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Abstract: In this work, the effect of temperature on Gamow–Teller strength is investigated using fully self-consistent
finite temperature proton-neutron random phase approximation in the 56Fe nucleus. The calculations are performed
with Skyrme-type SkM* interaction at T = 0, 1, and 2 MeV. It is shown that temperature effects of the occupation
probabilities of states and new excitation channels become possible due to the smearing of the Fermi surface. The
Gamow–Teller excitation energies shift downward and new excited states are also obtained in the low-energy region due
to the unblocked transitions at high temperatures.
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1. Introduction
Spin-isospin excitations in nuclei are known as one of the most important excitation modes in nuclei, not only for
nuclear physics but also for nuclear astrophysics [1–3]. Among the spin-isospin excitations, the Gamow–Teller
(GT) resonances (∆L = 0, Jπ = 1+) are the most widely known, both experimentally [4,5] and theoretically
[6–14]. Apart from their importance to understand the structure of nuclei and nuclear interaction, it is also
known that the GT resonances play a dominant role in the calculation of nuclear weak interactions processes
like beta decay, electron capture, and charged-current neutrino-nucleus reactions [15–19]. For instance, the
electron capture rates are sensitive to the excitation energy and the strength of the GT+ resonance of nuclei
with mass A ≈ 60 . Therefore, accurate determination of the nuclear properties and the GT excitations is quite
important for astrophysical calculations. In addition, it is known that nuclear weak interaction processes occur
at finite temperatures from several hundreds of keV to MeV. Therefore, the temperature effects should also be
included in the calculations.

Proton-neutron random phase approximation (PNRPA) is known as an efficient and reliable tool in the
description of the collective excitations in nuclei (e.g., GT transitions) [6–12]. Recently, the effect of temperature
on GT+ strength and electron capture was investigated at zero and finite temperatures using the relativistic
[20] and nonrelativistic [21,22] functionals. In addition, evolution of the GT+ distributions with increasing
temperature was studied using PNRPA extended to finite temperature by the thermo-field-dynamics formalism
[23]. In this work, I aim to investigate the effect of temperature on both the ground state properties and Gamow-
Teller GT+ and GT− strength distributions in the 56Fe nucleus using fully self-consistent finite temperature
PNRPA. This nucleus is known to be important in the calculation of the electron capture cross-sections and
rates that take place in stellar environments.
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The paper is organized as follows. In Section 2, finite temperature PNRPA is briefly summarized and the
details of the calculations are provided. In Section 3, the results are presented for the GT strength distributions
both at zero and finite temperatures. The changes in the strength and the excitation energies are analyzed and
the physical mechanism behind these changes is discussed in detail. Finally, a summary and conclusions are
given in Section 4.

2. Microscopic model: finite temperature PNRPA
In the present work, ground state properties are calculated using the finite temperature Hartree–Fock approach
(FT-HF) and Skyrme-type SkM* [24] interaction. The SkM* interaction is known to be successful in the
description of the GT strength in nuclei [25]. In the FT-HF method, the occupation probabilities of the states
obey the temperature-dependent Fermi–Dirac distribution function at finite temperatures [26]:

fi= [1 + exp(εi−λ/kBT )]
−1

, (1)

where εi is the single-particle energies of the states and λ is the chemical potential for proton or neutrons.
In addition, kB and T represent the Boltzman constant and temperature, respectively. In order to study the
spin-isospin excitations in nuclei at finite temperatures, the PNRPA should be extended to finite temperature
PNRPA. At finite temperatures, the PNRPA matrix reads as follows [20]:(
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where A and B are defined as
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Here, P and H represent the particle and hole, respectively. The particle and hole can be either protons (p) or
neutrons (n), depending on the type of excitation. In the matrices, V ph

pn′np′ represents the residual particle-hole

interaction, while the u and v factors are defined in order to separate the proton-neutron and neutron-proton
excitations. These factors are defined as up = 1 , vp = 0 , un = 0 , vn = 1 for the neutron-proton (fn > fp)

excitations and up = 0 , vp = 1 , un = 1 , vn = 0 for the proton-neutron (fn < fp) excitations. In this
way, GT− and GT+ excitations are decoupled from each other. After the diagonalization of the FT-PNRPA
matrices, one obtains the excitation energies (Eν) with the corresponding forward-going (X

