Magnetic Resonance Imaging Findings of Intracranial Tumors in Dogs: A Review of 26 Cases

Ömer BEŞALTI1, Y. Sinan ŞİRİN2, Zeynep PEKCAN3, Gonca ERBAŞ4

1Department of Surgery, Faculty of Veterinary Medicine, Ankara University, Ankara - TURKEY
2Department of Surgery, Faculty of Veterinary Medicine, Ondokuz Mayıs University, Samsun - TURKEY
3Department of Surgery, Faculty of Veterinary Medicine, Kırıkkale University, Kırıkkale - TURKEY
4Department of Radiology, Faculty of Medicine, Gazi University, Beştevi, Ankara - TURKEY

Received: 29.05.2007

Abstract: The aim of this study was to report the magnetic resonance imaging (MRI) findings of intracranial tumors in 26 dogs. The medical records of dogs admitted to the Department of Surgery, Faculty of Veterinary Medicine, Ankara University for central nervous system disorders were reviewed, and dogs with intracranial tumors that were diagnosed with MRI between November 1997 and June 2006 were included in the study.

MR images were obtained as T1 weighted (T1W), T2 weighted (T2W), and contrast enhanced T1 weighted (following Gd-DTPA administration) in the transverse, coronal (dorsal), and sagittal planes. The following features were evaluated in order to characterize the lesions and to establish diagnoses based on radiological findings: site of origin, anatomic location, signal characteristics on T1W and T2W images, contrast enhancement, shape and size, number (multiple or single), and presence of edema and midline shift.

The radiological diagnoses were as follows: intracranially invading sinus tumor (n = 3), meningioma (n = 7), choroid plexus tumor or ependymoma (n = 3), ependymoma (n = 1), glioma (n = 5), metastatic tumor (n = 3), astrocytoma (n = 1), astrocytoma or metastasis (n = 1), cavernoma (n = 1), and hypophyseal adenoma (n = 1). In conclusion, lesions occupying the intracranial space can be accurately diagnosed and tumor type can be predicted with MRI.

Key Words: Brain tumor, dog, magnetic resonance imaging

Köpeklerde İntrakranial Tümörlerin Manyetik Rezonans Görüntüleme Bulguları: 26 Olgu

Manyetik rezonans görüntüleri, T1 ağırlıklı (T1W), T2 ağırlıklı (T2W) ve kontrastlı T1 ağırlıklı (Gd-DTPA uygulaması sonrasında) transversal, koronal ve sagittal kesitler şeklinde alındı. Köken aldığı bölge, anatominin lokalizasyonu, T1W ve T2W görüntülerindeki sinyal karakteristikleri, kontrast artışı, şekli ve boyutları, sayı (tek veya çoğal), odemin varlığı ve yer değiştirme gibi özellikleri, lezyonun karakterini belirlemek ve radyolojik bulgulara göre tanı koyabilmek için incelendi.

Radyolojik tanıya göre intrakranial ve invaze sinus tümörü (n = 3), menengioma (n = 7), kroid pleksus tümörü veya ependimoma (n = 3), ependimoma (n = 1), glioma (n = 5), metastatik tümör (n = 3), astrocytoma (n = 1), astrocytoma veya metastaz (n = 1), cavernoma (n = 1) ve hipofiz adenoma (n = 1) belirlendi. Sonuç olarak, MRG ile intrakranial kitlelerin tam olarak tespit edilebileceği ve tümör tipinin tanım edilebileceği belirldi.

Anahtar Sözcükler: Beyin tümörü, köpek, manyetik rezonans görüntüleme

* E-mail: besalti@hotmail.com
Introduction

Intracranial tumors occur frequently in dogs, with a reported incidence rate of approximately 3.0%, although the actual incidence is unknown (1,2). Many types of brain tumors have been reported in dogs, and meningiomas and gliomas are the 2 most common. Most canine brain tumors are primary, whereas secondary or metastatic tumors are reported less frequently (2,3).

The availability of advanced imaging techniques enhances our understanding and knowledge about the incidence of brain tumor types (4-7). Magnetic resonance imaging (MRI) is the only diagnostic tool available for the ante-mortem prediction of the various histological types of brain neoplasms (8,9). Characteristic MRI findings of some tumors serve as valuable clues for reaching a tentative diagnosis (10). This imaging modality is instrumental in choosing appropriate treatment and patient management protocols (5,11).

This retrospective study was designed to determine the frequency of canine brain tumors and to report the related MRI findings in our patient group.

Materials and Methods

Medical records of dogs seen in our Department between November 1997 and June 2006 were reviewed retrospectively to identify those that underwent MRI examination for a probable intracranial mass. Cases with intracranial tumors were included in this study. Demographic information, including age, breed, and sex were obtained from the medical records.

