Effects of Double Injections of PGF$_{2\alpha}$ at Different Intervals on Some Reproductive Traits in Tuj Ewes*

Nalan BAYŞU SÖZBİLİR1, Şaban MARAŞLI2,**, Yavuz ÖZTÜRKLER3, Ömer UÇAR4

1Department of Biochemistry, Faculty of Veterinary Medicine, Kocatepe University, Afyon - TURKEY
2Department of Biochemistry, Faculty of Veterinary Medicine, Kafkas University, Kars - TURKEY
3Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Kafkas University, Kars - TURKEY
4Department of Reproduction and Artificial Insemination, Faculty of Veterinary Medicine, Atatürk University, Erzurum - TURKEY

Received: 25.05.2005

Abstract: The present study investigated the effects of double injections of PGF$_{2\alpha}$ at different intervals (10 vs. 14 days) on plasma progesterone levels, oestrus and lambing rates in Tuj ewes during the breeding season. Thirty clinically healthy mature ewes were assigned randomly into 2 experimental groups: 2 injections of 125 µg of Cloprostenol (a PGF$_{2\alpha}$ analogue) at either 10 (Group I, n = 15) or 14 day (Group II, n = 15) intervals. Blood samples were collected from the jugular vein on the day of the second injection of PGF$_{2\alpha}$, 4 days post-injection and 16 days after insemination to determine plasma progesterone levels. The oestrus and lambing rates were also determined. Findings showed that double injections of PGF$_{2\alpha}$ at 10 or 14 day intervals did not significantly affect either the concentrations of plasma progesterone or the rates of oestrus and lambing. Plasma progesterone concentrations on the day of the second injection, 4 days post-injection and 16 days after insemination were 4.29 – 1.96, 0.27 – 0.19 and 7.39 – 3.5 ng/ml in group I and 3.45 – 1.45, 0.10 – 0.02 and 9.21 – 4.29 ng/ml in group II, respectively. The oestrus and lambing rates were 86.7% and 60.2% in group I, and 100% and 73.3% in group II, respectively. In conclusion, it appears that for oestrus synchronisation, shortening the interval of double injections of PGF$_{2\alpha}$ by 4 days has little effect on plasma progesterone concentrations, oestrus or lambing rates in Tuj ewes during the breeding season.

Key Words: PGF$_{2\alpha}$, synchronisation, progesterone, oestrus, lambing, Tuj ewe

Tuj Irkı Koyunlarda Farklı Aralıklarla Çift Doz PGF$_{2\alpha}$ Enjeksiyonunun Bazı Üreme Özellikleri Üzerine Etkileri

Özet: Sunulan çalışmada, üreme sezondaki Tuj irkı koyunlarda farklı aralıklarla (10 veya 14 gün) çift doz PGF$_{2\alpha}$ enjeksiyonunun plazma progesteron düzeyleri, östrus ve kuzulama oranları üzerine etkileri araştırılmıştır. Klinik açıdan sağlıklı otuz adet yetişkin koyun rasgele seçilerek iki deneme grubuna ayrıldı; ilk gruptaki hayvanlara 10 gün (Grup I, n = 15), ikinci gruba ise 14 gün (Grup II, n = 15) ara ile 125 µg Cloprostenol (bir PGF$_{2\alpha}$ analogu) enjeksiyonu uygulandı. Plazma progesteron düzeylerini belirlemek amacıyla, ikinci PGF$_{2\alpha}$ enjeksiyon günü, enjeksiyon sonrasında 4. gün ve tohumlama sonrasında 16. günde V. jugularis’ten kan örnekleri alındı. Ayrıca, östrus ve kuzulama oranları belirlendi. Elde edilen bulgulara göre, farklı aralıklarla çift doz PGF$_{2\alpha}$ enjeksiyonunun plazma progesteron konsantrasyonları veya östrus ve kuzulama oranları üzerine belirgin bir olumsuz etkisi bulunmaktadır. Plazma progesteron konsantrasyonları, ikinci PGF$_{2\alpha}$ enjeksiyon günü, enjeksiyon sonrasında 4. gün ve tohumlama sonrasında 16. günde grup I’de sırasıyla 4.29 ± 1.96, 0.27 ± 0.19 ve 7.39 ± 3.5 ng/ml idi, grup II’de ise sırasıyla 3.45 ± 1.45, 0.10 ± 0.02 ve 9.21 ± 4.29 ng/ml idi. Östrus ve kuzulama oranları grup I’de sırasıyla % 86.7 ve 60.2 idi, grup II’de ise sırasıyla % 100 ve 73.3 idi. Sonuç olarak, üreme sezondaki Tuj irkı koyunlarda östrus senkronizasyonu amacıyla çift doz PGF$_{2\alpha}$ enjeksiyonu aralığının 4 gün kısaltılması plazma progesteron konsantrasyonları, östrus veya kuzulama oranları üzerine etkisinin önemsi düzeyde olabileceğini anlaşılmıştır.

