Epididymitis and orchitis caused by *Brucella melitensis* biovar 3 in a Merino ram

Esra BÜYÜKCANGAZ1*, Aylin ALASONYALILAR DEMİRER2, Sevil ERDENLİG3, Sabire Deniz MISIRLIOĞLU2

1Department of Microbiology, College of Veterinary Medicine, Uludağ University, 16059, Bursa, Turkey
2Department of Pathology, College of Veterinary Medicine, Uludağ University, 16059, Bursa, Turkey
3Pendik Veterinary Control and Research Institute, 34890 İstanbul, Turkey

* Correspondence: kocakaya@uludag.edu.tr

1. Introduction

Brucellosis is a leading cause of abortion, sterility, orchitis, arthritis, and hygromas in animals (1–3). The disease is considered to be highly endemic and causes zoonoses worldwide as reported by the World Organisation for Animal Health (4).

Orchitis in rams is generally associated with multiple bacterial agents (5,6) while epididymitis is mainly identified with *Brucella ovis*, which produces a non-zoonotic infection in sheep. On the other hand, *B. melitensis* is the main etiologic agent of small ruminant brucellosis and, as a highly virulent bacterium, plays a significant role in human brucellosis (1,3,4).

2. Case history

This report describes the pathological and microbiological characteristics of epididymitis and orchitis in a ram caused by *B. melitensis* biovar 3. A 1-year-old Merino ram with a history of chronic weight loss was referred for necropsy. A preliminary diagnosis of paratuberculosis was made based on the history and clinical signs.

The animal was euthanized and a necropsy was performed. On gross examination, the left testis was greatly enlarged (Figure 1a). The tunica vaginalis was thickened and adhesions were seen between the parietal and visceral layers. The tunic cavity was distended with approximately 360 mL of fibrinopurulent exudate. The left testis had a soft, pasty consistency. On cut surface the epididymis was characterized by foci of necrosis, multiple yellow fibrinopurulent foci (Figure 1b), and diffuse thickening and fibrinous adhesions of the testicular vaginal tunics. The right testis was atrophic, but normal in texture. Gross lesions of paratuberculosis were not observed in the animal.

Impression smears of tissues and fibrinous content taken from the right testis were stained with Gram and modified Ziehl-Neelsen methods, and organ specimens were collected for histopathological and microbiological examinations. A loop of exudate and tissue taken from aseptic cut surfaces of the organs (liver, lung, kidneys, and brain) were inoculated onto agar plates shown in the Table for routine microbiological diagnosis.

A Bru-Com Vet® (Secace Biotechnologies, Italy) commercial kit was used for molecular detection of the *Brucella* suspected isolate. All reagents were prepared at 22 °C and DNA extraction and the PCR conditions were carried out according to Buyukcangaz et al. (7). Ten microliters of amplicons and DNA molecular weight standards (Fermentas®, USA) were loaded on 2% agarose gel in TAE using 0.6 µL/mL of ethidium bromide at 100 W for 75 min. The amplicons were visualized under UV light and photographed by MiniBIS Pro® (DNR’s Bioimaging Systems, Israel).

Abstract: This paper describes a case of fibrinopurulent epididymitis and orchitis in a Merino ram owing to *Brucella melitensis* biovar 3, detected by histopathology, bacteriology, and PCR. Gross lesions included enlargement of the scrotum by abundant fibrinous exudate and adhesions between testicular tunics. Histopathologic lesions were characterized by epididymal abscesses and testicular atrophy. *B. melitensis* was cultured from the exudate as well as the internal organs of the ram. After conventional biotyping procedures were applied, the isolate was identified as *B. melitensis* biovar 3. The isolate was also confirmed as *Brucella* spp. by genus-specific PCR.

Key words: *Brucella melitensis* biovar 3, epididymitis, orchitis, ram

Received: 19.01.2012 • Accepted: 25.07.2012 • Published Online: 03.06.2013 • Printed: 27.06.2013
Figure 1. a. Enlargement of the left testis in comparison to the right testis of a ram with brucellosis. b. Testis from a ram infected with *Brucella melitensis* biovar 3 containing caseous abscesses (asterisk) of the epididymis. c. Necrotic efferent tubules (asterisks) and epididymitis, 4×, bar = 200 µm. d. *Brucella* PCR products obtained from isolate separated on a 1.5 % (w/v) agarose gel, L, Generuler™ 100 bp DNA Ladder Plus (SM0241; Fermentas), lane 1; Positive Cont. (+), lane 2; Negative Cont. (−) and Internal Control, 770 bp, lane 3; Buffer Control, lane 4; Reference strain *B. melitensis* biotype 3 (Ether-ATCC 23458), lanes 5; *Brucella* isolate from ram.