All the MR images were acquired with the same 1.5 Tesla MRI unit using a head coil 30 cm in diameter. T1 (TR: 400-600 ms, TE: 15-20 ms) and T2 (TR: 3500-4500 ms, TE: 90-110 ms) weighted images were obtained. Slice thickness was 3-4 mm and the interslice gap was 0.1 mm.

Contrast enhanced T1W images were obtained after intravenous administration of 0.1 mmol/kg of Gd-DTPA. Transverse, coronal (dorsal), and sagittal sections were interpreted to evaluate the tumors under the supervision of a specialist certified in human imaging (GE). Contrast enhancement of the tumors was qualitatively classified into 4 categories: none, mild, moderate, and intense. The following features were recorded: site of origin (extra-axial or intra-axial), anatomic location, T1W and T2W features (iso-, hypo-, or hyperintense relative to brain parenchyma), edema (high signal intensity surrounding the lesion on T2W images, were noted as: none, mild, moderate, and extensive), contour characteristics (regular or irregular), number of lesions (multiple or solitary), and midline shift. If a lesion was elliptical, after measurement of the maximum dimensions in 3 orthogonal planes, the following equation was used to calculate its volume (12):

\[
\text{Volume} = \frac{4}{3} \pi (\text{RC}/2 \cdot \text{ML}/2 \cdot \text{DV}/2)
\]

The volumes of spherical masses were calculated with the following equation: \(4/3 \pi r^3\) (key: RC = rostrocaudal, ML = mediolateral, DV = dorsoventral, and \(r\) = radius).

Results

In all, 26 dogs met the selection criteria. There were 12 female and 14 male patients aged between 2.5 and 15 years (mean: 8.1 years). Breed distribution was as follows: 6 Boxers, 7 Poodles, 4 cross breeds, 2 German Shepherds, 2 Collies, 1 Great Dane, 1 Labrador Retriever, 1 Doberman Pincher, 1 Rottweiler, and 1 Golden Retriever.

Details of the MRI findings are shown in the Table. There were 13 dogs with extra-axial tumors and 13 dogs with intra-axial tumors. In 9 cases there was displacement of the brain structures, or midline shift secondary to peritumoral edema or mass effect; however, midline shift was not accompanied by edema in 2 of the cases. Mild or moderate edema was also seen, without shift, in 7 cases. Solitary brain tumors were seen in 10 cases and 3 dogs had multiple tumors.

Primary brain tumors were diagnosed using MRI in 17 dogs. The radiological diagnoses included meningioma (n = 7), choroid plexus tumor or ependymoma (n = 3), ependymoma (n = 1), glioma (n = 5), and astrocytoma (n = 1). Secondary brain tumors were diagnosed in 8 cases, including intracranially invading sinus tumors (n = 3), a hypophyseal adenoma (n = 1), and a cavernoma (n = 1). There were 3 metastatic tumors. In 1 case MRI findings were not specific enough to differentiate an astrocytoma.
Table. MRI findings in 26 dogs with intracranial tumors.