Anahtar Sözcükler: PGF$_{2\alpha}$, senkronizasyon, progesteron, östrus, kuzulama, Tuj koyun

*This project was supported by Kafkas University Research Foundation (Project No: 98-VF-003).
**E-mail: marasli12@hotmail.com
Introduction

Tuj is a local sheep breed that is low yielding compared to Morkaraman (1), and is well adapted to the Caucasian region. Due to the high altitude (around 1500-2000 m) and harsh climate (namely the long-lasting winter lasting about 6 months) the grazing period on green/growing pasture is usually relatively short (3-4 months) in this region.

As with many other animal species, oestrus synchronisation techniques have been widely used for improving the reproductive performance of sheep (2,3). For this aim, various hormones (e.g., progesterone, PGF$_{2\alpha}$ and melatonin) and hormone analogues can be used (2,4,5). Among them, PGF$_{2\alpha}$ (single or double injection) can be administered either alone (2,5) or following progesterone sponge treatment (3,6-8) in ewes.

Henderson et al. (6), studying the effect of double injections of different doses of PGF$_{2\alpha}$ at 9 day intervals along with the administration of progesterone-impregnated vaginal sponges, reported that there were no differences in the lambing rates of ewes treated with different doses of PGF$_{2\alpha}$. Beck et al. (7) reported that the oestrus rates during 2 consecutive breeding seasons were greater in ewes treated with double injections of PGF$_{2\alpha}$ at 11 day intervals than in those treated with a single injection only. In a subsequent study, they reported that there was no difference between the lambing rates of ewes injected with 125 µg/ewe L-Cloprostenol, a PGF$_{2\alpha}$ analogue (Estrumate®, Sanofi Doğu İlç AŞ, İstanbul, Turkey) at either 10 (Group I, n = 15) or 14 day (Group II, n = 15) intervals. Oestrus was characterised mainly by the 'standing reflex', i.e. the female stands and allows the male to mount (10,11). The rates of oestrus were observed 3 times in total by introducing teaser rams into each group at 24, 48 and 72 h after the second injection of PGF$_{2\alpha}$. The lambing rates were recorded 150 – 5 days after hand mating with Tuj rams (2 rams per group) previously known to be fertile (over 90%, according to farm records).

Blood Collection and Analytical Procedures

Blood samples were collected from the jugular vein on the day of (just prior to) the second injection of PGF$_{2\alpha}$, day 4 post-injection and 16 days after the inseminations. Plasma was obtained after centrifugation of blood at 2000 g for 15 min at room temperature and stored at –20 ºC until laboratory analysis. Plasma progesterone concentrations were determined by using double antibody enzyme immunoassay (EIA) procedures, as described by Prakash et al. (12). Anti-progesterone-7α-carboxyethylthioether-bovine thyroglobulin, produced in rabbits, was kindly supplied by D.F.M. van de Wiel (ID-DLO, Lelystadt, The Netherlands). For the preparation of enzyme labelled progesterone, 6β-OH-progesterone-hemisuccinate was labelled with horseradish peroxidase by the mixed anhydride method (13). The affinity-purified goat IgG-anti rabbit IgG was produced as described by Meyer and Guven (14). The microtitration plates were coated with 1 µg/well affinity-purified goat IgG produced against rabbit IgG. The immune reaction
was performed by incubating a mixture of 10 µl of plasma, 100 µl of enzyme label and 100 µl of antiserum. After the plates were washed, 150 µl of substrate solution (0.01% 3,3',5,5' tetramethylbenzidine, 0.004% H2O2 in 100 mM sodium acetate, pH 5.5, adjusted with citric acid) was added. The plates were incubated in the dark for 40 min, and the substrate reaction was ceased by adding 50 µl of 4 N H2SO4. The optical density was measured at 450 nm with a microtitration plate reader. The results were determined by using Easy WIN fitting program E 5.0a. The standard curve was sensitive at 0.25 to 16 ng/ml (2.5 to 160 pg/well). Intra- and interassay coefficients of variations were less than 14%.

