Investigation of Chicken Infectious Anemia Virus Infection by PCR and ELISA in Chicken Flocks*

H. Hüseyin HADIMLI1,2,*, Osman ERGANİS1, Leyla GÜLER2, U. Sait UÇAN1

1Department of Microbiology, Faculty of Veterinary Medicine, Selçuk University, 42075 Kampüs, Konya - TURKEY
2Konya Veterinary Control and Research Institute, Konya - TURKEY

Received: 04.10.2006

Abstract: Presence of the chicken infectious anemia virus (CIAV) infection in chicken flocks in some provinces of Turkey was investigated by ELISA and PCR in this study. From 38 flocks (16 commercial layer, 10 commercial broilers, 4 breeder layers and 8 breeder broilers), 922 serum samples were tested for CIAV-specific antibodies using a commercially available competitive ELISA. CIAV antibodies were positive in 609 (66.0%) sera from 34 flocks (89.5%). A total of 95 thymus samples from 25 flocks, 57 samples from 15 commercial layers, and 38 samples from 10 commercial broiler flocks were tested by PCR. In 53 (55.8%) thymus samples from 20 flocks (93.7%) of 16 flocks and viral DNA was detected in 13 (86.6%) of 15 flocks. In commercial layers both CIAV antibodies and DNA were detected in 7 (70%) of 10 flocks tested. While seropositivity was detected in 12 (100%) of breeding broilers (8) and layer (4) flocks tested, no PCR was performed in these flocks. The study showed high prevalence of subclinical CIAV infection in the investigated chicken flocks.

Key Words: Chicken infectious anemia virus, ELISA, PCR, chicken

Tavukçuluk İşletmelerinde Chicken Infectious Anemia Virus Enfeksiyonunun PCR ve ELISA ile Araştırılması

Özet: Bu çalışmada, Türkiye’nin bazı illerinde tavukçuluk işletmelerinde chicken infectious anemia virus (CIAV) enfeksiyonu ELISA ve PCR ile araştırıldı. Toplam 38 kümesten (16 ticari yumurtacı, 10 ticari broyler, 4 damızlık yumurtacı ve 8 damızlık broyler) 922 serum örnekleri, ticari bir kompetetiv ELISA kiti kullanarak CIAV antikorları yönünden test edildi. Onuz dorü işletmelerden 609 (% 66,0) serum örneklerinde CIAV antikorları pozitif bulundu. Yirmi beş işletmenden 95 timüs örnekleri (% 86,6) pozitif çıktı. Ticari yumurtacılarda 13 (86,6%) timüs örnekleri, ticari broylerde 22 (55,8%) timüs örnekleri pozitif çıktı. PCR ile yapılan testlerde, 53 (55,8%) timüs örnekleri (20 işletmeden) CIAV spekifik DNA tespit edildi. Ticari broylerde, 10 işletmeden % 70 (7), damızlık broylerde ise % 100 sero Pozitiflik belirlendi. Bu çalışma, araştırılan tavuk işletmelerinde CIAV enfeksiyonunun subklinik olarak yüksek prevalansta olduğunu gösterdi.

Anahtar Sözcükler: Chicken infectious anemia virus, ELISA, PCR, tavuk

Introduction

Chicken infectious anemia (CIA) caused by chicken infectious anemia virus (CIAV) is a disease of young chickens (1,2). The causative agent was first isolated by Yuasa et al. (2) in 1978. Since then, the disease has been demonstrated by serological, virus isolation, and PCR methods in various countries (3-12). CIA is characterized by anemia, marked atrophy of bone marrow, thymus, and bursa of Fabricius and severe immunosuppression (13,14). Additionally, specific symptoms are observed such as haemorrhages in leg and chest muscles, focal necrosis in liver, ulcerative erosions in gizzard, and necrosis of wing skin (15).
CIAV in young chicken causes aplastic anemia, generalised lenfoid depletion and immunosuppression (16). The immunosuppression is responsible for increased mortality, reduced performance and decreased resistance to viral and bacterial diseases in breeding period (17,18). CIA appears mostly in subclinic form (14) and complicated secondarily with viral, bacterial, fungal and parasitic diseases (19). The effect of immunosuppression was subclinically altered with CIAV and Infectious Bursal Disease virus (IBDV), Marek’s Disease virus (MDV), Adenovirus (AV), and Reovirus (REV) (13,14,17,20) to increase pathogenicity (19,21).