<table>
<thead>
<tr>
<th>Case no.</th>
<th>Tumor type</th>
<th>Anatomic site</th>
<th>Origin</th>
<th>Shape, volume (mm3)</th>
<th>Midline shift</th>
<th>Edema</th>
<th>Signal intensity</th>
<th>Other features</th>
<th>Contrast enhancement</th>
<th>M/S</th>
<th>Margins</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Ependymoma</td>
<td>Foramen of Monro</td>
<td>Extra-axial</td>
<td>Spheroidal 546.75</td>
<td>10 mm</td>
<td>None</td>
<td>T1-iso</td>
<td>Dilated R. lateral vent.</td>
<td>Intense S</td>
<td>Lobulated Regular</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Metastasis</td>
<td>L. parietal cortex, brain stem, 4th vent.</td>
<td>Intra-axial</td>
<td>Spheroidal 1436.027</td>
<td>-</td>
<td>moderate</td>
<td>T1-hypo T2-hyper</td>
<td>-</td>
<td>Moderate S</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Oligodendroglioma or Metastasis</td>
<td>R. frontal</td>
<td>Intra-axial</td>
<td>Elliptical 3668.48</td>
<td>4 mm</td>
<td>Extensive</td>
<td>T1-hypo T2-hyper</td>
<td>Cyst</td>
<td>Not</td>
<td>S</td>
<td>Irregular</td>
</tr>
<tr>
<td>4</td>
<td>Choroid plexus tumor</td>
<td>3rd vent.</td>
<td>Intra-axial</td>
<td>Elliptical 6260.69</td>
<td>-</td>
<td>Moderate</td>
<td>T1-hypo T2-hyper</td>
<td>Calcification</td>
<td>Moderate S</td>
<td>Irregular</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Meningioma</td>
<td>L. frontal-basal</td>
<td>Extra-axial</td>
<td>Elliptical 6536.32</td>
<td>5 mm</td>
<td>None</td>
<td>T1-iso</td>
<td>-</td>
<td>Intense S</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>Glioma</td>
<td>R. lentiform nucleus</td>
<td>Intra-axial</td>
<td>Spheroid 904.32</td>
<td>-</td>
<td>Mild</td>
<td>T1-hypo T2-hyper</td>
<td>-</td>
<td>None</td>
<td>S</td>
<td>Irregular</td>
</tr>
<tr>
<td>7</td>
<td>Meningioma</td>
<td>R. frontotemporal</td>
<td>Intra-axial</td>
<td>Spheroid 3589.543</td>
<td>-</td>
<td>Moderate</td>
<td>T1-hypo T2-hyper</td>
<td>Dilated third vent.</td>
<td>Intense S</td>
<td>Regular Lobulated</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Choroid Plexus tumor</td>
<td>3rd vent.</td>
<td>Intra-axial</td>
<td>Elliptical 543.5</td>
<td>-</td>
<td>None</td>
<td>T1-hypo T2-hyper</td>
<td>Dilatation of lateral vent.</td>
<td>Intense S</td>
<td>Regular Lobulated</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Glioma</td>
<td>L. frontotemporal</td>
<td>Intra-axial</td>
<td>Elliptical 15.7</td>
<td>4 mm</td>
<td>Extensive</td>
<td>T1-hypo T2-hyper</td>
<td>-</td>
<td>None</td>
<td>S</td>
<td>Irregular</td>
</tr>
<tr>
<td>10</td>
<td>Sinus tumor</td>
<td>Frontal sinus ethmoid cells, L. frontal lobe</td>
<td>Intra-axial</td>
<td>Elliptical 33,409.60</td>
<td>-</td>
<td>Mild</td>
<td>T1-iso T2-iso</td>
<td>Cystic components</td>
<td>Intense S</td>
<td>Lobulated</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>Cavernoma</td>
<td>R. frontal</td>
<td>Extra-axial</td>
<td>Spheroid 2679.947</td>
<td>-</td>
<td>None</td>
<td>T1-hypo T2-hyper</td>
<td>Chronic hemorrhage</td>
<td>None</td>
<td>Lobulated</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Meningioma</td>
<td>L. temporal</td>
<td>Extra-axial</td>
<td>Spheroid 1796.25</td>
<td>8 mm</td>
<td>Extensive</td>
<td>T1-iso T2-iso</td>
<td>Calcification</td>
<td>Intense S</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Metastasis</td>
<td>Largest R. occipital, parietal</td>
<td>Intra-axial</td>
<td>Spheroid 5304.971</td>
<td>5 mm</td>
<td>Extensive</td>
<td>T1-iso T2-iso</td>
<td>Necrosis</td>
<td>Moderate M</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Meningioma</td>
<td>R. frontal</td>
<td>Extra-axial</td>
<td>Elliptical 4062</td>
<td>5 mm</td>
<td>Extensive</td>
<td>T1-iso T2-iso</td>
<td>-</td>
<td>Moderate S</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Meningioma</td>
<td>R. pontocerebellar angle</td>
<td>Extra-axial</td>
<td>Elliptical 736.85</td>
<td>-</td>
<td>Mild</td>
<td>T1-iso T2-iso</td>
<td>-</td>
<td>Mild</td>
<td>S</td>
<td>Regular</td>
</tr>
<tr>
<td>16</td>
<td>Sinus tumor</td>
<td>L. frontal sinus</td>
<td>Extra-axial</td>
<td>Elliptical 19,258.67</td>
<td>-</td>
<td>Moderate</td>
<td>T1-hypo T2-hyper</td>
<td>Predominantly cystic</td>
<td>Md</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Astrocytoma</td>
<td>R. frontotemporal</td>
<td>Intra-axial</td>
<td>Spheroid 1796.25</td>
<td>-</td>
<td>None</td>
<td>T1-hypo T2-hyper</td>
<td>-</td>
<td>None</td>
<td>S</td>
<td>Irregular</td>
</tr>
<tr>
<td>18</td>
<td>Glioma</td>
<td>L. frontal</td>
<td>Intra-axial</td>
<td>Elliptical 11.765</td>
<td>-</td>
<td>Moderate</td>
<td>T1-iso T2-iso</td>
<td>-</td>
<td>None</td>
<td>S</td>
<td>Irregular</td>
</tr>
<tr>
<td>19</td>
<td>Meningioma</td>
<td>Sphenoid basis</td>
<td>Extra-axial</td>
<td>Elliptical 5304.971</td>
<td>-</td>
<td>Moderate</td>
<td>T1-iso T2-iso</td>
<td>Cysts, necrosis</td>
<td>Intense S</td>
<td>Lobulated Regular</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Metastasis</td>
<td>R., L. parietal</td>
<td>Intra-axial</td>
<td>Elliptical 4062</td>
<td>4 mm</td>
<td>Moderate</td>
<td>T1-iso T2-iso</td>
<td>Necrosis Lung mass</td>
<td>Intense M</td>
<td>Regular n = 2</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Glioma</td>
<td>R. frontal</td>
<td>Intra-axial</td>
<td>Elliptical 5861.333</td>
<td>3 mm</td>
<td>Mild</td>
<td>T1-iso T2-iso</td>
<td>Necrosis</td>
<td>Moderate S</td>
<td>Irregular</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Choroid plexus tumor</td>
<td>R. lateral vent.</td>
<td>Intra-axial</td>
<td>Elliptical 3668.48</td>
<td>9 mm</td>
<td>Extensive</td>
<td>T1-iso T2-iso</td>
<td>-</td>
<td>Intense S</td>
<td>Lobulated Regular</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>Meningioma</td>
<td>L. frontal</td>
<td>Extra-axial</td>
<td>Elliptical 7745.65</td>
<td>4 mm</td>
<td>Mild</td>
<td>T1-iso T2-iso</td>
<td>-</td>
<td>Intense S</td>
<td>Regular</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>Sinus tumor</td>
<td>Bilateral frontal sinus</td>
<td>Extra-axial</td>
<td>Elliptical 73.750</td>
<td>-</td>
<td>None</td>
<td>T1-iso T2-iso</td>
<td>Necrosis</td>
<td>Intense S</td>
<td>Lobulated Regular</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Hypophyseal Adenoma</td>
<td>Suprasellar</td>
<td>Extra-axial</td>
<td>Spheroid 6367.397</td>
<td>-</td>
<td>Mild</td>
<td>T1-iso T2-hyper</td>
<td>Ring</td>
<td>S</td>
<td>Regular</td>
<td></td>
</tr>
</tbody>
</table>