Statistical analysis

Data from the concentrations of plasma progesterone were analysed as repeated measures, with the time being the sub-plot, by using a linear model computed in Minitab (Release 13.0, Minitab Inc., USA, 2000), as follows:

\[Y_{ijk} = \mu + G_i + t_j + (G \times t)_{ij} + e_{ijk} \]

\[Y_{ijk} \] = response variable, \(\mu \) = population mean, \(G_i \) = experimental group (I = short or II = long intervals), \(t_j \) = time relative to the second injection of PGF2\(\alpha \) (j = 0, 4, 16), \((G \times t)_{ij} \) = treatment by time interaction, and \(e_{ijk} \) = residual error.

The effects of PGF2\(\alpha \) treatments on the rates of oestrus and lambing were analysed by chi-square test. Differences in the least square means between the experimental groups were considered significant when \(P < 0.05 \). Data were presented as mean \(\pm \) SE (for progesterone).

Results

Oestrus signs (of 13 and 15 ewes in groups I and II, respectively) were detected at 48 h in the vast majority (92.3%) of ewes in group I, whereas they were observed within 48 h (33.3% at 24 h and 60% at 48 h) in group II following the second injection of PGF2\(\alpha \) (Table 1). At 72 h, only a small number of ewes showed oestrus (7.6% in group I and 6.6% in group II).

However, there were no significant effects of treatments or of treatments by time interaction on the concentrations of plasma progesterone (Figure). The concentrations on the day of the second injection, day 4 post-injection and 16 days after inseminations were 4.29 ± 1.96, 0.27 ± 0.19 and 7.39 ± 3.5 ng/ml in group I and 3.45 ± 1.45, 0.10 ± 0.02 and 9.21 ± 4.29 ng/ml in group II, respectively. The average progesterone concentrations decreased dramatically on day 4 after the second injection of PGF2\(\alpha \) as compared to just prior to the second injection. These lower values of progesterone along with behavioural signs of ewes were considered ‘typical oestrus’. Progesterone concentration was then increased dramatically on day 16 after inseminations in both groups (time effect, \(P < 0.001 \)).

Neither the oestrus rates nor the lambing rates were significantly affected by double injections of PGF2\(\alpha \) at either short (10 days) or long (14 days) intervals (Table 2). The oestrus and lambing rates were 86.7% and 60.2% in group I and 100% and 73.3% in group II, respectively. Despite the lack of statistical difference between the groups, the values given were numerically greater in ewes in the latter group.

Discussion

Overall, the signs of oestrus were detected within 72 h following the second injection of PGF2\(\alpha \) in the vast majority (28 out of 30) of ewes in both groups (with 10 vs. 14 day intervals). During this period, however, the first appearance of oestrus signs was more common among ewes in group II.

Öztürkler et al. (3) reported a 100% oestrus rate, 80% conception rate and 53.3% lambing rate in Tuj ewes injected with 0.075 mg of D-Cloprostenol at 11 day intervals. Likewise, Üleri (15), using Tiaprost (Iliren®, a PGF2\(\alpha \) analogue) with the same intervals, reported 100% oestrus and 52.2% fertility in ewes. The present results were consistent with these previous reports.