J
pn) and backward-

going amplitudes (Y J
pn) . The strength functions for the GT− and GT+ cases are calculated using
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where the spin-isospin operator is T∓ =
A∑
i=1

στ∓ for the GT∓ excitations. In the calculations, the Ikeda sum

rule [13] is also satisfied at each temperature:∑
B(GT−)−

∑
B(GT+) = 3(N − Z). (7)

The calculations are self-consistent; namely, the same interaction is used both in the ground state and in excited
state calculations.

3. Results and discussion
In this section, the effect of the temperature on the GT excitations in the 56Fe nucleus is analyzed and discussed.
It is known that the pairing correlations in nuclei disappear after the critical temperatures [27–30]. In this work,
the calculations are performed at high temperatures at T = 1 and 2 MeV. Therefore, the FT-HF and FT-PNRPA
methods are appropriate in order to investigate the effect of the temperature on the GT strength. Before starting
to discuss the effect of the temperature on the GT states in nuclei, it is also necessary to understand the changes
in the ground state properties of the 56Fe nucleus by increasing temperature.

In Figure 1, the occupation probabilities of neutron and proton states are displayed with respect to the
single-particle energies of the selected states around the Fermi level for the 56Fe nucleus. The calculations are
performed using the FT-HF method at T = 0, 1, and 2 MeV, respectively. In order to avoid the unphysical
neutron (proton) vapor problem, the calculations are performed up to T = 2.0 MeV [26]. At T = 0 MeV,
occupation probabilities are zero for neutron (proton) 2p1/2, 1f5/2 , and 1g9/2 states (2p3/2, 2p1/2, 1f5/2) .
By increasing temperature, the occupation probabilities of the states start to change around the Fermi level.
While the occupation probabilities of states decrease below the Fermi level, the occupation probabilities of the
states increase above the Fermi level with increasing temperature. This effect leads to the smearing of the
Fermi surface and opens new excitation channels for the spin-isospin excitations. Therefore, apart from the
particle-hole (ph) excitations, particle-particle (pp) and hole-hole (hh) excitations also start to play a role
in the excitations at finite temperatures. While the pp excitations refer to the transitions above the Fermi
level, hh excitations refer to the transitions below the Fermi level. The impact of the smearing of the Fermi
surface on the GT excitations will also be discussed below. On the other hand, the single-particle energies are
barely affected with increasing temperature. The effect of the temperature on the occupation probabilities and
single-particle energies is stronger at higher temperatures, and especially after T = 1.0 MeV.

In Figure 2, the GT− strength is displayed for the 56Fe nucleus at T = 0, 1, and 2 MeV. At T = 0
MeV, the main GT− peak is obtained at 17.22 MeV. Two direct spin-flip transitions, ν1f7/2 → π1f5/2 (75.3%)
and ν2p3/2 → π4p1/2 (13.1%), and one core polarization transition, ν2p3/2 → π4p3/2 (10.3%), are feeding this
state. Here, π and ν refer to proton and neutron, respectively. In the low-energy region, two states are found
with considerable strengths at 6.72 and 8.48 MeV. The peak at 6.72 MeV is formed with two core polarization
transitions: ν1f7/2 → π1f7/2 (63.1%) and ν2p3/2 → π2p3/2 (35.1%). The state at 8.48 MeV is only formed
with one direct spin-flip transition: ν2p3/2 → π2p1/2 (97.9%) at zero temperature.