L: Left; R: right; vent: ventricle; M: multiple; S: solitary.
from a metastatic tumor. In all, 17 tumors were elliptical and 9 were spherical.

Radiologically, all meningiomas had dural contact and showed the dural tail sign. These tumors showed extensive contrast enhancement. They were elliptical in axial MR images, except in 1 case (Figure 1). In the case of a meningioma located near the medial sphenoid bone, a third ventricular dilatation was noted. One meningioma contained cystic and necrotic areas, while another was calcified. Meningioma volumes are shown in the Table.

Gliomas were hypointense on T1W images and hyperintense on T2W images. They were spherical in 2 cases and elliptical with irregular margins in 3. Gliomas were associated with midline shift in 2 cases. Mild to extensive edema was depicted in all glioma cases. In 1 case a choroid plexus tumor was located in the lateral ventricle, associated with midline shift and extensive edema. The remaining 2 cases had tumors located in the third ventricle, which were associated with ventricular dilatation and calcification (Figure 2). An ependymoma (n = 1) was located at the foramen of Monro, which was associated with right lateral ventricular dilatation and shift. The margins of the tumor were lobulated and irregular. The tumor was hyperintense on T2W images and intensely enhanced after contrast administration. Intracranially invading sinus tumors were isointense relative to brain parenchyma on both T1W and T2W images. In 2 cases the margins were lobulated, and were associated with necrosis and cysts; however, in 1 case the tumor was hypointense on T1W and hyperintense on T2W images, with well-delineated margins (Figure 3). A cavernoma was seen in 1 case as a lobulated mass with an associated hemorrhage.
A hypophyseal adenoma was depicted in 1 case as an ovoid mass at the sella, and extended into the parasellar regions. The mass had a heterogeneous signal on T1W images and was hyperintense on T2W images. The mass was intensely enhanced after contrast administration (Figure 4). Macroscopically, the mass was $1 \times 1.8 \times 1.5$ cm in diameter, spherical, firm, and dark brown.

