ilave olarak E vitamini ve selenyum katılmasıın plazma tiroid hormonları düzeyi üzerinde etkisini olmadığı gözlandı. Bununla beraber, rasyona selenyum ilave edilmesinin kan serumu E vitamini düzeyi üzerinde etkisi yok iken, E vitamini katılmasıın kan serumu selenyum düzeyi üzerinde arttı. Bu etkisinin olduğu saptandı.

Anahtar Sözcükler: Selenyum, E vitamini, Tirosin (T\(_4\)), Tri-iodo-trronin (T\(_3\)), Kuzu.
Introduction

Thyroid hormones are necessary for maintenance of normal metabolic states in animals. Both under production and over production of tyroxine (T4) and 3', 5', 3'-tri-iodothyronine (T3) can be deleterious to health and thus it is essential to exert strict physiological control on thyroid hormone production (1).

Selenium and vitamin E are essential nutrients, closely and mutually involved in a variety of metabolic processes (2). The metabolic and clinical effects of selenium and vitamin E in ruminants reflect their similar but independent roles in protecting tissue membranes against damage arising from the end products of some oxidative processes. Selenium is required for the formation of the enzyme glutathione peroxidase, which destroys potentially toxic peroxides, while vitamin E is believed to act as a "scavenger" of any peroxidase that escapes destruction (2, 3).

A vitamin E and selenium deficiency will cause nutritional muscular dystrophy or white muscle disease in young ruminants (2), from which lambs and calves are most frequently affected, and in the congenital form death occurs before birth (3, 4).

A large number of factors effect thyroid hormone production, for example, vitamin A deficiency in rats has been reported to increase plasma T3, T4 and free thyroxine index (5) and when goats were fed with cobalt and vitamin B12 deficient diets for 23 weeks, serum T4 concentrations and free T4 concentration were found to increase (6). Selenium deficiency in chicks decreased circulating T4 and T3 concentrations (7). In rats fed with low tocopherol containing diets for a long period of time, functioning of the pituitary-thyroid system has been shown to be slowed down (8).

Kauf et al. (9) have identified Type I-iodothyronine-5'-deiodinase as a selenoenzyme containing one atom of selenium per molecule. This deiodinase is present in the thyroid, liver and kidneys, and there it plays a role in conversion of T4 into the active thyroid hormone T3. About 85% of T3 are produced in this way in the organism. Only 15% originate directly in the thyroid.

A large number of studies have been carried out concerning the effects of selenium and vitamin E deficiency on plasma T4 and T3 concentrations in mammals. However, there has not been any comprehensive work performed that relates to the effects of supplementation selenium and vitamin E to lambs diet on plasma T4 and T3. It was therefore decided to determine the effects of selenium and vitamin E supplementation on the levels of plasma thyroid hormones in lambs.

Table 1. Diet composition (%)

<table>
<thead>
<tr>
<th>Ingredients</th>
<th>Percent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pelleted white beet pulp</td>
<td>65.0</td>
</tr>
<tr>
<td>Clover, dried</td>
<td>16.2</td>
</tr>
<tr>
<td>Hay, wheat</td>
<td>16.1</td>
</tr>
<tr>
<td>Starch</td>
<td>1.0</td>
</tr>
<tr>
<td>Urea</td>
<td>1.0</td>
</tr>
<tr>
<td>Mineral mix*</td>
<td>0.1</td>
</tr>
<tr>
<td>Vitamin mix**</td>
<td>0.5</td>
</tr>
<tr>
<td>Sodium sulphate</td>
<td>0.1</td>
</tr>
</tbody>
</table>

* = in 5 kg mix: CaO 0.0161 gr., ZnO 1.492 gr., CuO 0.625 gr., CoCO3 0.0217 gr., MnCO3 2.272 gr., FeSO4 3.225 gr
** = in 5 kg mix: 5 gr. AD3, 0.416 gr. B1, 1.25 gr. B2, 0.625 gr. B6, 1.5 gr. Calpan, 2 gr. Niacin, 0.2 gr. B12, 0.25 gr. Biotin, 40 gr. Cholin Clorid

Materials and Methods

Sixteen Akkaraman lambs were used for the experimentation, which weighed about 30-34 kg and were aged 8-9 months at the beginning of the experiment. The lambs were equally divided into four group, as following: the first group, as control group, was fed with the diet given in Table 1.; the second group was fed as in group one but supplemented with selenium (sodium selenite, 0.3 mg kg-1 feed); the third group was fed as in group one but supplemented with vitamin E (DL-a-tocopheryl acetate, 250 mg kg-1 feed) and the fourth group was fed as in group one but supplemented with selenium (sodium selenite, 0.3 mg kg-1 feed) and vitamin E (DL-a-tocopheryl acetate, 250 mg kg-1 feed) supplemented diet.

Blood samples were obtained from vena jugularis by using vacationer tubes with or without anticoagulantly at Ist, 5th, 10th weeks. Plasma and serum samples were obtained from blood samples and plasma were used for the thyroid hormones determination and serum samples were used for the determination of vitamin E and selenium.

