Burkholderia cepacia and Aeromonas hydrophila Septicemia in an African Grey Parrot (Psittacus erithacus erithacus)

Ahmet AKKOÇ¹, A. Levent KOCABİYİK², M. Özgür ÖZYİĞİT¹,¹. Taci CANGÜL¹, Rahşan YILMAZ¹, Cüneyt ÖZAKIN³
¹Department of Pathology, Faculty of Veterinary Medicine, Uludağ University, 16059 Görükle, Bursa - TURKEY
²Department of Microbiology, Faculty of Veterinary Medicine, Uludağ University, 16059 Görükle, Bursa - TURKEY
³Department of Microbiology, Faculty of Medicine, Uludağ University, 16059 Görükle, Bursa - TURKEY

Received: 12.10.2006

Abstract: Burkholderia cepacia and Aeromonas hydrophila infections are described in an African Grey Parrot (Psittacus erithacus erithacus) that presented with neurological signs, lassitude, and respiratory distress. At postmortem examination, subperiosteal ecchymotic hemorrhages in the skull, and severe subcutaneous edema in the neck and abdomen were prominent. Round, disseminated, whitish necrotic foci were noted in the congested liver. Microscopic examination revealed chromatolysis in brain neurons. Multifocal coagulation necroses were found in the liver. Non-purulent, subacute myocarditis, thromboembolic nephritis, and interstitial pneumonia were observed. Microbiological examination revealed mixed cultures of Burkholderia cepacia and Aeromonas hydrophila in brain, lung, liver, kidney, and heart samples.

Key Words: African Grey Parrot, Psittacus erithacus erithacus, Burkholderia cepacia, Aeromonas hydrophila

Introduction

Burkholderia cepacia, formerly known as Pseudomonas cepacia, is a gram-negative bacillus commonly found in soil, vegetation, and water (1,2). P. cepacia was originally described by Burkholder in 1950 as the causative agent of bacterial root disease in onion bulbs (3). The organism has emerged as an important opportunistic pathogen in immunocompromised patients, including those with cystic fibrosis and chronic granulomatous disease (1). B. cepacia has been reported in mixed cultures with other bacteria in clinical specimens obtained from horses with pneumonia (4) and specific-pathogen-free piglets (5). It was also reported as the sole organism involved in a case of vegetative endocarditis in a horse (6) and mastitis in sheep (7). Nonetheless, there is currently no documentation regarding B. cepacia infection in birds.

Aeromonas hydrophila, a gram-negative, hemolytic rod-shaped bacteria, is an opportunistic pathogen in fishes and reptiles. Infections in mammals have only been reported rarely (8); however, the organism, either alone or in combination with other organisms, can cause localized and systemic infections in wild birds (9).

* E-mail: ozyigit@uludag.edu.tr
To the best of our knowledge this is the first report of *B. cepacia* and *A. hydrophila* septicemia in a parrot.

Case History

A 10-year-old African parrot, kept as a house pet, was referred to a veterinary clinic with neurological signs (lack of coordination and ataxia), respiratory distress, and lassitude, which began 10 days earlier. During the clinical examination the bird died, and necropsy was performed. Brain, lung, heart, liver, kidney, spleen and intestine tissue samples were taken for histopathological and microbiological examination. For histology, samples were fixed in 10% neutral buffered formalin, processed routinely, embedded in paraffin, and cut into 5-µm sections. Samples from all tissues were stained with hematoxylin and eosin (H&E). After they were examined some selected kidney, liver, and brain tissue samples were stained with Gram, Giemsa, or Ziehl-Neelsen.

For microbiological examination, samples were inoculated onto 7% sheep blood agar (Oxoid CM271) and onto MacConkey agar (Oxoid CM115), then incubated at 37 °C until colonial growth was seen under aerobic conditions (18 h for blood agar and 24 h for MacConkey agar). In addition, the samples were inoculated onto Sabouraud dextrose agar (Oxoid CM41), incubated at 25 °C and 37 °C in the dark for a minimum of 3 weeks, and examined weekly for evidence of fungal growth. Isolates were identified on the basis of colonial and cellular morphology, Gram staining, and biochemical characteristics, using standard methods (8,10) and the Microbact Gram-Negative Identification System (Medvet Diagnostics, Thebarton, South Australia).

