Prevalence and Antibiotic Resistance of Listeria Spp. Isolated from Ready-to-Eat Foods in Ankara*

Ufuk Tansel ŞİRELI, Ali GÜCÜKOĞLU

Department of Food Hygiene and Technology, Faculty of Veterinary Medicine, Ankara University, Ankara - TURKEY

Received: 19.07.2007

Abstract: In this study the presence of Listeria spp. is tested in 100 ready-to-eat food samples purchased from different stores and traditional food shops in the province of Ankara. The tested materials were 20 each of the following: mayonnaise based salad, kadınbudu köfte (fried meatball), fried liver, rice stuffed mussel, and green salad. Microbiological analyzes showed that 13 of 100 salad samples (13%) were contaminated with Listeria spp. while 10 of 100 salad samples (10%) were contaminated with Listeria monocytogenes. Among these, 4 of 20 mayonnaise based salad samples (20%), 1 of 20 fried liver (5%), 1 of 20 rice stuffed mussel (5%), 1 of 20 kadınbudu köfte samples (5%), and 6 of 20 green salad samples (30%) were positive for Listeria spp. All isolated and identified strains were susceptible to chloramphenicol, trimethoprim, tetracycline, and tobramycin while they were resistant to rifampine.

Key Words: Ready-to-eat food, Listeria spp., Listeria monocytogenes, antibiotic resistance

Ankara’da Bazı Hazır Gıdalarında Listeria Türlerinin Varlığı ve Antibiyotik Dirençliliği

ÖZET: Bu çalışmada, Ankara’nın farklı market ve pazarlarından satılan 100 adet tüketime hazır gıda örneklerinde Listeria türlerinin varlığı belirlenmiştir. Hassı gıda örneklerini oluşturan, rus salatası, kadınbudu köfte, arnavut cigeri, midye dolma ve yeşil salata örneklerinden 20’er adet alınmıştır. Mikrobiyolojik analizlerde 100 salata örneğinin 13’unun (%13) Listeria türleriyle kontamine olduğu, 100 salata örneğinin 10’unun (%10) ise Listeria monocytogenes’le kontamine olduğu belirlenmiştir. Bununla birlikte, 20 rus salatası örneğinin 4’ü (%20), 20 arnavut cigeri örneğinin 1’i (%5), 20 kadınbudu köfte örneğinin 1’i (%5), 20 midye dolma örneğinin 1’i (%5) ve 20 salata örneğinin 6’sı (%30) farklı Listeria türleri yönünden pozitif bulunmuştur. İzole ve identiﬁye edilen tüm şuﬂar rıﬂam sine dirençli olarak saopathken, kloramfenikol, trimetoprim, tetraksilin ve tobramisine duyarlı oldukları belirlenmiştir.

Anahtar Sözcükler: Tüketime hazır gıda, Listeria spp., Listeria monocytogenes, antibiyotik dirençlilik

Ready-to-eat (RTE) food types (red meat, poultry, seafood, and vegetables) vary in countries according to their cultural and social backgrounds. RTE foods, with large variety, widespread availability, no cooking time, and cheaper prices compared to the others, have a very high demand among people. Although it has potential advantages, it may also pose a potential threat for public health (1,2). There is a high health risk caused by L. monocytogenes in RTE foods. Major outbreaks of listeriosis, with high morbidity and mortality (25%-30% overall), have been caused by a variety of foods, including soft cheeses, delicatessen meats, and vegetable products (3). Studies performed worldwide have reported the microbiological quality of green salads and some traditional RTE foods (1,2). European Community (EC) and United States Department of Agriculture Food Safety and Inspection Service (USDA-FSIS) have issued a zero tolerance policy for L. monocytogenes in RTE foods (4,5). Antibiotic resistance of L. monocytogenes was first reported in 1988 (6). Generally, Listeria spp. and L. monocytogenes are susceptible to a wide variety of antibiotics except cephalosporin and phosphomycin (7). Due to insufficient information related to the incidence of Listeria spp. in RTE foods in Turkey, this study aims to

* The abstract of this research was published in the proceedings of the 3rd Symposium of Agriculture, Veterinary, Forestry and Biotechnology. Sanski Most, September 28th-30th, Bosnia and Herzegovina, 2005.
** E-mail: tsireli@veterinary.ankara.edu.tr.
determine *Listeria* spp. contamination in some traditional RTE foods and to find out the antibiotic resistance of these micro-organisms.