Diagnosis by virus isolation is time-consuming and requires a well-equipped laboratory and experienced personnel (3,7). However, serology using immunofluorescent antibody (IFA), ELISA, and neutralisation tests can detect antibodies to CIAV (6,8,9). Indirect diagnosis, using serological tests solely, is not reliable because of some disadvantages of these tests. Thus, serological data needs to be evaluated in the light of other diagnostic tests (9,11). Because PCR is rapid, sensitive, specific, and gives an opportunity to diagnose diseases using tiny amount of tissue or biological liquid samples, it could be used to monitor flock diseases (4,5,7,12,22,23).

The aim of this study was to detect CIAV infection, together with other infections under field conditions, by ELISA and PCR in Turkey.

Materials and Methods

Serum Samples

From 38 flocks with different age of chickens located in several provinces of Turkey, 922 blood samples were collected (Table 1). These flocks were 16 commercial layer (4-36 weeks of age), 10 commercial broiler (11-39 days of age), 4 breeder layer (20-42 weeks of age), and 8 breeder broiler breeding (30-63 weeks of age). From each flock, 20 to 25 serum samples were taken. None of the flocks has had a history of vaccination against CIAV.

Table 1. History of the tested flocks.

<table>
<thead>
<tr>
<th>Flock number</th>
<th>Location</th>
<th>Age (week)</th>
<th>Other Infections</th>
<th>Location</th>
<th>Age (day)</th>
<th>Other Infections</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Afyonkarahisar</td>
<td>8</td>
<td>-</td>
<td>Afyonkarahisar</td>
<td>15</td>
<td>Salmonellosis</td>
</tr>
<tr>
<td>2</td>
<td>Afyonkarahisar</td>
<td>12</td>
<td>-</td>
<td>Afyonkarahisar</td>
<td>36</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Afyonkarahisar</td>
<td>18</td>
<td>Salmonellosis</td>
<td>Konya</td>
<td>22</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Afyonkarahisar</td>
<td>16</td>
<td>IBD</td>
<td>Konya</td>
<td>11</td>
<td>E. coli</td>
</tr>
<tr>
<td>5</td>
<td>Afyonkarahisar</td>
<td>36</td>
<td>Leucosis</td>
<td>Karaman</td>
<td>21</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Konya</td>
<td>4</td>
<td>IBD</td>
<td>Ankara</td>
<td>24</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Konya</td>
<td>12</td>
<td>IBD</td>
<td>Konya</td>
<td>39</td>
<td>IBD</td>
</tr>
<tr>
<td>8</td>
<td>Konya</td>
<td>16</td>
<td>IBD</td>
<td>Ankara</td>
<td>31</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>Elazığ</td>
<td>23</td>
<td>-</td>
<td>Konya</td>
<td>34</td>
<td>IBD</td>
</tr>
<tr>
<td>10</td>
<td>Konya</td>
<td>10</td>
<td>MD</td>
<td>Karaman</td>
<td>25</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Konya</td>
<td>9</td>
<td>MD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Konya</td>
<td>10</td>
<td>MD, E. coli</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>Çorum</td>
<td>21</td>
<td>MD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Çorum</td>
<td>10</td>
<td>MD, E. coli</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Konya</td>
<td>9</td>
<td>IBD</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Bursa</td>
<td>One day</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

* The data is based on the records taken by the veterinary on duty. Before samples were taken, diagnosis of a veterinarian and/or the laboratory of poultry diseases were stated.
Tissue Samples

A total of 95 thymus samples for amplification of CIAV DNA were collected from 15 commercial layer (57 samples) and 10 broiler flocks (38 samples). However, sampling for thymus could not be performed from a flock (number 16 of flock).