Results and Discussion

At postmortem examination severe, diffuse subcutaneous edema, predominantly in the abdomen and neck, was noted. Subperiosteal echymotic hemorrhages in the skull and severe hyperemia in the meningeal and parenchymal blood vessels in the brain were observed. The liver was congested, and was disseminated, round, and 0.2-0.8 cm in diameter, with whitish necrotic foci on the serosal and cut surface. No macroscopic lesion, except congestion, was seen in other organs. Microscopically, meningeal and parenchymal vessels were congested. In some areas perivascular cuffing, predominately mononuclear leucocytes, was observed. The nuclei of chromatolytic neurons appeared pyknotic and karyolytic. Diffuse, mild to moderate gliosis was evident in the affected grey matter. Multifocal accumulation of microglial cells around the degenerated and chromatolytic neurons was evident (Figure 1). There were areas showing mild to severe infiltration of heterophils, lymphocytes, and plasma cells in the interstitial part of the lung. Large numbers of basophilic bacteria were seen in and around the blood vessels in the lung. Multifocal coagulation necrosis (Figure 2), sinusoid congestion, and diffuse vacuolization of hepatocytes were found in the liver sections. Non-purulent, subacute myocarditis and thromboembolic nephritis were the other lesions observed.

![Figure 1](image1.jpg)

Figure 1. Multifocal accumulation of microglial cells around the degenerated and chromatolytic neurons (satellitosis), (arrows) (H&E, bar = 30 µ).

![Figure 2](image2.jpg)

Figure 2. Multifocal coagulation necrosis (N) in the liver (H&E, bar = 170 µ).
Microscopic examination of Gram-stained smears revealed large numbers of gram-negative bacilli. The smears were not positive for modified Ziehl-Neelsen staining and typical bacteria were not observed with Giemsa staining. Colonial growth was noted on both blood agar and MacConkey agar inoculated with all tissues after 18 and 24 h of incubation, respectively. In all, 2 types of colonies grew on blood agar and at similar rates. One colony was 4 mm in diameter, b-hemolytic, round, raised, and opaque-grayish. The other colony was 2-3 mm in diameter, smooth, round, and opaque to tan in appearance. On MacConkey agar, pinkish and bright pink colonies were observed. Both colony types that grew on blood agar were gram-negative, oxidase-positive fermentative bacilli. All the isolates of both examined species exhibited the identical biochemical profile of A. hydrophila and B. cepacia according to the commercially available identification system used (Microbact Gram-Negative Identification System, Microbact 24E (12E/12A + 12B).

P. fluorescens has been isolated in pure culture from the livers of pet birds affected with necrotizing hepatitis (11). P. pseudomallei, the causative agent of melioidosis, was reportedly isolated from a native bird with liver necrosis in Australia (12). In Baltimore, a resident peregrine falcon (Falco peregrinus) was reported to have died from a Pseudomonas infection involving the pharynx (13). P. aeruginosa was reported to be one of the most frequently isolated bacteria grown in pure culture from the livers of free-ranging lesser flamingos (Phoeniconaias minor) with discrete necrotic and granulomatous lesions during an epizootic that resulted in the death of more than 18,500 in Kenya (14).

Members of the genus Aeromonas are found in aquatic environments and animals. In addition, A. hydrophila, either alone or in combination with other organisms, can cause localized and systemic infections in domestic and exotic animals (12,21). Although young birds are more susceptible, Burkholderia spp. and A. hydrophila have emerged as important opportunistic pathogens in immunocompromised adult birds (1,2). Suppression of the immune system may have caused more severe clinical and pathological lesions in birds.
(16,21). In the presented case, there was no information or evidence suggesting immunosuppression in the animal. The pathological changes observed in the body were the result of a mixed infection and were probably more severe than those that would occur in a mono-infection.

This is the first report of a mixed infection caused by *Burkholderia cepacia* and *Aeromonas hydrophila* in an African Grey Parrot (*Psittacus erithacus erithacus*) from Turkey.

References