A total of 100 samples, 20 each of the following: mayonnaise based salad, kadınbudu köfte (fried meatball), fried liver, rice stuffed mussel, and green salad samples collected from different stores and traditional food shops (4-12 °C) in Ankara between April and September of 2004, were tested for the presence of *Listeria* spp. Ingredients and preparation methods of the foods included in the present study are detailed in Table. The samples were taken aseptically and transported to the laboratory under cold chain and tested on the same day for the presence of *Listeria* spp. using the USDA-FSIS method (8). Samples (25 g) were taken and placed in a sterile plastic bag containing 225 ml of Vermont Medium Modified *Listeria* Enrichment Broth (UVM Difco 0223) and homogenized by a stomacher approximately 2 min and incubated at 30 °C for 20-24 h. To 9 ml of Fraser Broth (Difco 0219), 1 ml portions of primary enrichments were transferred and incubated at 35 °C for 24-48 h. Following the enrichment procedure, a loop of homogenate was streaked onto Oxford-Listeria Selective Agar (MOX Difco 0225-0218) and the plates were incubated at 35 °C for 48 h. In order to confirm, 5 typical black coloured colonies were selected and streaked onto Trypticase Soy Yeast Extract Agar to purify (TSYEAg, Difco 370) and identified by gram stain, catalase, oxidase, motility, β-haemolysis, CAMP, mannitol, L-rhamnose, D-xylose, salicine, dulcit, MR-VP, and nitrate reduction tests (9). The isolate, which was confirmed as *Listeria* spp. in classic culture technique, was identified with Oxoid Microbat *Listeria* 12 L Rapid Identification System® (10) according to the instructions of the manufacturer. All *Listeria* spp. isolates were tested by the standard disc diffusion method (11). Discs containing the following antibiotics were spotted with a 3 cm interval chloramphenicol (30 mg) (Oxoid CT 013), clindamycin (2 mg) (Oxoid CT 064), trimethoprim (5 mg) (Oxoid CT 076), gentamicin (10 mg) (Oxoid CT 024), tetracycline (30 mg) (Oxoid CT 054), rifampine (5 mg) (Oxoid CT 207), and tobramycin (30 mg) (Oxoid CT 056). The isolates were cultured in Trypticase-Soy Broth (TSB) supplemented with 0.6% yeast extract, and transferred to Mueller–Hinton Agar (Oxoid CM 337). The plates were incubated at 37 °C for 48 h.

The results of the present study are presented in Figure. Microbiological analyzes showed that 13 of 100 samples (13%) were contaminated with *Listeria* spp. Among these, 4 of 20 mayonnaise based salad samples