Total thyroid hormones, T3 and T4 were measured with radio-immunoassay; levels of vitamin E in feed and
serum samples were determined according to Kayden et al. (10) and Konning et al. (11); feed and serum selenium levels were determined with atomic absorption spectrophotometer according to Stacchini et al. (12) and Wilson et al. (13).

Statistical analysis: The collected values as mean ± SE. Statistical analysis was performed SPSS 6.0 software as described before (14). The variance analysis (ANOVA) and LSD test were used to comparison between groups.

Results

Table 2 shows measurements of selenium, vitamin E, T4, T3 and T4 / T3 ratio in control, vitamin E and selenium groups. Plasma T4 concentration and T4 / T3 ratio were slightly reduced and plasma T3 concentrations slightly increased when supplemented vitamin E and selenium. Serum vitamin E levels were significantly (P<0.01) higher in vitamin E and vitamin E plus selenium supplemented groups than control and selenium groups.

Serum selenium levels in vitamin E, selenium and vitamin E plus selenium supplemented groups were significantly increased (P<0.05, P<0.01 respectively) compared to the control group. In addition, vitamin E level was significantly (P<0.05) lower in selenium group than vitamin E and vitamin E plus selenium supplemented groups. However, serum selenium level was significantly (P<0.05) higher in selenium plus vitamin E supplemented groups.

Levels of vitamin E and selenium in basal feed measured as 15.16 and 0.04 mg/ kg, respectively.

Discussion

Arthur et al. (15) informed that selenium deficiency in calves in contrast to selenium supplementation had increased plasma T4 concentration and decreased plasma T3 concentration compared to selenium supplemented calves. Donald et al. (16) reported that selenium supplementation of the dam reduced plasma T4 concentration and increased T3 concentration and T4/T3 ratio decreased from 39 to 21 in plasma of lambs.

In this study, plasma T4 concentration and T4 / T3 ratio were slightly decreased and T3 concentration was slightly increased in selenium and vitamin E supplemented groups compared to control which is not in agreement with the reports by Arthur et al. (15) and Donald et al. (16).

However, Jensen et al. (7) reported that plasma T4 and T3 concentration has significantly increased when a semipurified diet is supplemented with either selenium or vitamin E in chicks. On the other hand, no significant increase in this hormones has been observed in birds feed with a corn-soybean diet, which is consistent with the result presented here. Similarly it has been reported that in terms of serum T4 and T3, there has not been a significant difference between the patients with various thyroid disorders and control group (17). Accordingly, Chanoine et al. (18) reported that restricting of selenium intake in rats had no effect on circulating T3 concentrations. Similarly, Arthur et al. (19) informed that 10 mg selenium/ kg body weight intraperitoneally given to rats had no effects on thyroid hormone metabolism. These reports (7, 17-19) are consistent with our results (Table 2).

It has suggested that vitamin E could decrease selenium acquisition from diet, because vitamin E has an increasing effect on plasma selenium levels (3, 4, 20). In this study, selenium levels were significantly (P<0.05, P<0.01) higher in selenium and vitamin E supplemented groups than in only that of selenium supplemented group (Table 2). On the other hand, selenium did not have any significant effect on serum vitamin E level, which is in agreement with the reports (21, 22).

In conclusion, there was not a significant effect of selenium and vitamin E supplementation on plasma thyroid hormones in lambs. However, Vitamin E had an increasing effect on selenium levels, whereas, selenium did not increase serum vitamin E levels.

Table 2. Levels of T4, T3, T4 / T3, vitamin E and selenium in control and supplemented groups.

<table>
<thead>
<tr>
<th></th>
<th>Control</th>
<th>Vitamin E</th>
<th>Selenium</th>
<th>Selen. and Vitamin.E</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4 (ng/ml)</td>
<td>30.35±2.30</td>
<td>27.03±2.30</td>
<td>24.93±2.38</td>
<td>26.16±3.14</td>
</tr>
<tr>
<td>T3 (ng/ml)</td>
<td>3.51±0.09</td>
<td>3.68±0.26</td>
<td>3.67±0.19</td>
<td>3.55±0.15</td>
</tr>
<tr>
<td>T4/T3 (ng/ml)</td>
<td>8.18±0.29</td>
<td>8.06±0.89</td>
<td>6.33±1.50</td>
<td>8.64±1.62</td>
</tr>
<tr>
<td>Vitamin E (µg/ml)</td>
<td>0.95±0.13</td>
<td>2.82±0.27b</td>
<td>0.97±0.11c</td>
<td>2.85±0.29b,d</td>
</tr>
<tr>
<td>Selenium (ng/ml)</td>
<td>46.57±1.51</td>
<td>69.51±7.15a</td>
<td>108.25±17.25</td>
<td>126.22±21.90b,c</td>
</tr>
</tbody>
</table>

aP<0.05, bP<0.01 Compared control group and statistically significant,
bP<0.05 Compared vitamin E group and statistically significant,
cP<0.05 Compared selenium group and statistically significant.
Acknowledgement

The authors are grateful to Ms. Erzsebet Berta in the central laboratory of Budapest Veterinary Science for her excellent technical assistance of selenium determination.

References