<table>
<thead>
<tr>
<th>Time relative to the second injection of PGF2(\alpha)</th>
<th>%Oestrus in Group I</th>
<th>%Oestrus in Group II</th>
</tr>
</thead>
<tbody>
<tr>
<td>24 h</td>
<td>ND</td>
<td>33.3</td>
</tr>
<tr>
<td>48 h</td>
<td>92.3</td>
<td>60</td>
</tr>
<tr>
<td>72 h</td>
<td>7.6</td>
<td>6.6</td>
</tr>
</tbody>
</table>

Table 1. Oestrus detection (%) at different times relative to the second injection of PGF2\(\alpha \) at 10 or 14 days apart in Tuj ewes (of 13 and 15 animals in Groups I and II, respectively). ND = not detected.
Furthermore, the fertility of induced oestrus is generally poor, due likely to the reduction in exposure of the reproductive tract to progesterone (11). Indeed, all the parameters studied herein were numerically (but not statistically) higher in ewes double-injected with PGF$_2$ at 14 day intervals than in those receiving the same treatment but for a shorter (10 days) interval (oestrus rates: 100% vs. 86.7%, lambing rates: 73.3% vs. 60.2%, progesterone concentrations: 9.21 – 4.29 vs. 7.39 – 3.5 ng/ml, respectively). In comparison with the literature, differences in the rates of non-return (herein as ‘high’ progesterone levels on day 16 post-insemination) and of lambing could be considered ‘normal’ since one-third (approximately 25%-40%) of embryos are lost between the time of sperm penetration of the ovum and the end of implantation in sheep, cattle and swine (16).

Double injections of PGF$_2$ at 10 or 14 day intervals did not significantly impair either the concentrations of plasma progesterone or the rates of oestrus or lambing. Reduced (around minimum) plasma progesterone concentrations on day 4 after the second injection of PGF$_2$ indicate the regression of corpus luteum. Although there were no statistical differences, the rates of oestrus and lambing in group II (with longer injection interval) were numerically greater than those in group I (short interval). In a similar study by Tekeli et al. (17) using Konya Merino ewes inseminated artificially following a double injection of PGF$_2$ at 8, 11 and 14 day intervals, the greatest rates of oestrus (83.9%) and lambing (80.6%) were observed when ewes received double injections of PGF$_2$ at the longest (14 days) intervals. Additionally, Horoz et al. (18) reported that in ewes inseminated artificially following double injections of 100 µg of Cloprostenol at 9 day intervals, the rates of oestrus and pregnancy were 47.6% and 70.0%, respectively. Although our findings indicate that there was no significant reduction in plasma progesterone concentrations, oestrus or lambing rates with a shorter injection interval (10 days) of PGF$_2$, this requires confirmation with further investigations by using a higher number of animals of different breeds. On the other hand, the present results might have been confounded by the way of insemination, as the pregnancy rates of animals inseminated naturally or artificially may vary according to the methodology of oestrus synchronisation (19). However, oestrus synchronisation could be successful when 2-step injections of PGF$_2$ administrated at 11, 12 or 13 day intervals are used (2). In the present

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Group I (n = 15)</th>
<th>Group II (n = 15)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oestrus rate, %</td>
<td>86.7</td>
<td>100</td>
</tr>
<tr>
<td>Lambing rate, %</td>
<td>60.2</td>
<td>73.3</td>
</tr>
</tbody>
</table>
In conclusion, the double injection of PGF2α at 10 or 14 day intervals did not markedly alter the concentrations of plasma progesterone or the rates of oestrus synchrony or lambing in Tuj ewes. This might be related to the marginal range of the injection intervals tested (10 vs. 14 days). Future studies with a higher number of animals of different breeds may thus verify whether there is an interaction between the method of insemination (natural or artificial) and the method of administration of PGF2α at larger time intervals for oestrus synchronisation in ewes during the breeding season.

Acknowledgements

The authors gratefully acknowledge Kafkas University Research Foundation for its financial support. We also thank Prof. Dr. Bülent Güven for his kind help with the hormonal analysis and valuable comments on the manuscript, and Assist. Prof. Dr. Armağan Hayırlı for the statistical analysis.

References