ELISA

Sera were tested for CIAV-specific antibodies using a commercial competitive ELISA Kit (Chicken Infectious Anemia Test Kit, IDEXX Laboratories, Inc., Westbrook, Maine 04092, USA). Sera were diluted 1/10 and tested according to the manufacturer's instructions.

PCR Assay

DNA Extraction: CIAV DNA was extracted from thymus samples of 25 mg, using a commercial kit (DNeasy Blood&Tissue Kits, Qiagen Ltd., Qiagen House, Fleming Way, Crawley, West Sussex, RH 10 9NQ). DNA extraction processes were made according to manufacturer's instructions.

Primers: PCR was performed using primers specific for ORF3, which coded VP3 and produced a band of 298 bp (12). They were purchased from Genosys Biotecnologies (Cambridge, UK).

5’ ACG CTC TCC AAG AAG ATA CTC CAC CC-3’
5’ TTT AGC TCG CTT ACC CTG TAC TCG GAG G-3’

DNA Amplification: The PCR assay was carried out in a final volume of 50 ml mixture consisted of PCR buffer (10 mM Tris-HCl (pH 8.3)), 50 mM KCl, 0.001% gelatin and 1.5 mM MgCl₂ (Sigma), 200 µM each of the deoxynucleoside triphosphates, 1 mM each of the primers, 1.25 U Taq DNA polymerase (Sigma), and 2 µL template.

The amplification was performed under the following conditions in a thermal cycler (MJ Research, Inc., Watertown, MA, USA): a denaturation step of 94 °C for 3 min followed by 35 cycles of 94 °C for 1 min, 59 °C for 1 min, 72 °C for 2 min, with a final extension at 72 °C for 5 min. The PCR product was then analysed by electrophoresis in 1.5% agarose gel and visualised under ultraviolet light after staining with ethidium bromide (12).

Results

ELISA Results. Out of 922 samples from a total of 38 flocks, 609 (66.0%) were found positive while 313 (33.9%) were observed negative by ELISA (Table 2). In 16 commercial layer flocks, 278 (70.9%) were positive out of 392 serum samples. When evaluating flocks, 15 of 16 flocks (93.7%) were positive. In commercial broiler flocks (n=10), out of 240 sera 50 (20.8%) were positive and 190 (79.2%) were negative. In addition, 7 broiler flocks (70.0%) were positive. Analysis of 90 samples taken from 4 layer breeding flocks showed that all had 100% positive results. Out of 200 sera, obtained from 8 broiler breeding flocks, 191 (95.5%) were positive and 9 (4.5%) negative. On the other hand, all broiler-breeding flocks (100%) were determined positive.

PCR Results. Bands with the weight of 298 bp were evaluated as positive (Figure). PCR analysis revealed that

<table>
<thead>
<tr>
<th>Flock type</th>
<th>Number of tested</th>
<th>Number of flocks</th>
<th>Number of sera</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Flocks</td>
<td>Positive</td>
<td>Negative</td>
</tr>
<tr>
<td></td>
<td>Sera</td>
<td>n</td>
<td>%</td>
</tr>
<tr>
<td>Commercial layer</td>
<td>16</td>
<td>15</td>
<td>93.7</td>
</tr>
<tr>
<td>Commercial broiler</td>
<td>10</td>
<td>7</td>
<td>70.0</td>
</tr>
<tr>
<td>Broiler breeding</td>
<td>8</td>
<td>8</td>
<td>100</td>
</tr>
<tr>
<td>Layer breeding</td>
<td>4</td>
<td>4</td>
<td>100</td>
</tr>
<tr>
<td>Total</td>
<td>38</td>
<td>34</td>
<td>89.5</td>
</tr>
</tbody>
</table>
53 (55.8%) of 95 samples from a total of 25 flocks (15 commercial laying and 10 commercial broiler flocks) were positive (Table 3). While 38 (66.7%) of 57 thymus samples were positive taken from 15 commercial layer flocks and 15 (39.5%) of 38 thymus samples taken from 10 commercial broiler flocks were positive (Table 3).