<table>
<thead>
<tr>
<th>Samples</th>
<th>Ingredients</th>
<th>Preparation</th>
<th>Environmental Conditions at retail level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mayonnaise based salad</td>
<td>Boiled potatoes, carrots,</td>
<td>Boiled potatoes and carrots are cubed and mixed</td>
<td>Presented for sale in fridge* temperature or ambient*</td>
</tr>
<tr>
<td></td>
<td>boiled peas, mayonnaise</td>
<td>with boiled peas and mayonnaise</td>
<td>temperature or ambient* temperature</td>
</tr>
<tr>
<td>Vegetable salads</td>
<td>Lettuce, tomatoes, cucumber,</td>
<td>Ingredients are mixed in a bowl</td>
<td>Presented for sale in fridge* temperature or ambient*</td>
</tr>
<tr>
<td></td>
<td>parsley, green peppers, salt,</td>
<td></td>
<td>temperature</td>
</tr>
<tr>
<td></td>
<td>lemon and oil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kadınbudu köfte</td>
<td>Minced beef, olive oil,</td>
<td>Ingredients are mixed in a bowl and formed by</td>
<td>Presented for sale in fridge* temperature or ambient*</td>
</tr>
<tr>
<td></td>
<td>chopped onions, rice,</td>
<td>hand, Fried in vegetable oils</td>
<td>temperature</td>
</tr>
<tr>
<td></td>
<td>parsley, garlic and spices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fried liver</td>
<td>Bovine liver and spices</td>
<td>Liver is cubed and mixed with spices</td>
<td>Presented for sale in fridge* temperature or ambient*</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fried in vegetable oils</td>
<td>temperature</td>
</tr>
<tr>
<td>Rice stuffed mussel</td>
<td>Mussel meat, rice, lemon</td>
<td>Boiled mussel and stuffed with cooked rice served</td>
<td>Presented for sale in fridge* temperature or ambient*</td>
</tr>
<tr>
<td></td>
<td>and spices</td>
<td>with lemon juice</td>
<td>temperature</td>
</tr>
</tbody>
</table>

* fridge temperature (4-12 °C) and ambient temperature (20-25 °C)
(20%), 1 of 20 rice stuffed mussel samples (5%), 1 of 20 kadınbudu köfte samples (5%), 1 of 20 fried liver samples (%5), and 6 of 20 green salad samples (30%) were positive for Listeria spp. L. innocua was isolated from 1 of 4 positive mayonnaise based salad samples while L. grayi was found in one of the other positive mayonnaise based salad. Both L. innocua and L. monocytogenes were isolated from 2 of 4 positive mayonnaise based salad samples. One rice stuffed mussel samples; one fried liver samples, and one kadınbudu köfte samples were contaminated with L. innocua and L. grayi. One of 6 positive green salad samples was contaminated with L. monocytogenes while the others were contaminated with both L. innocua and L. monocytogenes. The predominant species of the positive samples was L. innocua and followed by L. monocytogenes and L. grayi (Figure). In some cases, L. innocua was isolated together with L. monocytogenes or L. grayi from the same samples. Besides, in this study the results of L. monocytogenes isolates, which were already isolated and identified by classical culture technique, were confirmed by Oxoid Microbak 12 L Rapid Identification System.

Antibiotic resistance evaluation of all Listeria spp. by zone diameter around the antibiotic discs showed that all isolates were sensitive to chloramphenicol, trimethoprim, tetracycline and tobramycin but all were resistant to rifampine. L. innocua isolated from fried liver, L. monocytogenes isolated from salad samples and L. grayi isolated from mayonnaise based salad were found resistant to clindamycin whereas L. innocua and L. monocytogenes isolated from salad samples were found resistant to gentamicine.