Metastatic tumors were observed in 3 cases, and were associated with edema; in 2 cases there were midline shift and central necrosis. The margins of these tumors were well delineated. In 1 case of a solitary tumor located in the right frontal cortex there were associated edema and shift. This case had a cystic mass and was interpreted as an astrocytoma or metastasis. Another dog had a pulmonary carcinoma metastasis to the brain (Figure 5). In the 2 cases with metastasis there were multiple masses, while the remaining tumors were solitary.

Discussion

Human intracranial tumors can be diagnosed using MRI and CT with an accuracy of up to 85%-90% (7,10). The number of reports describing the MRI findings of intracranial tumors in dogs has increased in recent years, providing more knowledge and widespread familiarity, resulting in the ability to diagnose with similar accuracy as in humans (4-7). Accurate diagnosis of a primary brain tumor using MRI was reported to be 100%, and correct prediction of histological type was reported as 71% (2). Intracranial tumors can be studied in greater detail for specific types of tumors using different MRI techniques, such as magnetic resonance proton spectroscopy (10,13).

In the present study conventional MRI techniques (T1W, T2W, and contrast enhanced T1W sequences) were used to evaluate mass lesions. MR signal characteristics, contrast enhancement patterns, anatomic location, and
shape of tumors are very important factors in the prediction of tumor types (2,7); however, histopathological examination is essential for making a definitive diagnosis of intracranial tumors. Therefore, CT-guided brain biopsy techniques for animals have been improved (14).

The origin of intracranial tumors is important in determining tumor type. Extra-axial tumors arising from tissues outside the neural axis and intra-axial tumors were observed in equal numbers in the present study. This finding differs from the results of a study carried out by Kraft et al. (7) in which the presence of extra-axial tumors was reported in 68% of the cases.

Anatomic location is a distinctive characteristic of some tumors, such as nasal or pituitary tumors, and ependymoma or choroid plexus tumors. Meningiomas are dura-based tumors with dural contacts showing the dural tail sign. The dural tail sign is usually observed with contrast enhanced CT or MRI, and is suggested to be an indicator of dural origin (10). These classical diagnostic features, which are used in human medicine, can also be accurately applied to dogs.

Intracranial tumors may have mass effect relative to their size, and clinical signs of these tumors are related to this event. Edema, hemorrhage, infarction, hydrocephalus, ventricular dilatation, and midline shift can cause mass effect. Recently, the incidence rate of brain herniation associated with rostroventral mass lesions in dogs was reported as 35.3% (54/153) (12). In the present study edema was seen in 18 cases (69.23%). There was edema in 5 meningioma cases (71%) and in all glioma and metastatic cases (100%). Midline shift was also associated with edema in 81.81% of the cases. In the light of these findings, edema can be considered a major factor in the displacement of brain structures. Ventricular dilatation was seen in 1 choroid plexus tumor case, 1 ependymoma case, and 1 meningioma case, due to obstruction of the flow of cerebrospinal fluid. Some characteristic imaging findings, such as calcification, can be related to some tumor types. In the present study 2 calcified masses were observed, as well as 1 meningioma and 1 choroid plexus tumor. All of these imaging characteristics can guide clinicians in determining the appropriate management protocol (7,10,13).

Intracranial tumors, especially primary brain tumors in dogs, are solitary, although multiple brain tumors have been reported in a few cases (3,9,12,15). In the present case series only 2 dogs with metastatic tumors had multiple masses in the brain; the remaining cases had solitary masses. This finding is in accordance with the literature.

Even though tumor location is related to clinical signs, tumor volume can also be related to clinical signs. Because of uncontrollable data (differences in breed, head shape, cranial size, etc.) mass volume could not be evaluated relative to brain diameter or total brain volume; however, tumor volumes in the present study represent approximate values because volume was calculated by measuring MR images.

Although brain tumors occur in all breeds and genders, and at any age, their incidence increases over 5
years of age and in certain breeds (12,16,17). Median age (8.1 years) and gender (12 female and 14 male) of the dogs in the present study were similar to those previously reported (12,17,18). Meningiomas have been reported to be the most common brain tumor, followed by gliomas (2,18). Gliomas have a predilection for brachycephalic breeds (16). The results of the present study regarding breed distribution are similar to previous reports (12,17); more Poodles and Boxers had intracranial tumors than the other breeds seen at our clinic between November 1997 and June 2006. Glial cell tumors were seen in 66.66% of the Boxers included in this case series.

In conclusion, lesions occupying the intracranial space can be accurately diagnosed and tumor type can be predicted using MRI. Even in cases lacking histopathological confirmation, MR findings, such as edema, hemorrhage, infarction, calcification, hydrocephalus, ventricular dilatation, and midline shift, could aid accurate radiological diagnosis and help in determining the appropriate management protocol for the patient.

References