Discussion

CIA is a very common infection taking a part in the aetiology of some multifactorial diseases in layer and broiler flocks of both commercial and breeding types throughout the world (18,24). One of the most outstanding features of the CIAV is to cause immunosuppression by itself directly or by participating indirectly with other viruses in chickens (13,19,21,24,25).

Some serological (Neutralisation, ELISA, and IFAT) (6,8,9,26) and molecular studies (PCR) (7,12,23,27) on determining either presence of antibodies to the agent or amplification of causatives’ DNA have been reported. Ergün et al. (8) examined 4 different broiler flocks by ELISA and observed that 68.2% of the flocks were positive. Positive results were also reported in 4 (27.7–100%) of 10 parent stocks by ELISA. Kuyucuoğlu et al. (26) reported that a high degree of positivity (85.7%) was also found by ELISA from a total of 21 commercial layer flocks. It was also stated that CIAV antibodies were detected in 66.0% of commercial broiler and layer, broiler-breeding of flocks by ELISA in provinces Izmir and Bandırma (28). By virus neutralization test, more than 89% of the flocks (either commercial broiler or layer commercial or layer parent) were found to be positive (6). Finally, CIA is one of the common infections according to serologic results in commercial flocks in Turkey. This study is in line with previous studies.

Some researchers (9,29) reported positive levels of antibodies to CIAV by IFA in more than 89.5% of broilers or layers (both type of breeding) in the USA. These and other studies from all over the world showed that the infection is common in all chicken types (8,10,11,26,28-30).

PCR, used widely due to some difficulties in the isolation of virus (5,7,12), gives the flexibility to researchers for both in vivo and in vitro studies (30) and an opportunity to select right strain of virus for vaccine production (4). Additionally, CIAV contaminations in cell cultures or various vaccines can be demonstrated by PCR (5,23). Thymus is the most suitable organ for determining CIAV’s DNA by PCR (4).
Yılmaz et al. (12) investigated the presence of virus DNA in limited numbers of thymus samples from broilers in 8 different flocks and reported that the lowest occurrence (8.5%) was in Marmara Region in Turkey. On the other hand, this study is more comprehensive because CIA positive chickens were detected using PCR and ELISA. In the current study, the number of anti-CIAV antibody positive chickens from any type of breeding is actually much higher than those reported by Yılmaz et al. (12).

CIAV is known to act synergically with IBDV and Marek (17,19,25). When the history of flocks evaluated, we found out that some of the CIAV positive flocks had also showed other infections (IBD, MD, and Leucosis). Thus, which infection within the flock triggered by which infection is not clear (17,19,25). Not only viral but also some bacterial infections like Salmonella sp. and E. coli in commercial chicken flocks were also reported. When the ages of the animals were taken into account from commercial layers and broilers, the occurrence of CIA with IBD or some bacterial infections may be explained by a possible immunosuppression caused by CIAV prior to IBD or bacterial infection.

In conclusion, the results of our study showed that CIAV infection in Turkey is more common than expected in poultry. Therefore, CIAV infected positive chicken flocks may have already been infected with other causative agents and we strongly recommend using vaccines to CIA in a vaccination schedule in parent stocks countrywide. Vaccination may prevent further virus spread and can also minimize vertical transmission of virus in field conditions.

Acknowledgment

This work was granted by The Scientific and Technological Research Council of Turkey (TÜBİTAK) (Project no. VHAG-1932)

References

Investigation of Chicken Infectious Anemia Virus Infection by PCR and ELISA in Chicken Flocks