Due to consumer trends, public demand is increasing for RTE foods, which need no additional preparation or cooking before consumption. Common consumption of RTE foods poses a potential risk for public health. Lack of adequate food safety issues during production, storage, serving, and cross contaminations are the most important factors contaminating RTE foods (1). In the present study, some traditional RTE foods were collected from retail stores in Ankara and were analysed for the presence of Listeria spp. Results indicated that contamination levels of Listeria spp. (13%) and L. monocytogenes (10%) for 5 different RTE food samples were above the microbiological criteria of US Department of Agriculture Food Safety and Inspection Services (FSIS) and European Community (EC), both of which have “zero tolerance” policy (4,5). Results are in agreement with Monge and Arias-Echandi (12) who reported Listeria spp. contamination in 32% of fresh green salad samples, but they found L. welshimeri along with L. monocytogenes in samples. However, results of the present study differ from those of Kaneko et al. (2) who found L. welshimeri and Soriano et al. (13) who isolated and identified L. ivanovii and L. Seeligeri. In the present study, the incidence of L. monocytogenes was 30% in green salads. However, Monge and Arias-Echandi (12) reported 20% and Soriano et al. (13) 10% L. monocytogenes contamination in green salads whereas Kaneko et al. (2) did not detect any L. monocytogenes and Gombas et al. (14) detected L. monocytogenes in 4.7% of the packed seafood salad samples. In addition, the high incidence rate of L. monocytogenes in green salads (30%) found in this study might be explained by the use of contaminated raw materials, insufficient hygienic conditions, mixing by hand.
during preparation, inadequate heat treatments, and extended storage duration. Nørrung et al. (15) found *Listeria* spp. (5%) and *L. monocytogenes* (2.9%) from RTE heat-treated meat products whereas Soriano et al. (13) did not detect any *L. monocytogenes* in these types of foods. The findings of the present study indicated 5% *Listeria* spp. contamination in heat-treated fried liver, kadınbudu köfte, and rice stuffed mussel, which is in agreement with those of Nørrung et al. (15). However *L. monocytogenes* prevalence rates found in this study are different from those reported by Nørrung et al. (15) but in agreement with the results obtained by Soriano et al. (13). This can be explained by different forms of products, differences in food production and handling practices, use of poultry, red meat, cheese, or vegetables that may possibly contaminated with *L. monocytogenes* during preparation (16) and different heating and cooking procedures used. Moreover, the incidence of *Listeria* spp. contamination in this study is lower than that obtained by Hartemink and Georgsson (17), who found 32% of mayonnaise based seafood salads contaminated. This high contamination rate indicated by these authors most likely come from the seafood components, lack of hygienic conditions and recontamination during preparation and extended storage duration of salad. On the other hand, results indicating the presence of *Listeria* spp. contamination in mayonnaise based salads in this study are in line with the results obtained by Nørrung et al. (15), who analysed the same types of foods stored at the same temperatures. As the critical limit maintaining microbial safety of mayonnaise against *L. monocytogenes* is reported to be pH < 4.0 (3), contamination could still occur because of the other components of salad and/or from the improper hygienic conditions during preparation.

The inappropriate use of antibiotics may contribute to the development of resistance in foods. The findings of Franco Abuin et al. (18) were similar in determining the antibiotic susceptibilities of *Listeria* spp. isolated from RTE foods. *L. monocytogenes*, an important foodborne pathogen (16), found to be resistant to more than one antimicrobial agent (rifampin and gentamicin) in this study. Similarly, Facinelli et al. (19) indicated that *L. monocytogenes* isolated from chicken and turkey frankfurter samples were resistant to gentamicin and rifampin. Results of this study agree with those of Franco Abuin et al. (18) who reported that *L. monocytogenes* were resistant to tetracycline. Although Facinelli et al. (19) reported high resistance to both tetracycline and chloramphenicol, no resistance was observed to chloramphenicol for any *Listeria* spp. during this study. *L. grayi* isolated from mayonnaise based salads displayed resistance to clindamycin.

In conclusion, it is suggested that rigid policies, such as “zero tolerance”, applied for *L. monocytogenes* in RTE foods in most countries (4,5) must be adapted into microbiological criteria of Turkish Food Codex (20). RTE foods could pose an important public health risk if contaminated with *L. monocytogenes* during preparation under poor conditions such as poor environmental and personal hygiene and lack of sanitary facilities. Thus we suggest that preventative measures including the implementation of good hygiene practise and good manufacturing practise should be applied during preparation. In addition, ensuring cold chain during storage, preventing cross contaminations, thorough washing of raw materials, and consuming RTE foods in 1 or 2 days are important factors to limit the risk of listeriosis.

References

10. Anon: Oxoid Microbact Listeria 12 L Rapid Identification System®. 2003