Table. Dehydrated culture media and supplementary reagents for routine diagnosis used in this study.

<table>
<thead>
<tr>
<th>Culture media & supplements</th>
<th>Brand-Catalog number</th>
</tr>
</thead>
<tbody>
<tr>
<td>Colombia Agar (7% defibrinated sheep blood)</td>
<td>BD®- COS 43041</td>
</tr>
<tr>
<td>MacConkey Agar</td>
<td>Oxoid®-CM0115</td>
</tr>
<tr>
<td>Levine Eosin Methylene Blue Agar</td>
<td>Oxoid®-CM0069B</td>
</tr>
<tr>
<td>Brucella Selective Medium Base</td>
<td>Oxoid®-CM0169</td>
</tr>
<tr>
<td>Brucella Selective Supplement</td>
<td>Oxoid® SR0083</td>
</tr>
<tr>
<td>Listeria Selective Agar</td>
<td>Oxoid®-CM0856B</td>
</tr>
<tr>
<td>Listeria Selective Supplement</td>
<td>Oxoid®-SR0141E</td>
</tr>
<tr>
<td>Butzler Selective Medium (Colombia Blood Agar Base)</td>
<td>Oxoid®-CM0331B</td>
</tr>
<tr>
<td>Butzler- Campylobacter Selective Supplement</td>
<td>Oxoid®-SR-0085E</td>
</tr>
<tr>
<td>XLT-4 Agar Base</td>
<td>BD, Difco®-223420</td>
</tr>
<tr>
<td>XLT-4 Supplement</td>
<td>BD Difco®-100 mL</td>
</tr>
<tr>
<td>Sabouraud Dextrose Agar</td>
<td>Oxoid®-CM0041B</td>
</tr>
</tbody>
</table>
3. Results and discussion
Microscopically, the outline of the enlarged testis and seminiferous tubules was retained, while the seminal epithelium was necrotic and desquamated (Figure 1c). Central areas of the inflammatory foci contained abundant granular to flocculent eosinophilic cellular debris admixed with degenerate neutrophils and macrophages. Multifocal mononuclear cell infiltrates surrounded and separated the tubules. Epididymitis revealed multifocal pyogranulomas effacing normal tubular architecture. Hyperplasia and hydropic degeneration of tubular epithelium with intraepithelial luminal formations was seen. Interstitial areas were fibrotic and densely infiltrated with mononuclear inflammatory and giant cells.

Gram negative coccobacilli were seen after Gram staining, and red stained coccobacilli were seen after modified Ziehl Neelsen staining. Brucella spp. were isolated from the clinical samples including the liver, lung, kidneys, and brain. No colony growth was observed on other agar plates except for Brucella on Colombia Agar during the incubation period. The identification of the isolate was carried out by conventional biotyping procedures according to Alton (8) including differentiating Rev 1. After typing, the isolate was identified as B. melitensis biotype 3. The target sequence of a 460-bp band was observed after a Brucella genus-specific PCR assay (Figure 1d).

Infections of the accessory sex glands of males allow the dissemination of the organism through semen. While chronically affected rams often have unilateral or bilateral atrophy with swelling and hardening of the epididymis (3), in this case the epididymis had a soft consistency due to pyogranuloma formation and the accumulation of fibrinopurulent exudate. Fibrinous fluid and fibrous adhesions may be present in epididymitis and orchitis cases caused by Brucella spp. The quantity of fibrinous exudate in this case was significant. The presence of inflammatory cells in the ductus epididymis could support the hypothesis of an ascending route of the infection.

There are limited studies about the biotypes of B. melitensis in rams (9). Brucella melitensis biovar 3 has been reported to be the predominant biovar in sheep in Turkey (10–12). The present report describes a case of epididymitis and orchitis in a ram caused by B. melitensis biovar 3 determined by histopathology, microbiology, and PCR. The isolation of B. melitensis from a case of ovine orchitis is of epidemiological value and shows the importance of this agent in the etiology of ovine and human brucellosis in Turkey (13,14). This will help establish a base for new research to understand the Brucella biovars in this region, and to develop relevant control strategies for this very important zoonosis.

Acknowledgments
The authors would like to thank Dr Neil Dyer and Dr İ Taci Cangül for their editorial help.

References