By increasing temperature, the first thing to notice is the shift in the main GT− peak energy towards
lower energies. This effect becomes more pronounced after T = 1 MeV. In addition, formation of the new
excited states can be seen below the main GT− peak. At T = 2.0 MeV, the GT− peak is found at 16.65
MeV. Apart from the ν1f7/2 → π1f5/2 (89.3%) and ν2p3/2 → π4p1/2 (1.3%) transitions, this state also takes a
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Figure 1. Upper panel: Occupation probabilities for neutrons as a function of temperature around the Fermi level.
The calculations are performed using the finite temperature Hartree–Fock method at T = 0, 1, and 2 MeV for the 56Fe
nucleus. Lower panel: Same but for protons. The gray dashed lines indicate the Fermi level for neutrons and protons at
zero temperature.
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Figure 2. The GT− strength distributions for the 56Fe nucleus with respect to the excitation energy of the parent
nucleus. Calculations are performed with the finite temperature PNRPA using Skyrme-type SkM* interaction at T =
0, 1, and 2 MeV, respectively.

contribution from ν1g9/2→ π3g7/2 (5.7%). The contribution of the latter is related to the changing occupation
probabilities of the states (ν1g9/2) and the opening of the new excitation channels at finite temperatures, as
mentioned above. In addition, the change in the energy of the main GT− strength peak is about 0.57 MeV
from T = 0 to T = 2.0 MeV. Second, the temperature also affects the low-energy region of the GT− strength.
The excited state energies shift slightly downwards by increasing temperatures. After T = 1.0 MeV, formation
of the new excited states can also be seen in the low-energy region (see Figure 2). Therefore, the strength in
the low-energy region also increases slightly. These changes in the excitation energies and strength can affect
the r-process nucleosynthesis.

The GT+ strength distribution is also displayed in Figure 3. At T = 0 MeV, the main peak is obtained
at 4.95 MeV, which is only formed with direct spin-flip π1f7/2 → ν1f5/2 single-particle transition. The results
from the large-scale shell model (LSSM) calculations [16] and the experimental data [5] are also provided. The
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FT-PNRPA results are in agreement with the LSSM results in terms of the location of the centroid energies.
Since the calculations do not involve more complex configurations (like 2p-2h) than single-particle configurations,
PNRPA is not able to produce the experimental data accurately. Therefore, the GT+ state is obtained as a
single strong peak. Nonetheless, the centroid energy of the GT+ excitation is lying within the experimental
data.
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Figure 3. Same as in Figure 2, but for GT+ strength.

By increasing the temperature, the main excited state excitation energy shifts downwards and formation
of the new excited states can be seen from Figure 3. Although the impact of the temperature is not much in
the low-energy strength, the decrease in the excitation energies and slight increase in strength is shown to be
important for astrophysical processes, such as in the calculation of electron capture rates [19–23].

In order to gain a more physical insight about the effect of temperature on the low-energy region, the
major low-energy excited states are analyzed at T = 0, 1, and 2 MeV. In Tables 1 and 2, the excitation energies,
transitions, and their contribution for a given excited state are provided in percentage for GT− and GT+

excitations, respectively. The first thing to notice is the decrease in the excitation energies of the states with
increasing temperature. In addition, the transitions for the major low-energy excited states almost do not
change at T = 0 and 1 MeV. At T = 2 MeV, the GT− excitation at E = 6.55 MeV starts to take a contribution
from the ν1g9/2 → π1g9/2 transition. Similarly, the GT+ excitation at E = 4.39 MeV also starts to take a
contribution from the π1f5/2 → ν4p3/2 transition at T = 2 MeV. As explained above, the contribution of these
transitions is related to the occupation of the states above the Fermi level (see Figure 1) and the opening of the
new excitation channels with increasing temperature.

As mentioned above, the formation of the new low-energy excited states is also obtained at T = 2 MeV.
In Table 3, these new low-energy excited states with considerable strengths are given. The transitions and their
contributions for these excited states are also provided in percentages. Apparently, new low-energy states are
mainly formed with one single-particle transition and do not display collectivity. In the low-energy region, most
of the transitions have either pp or hh nature and occur due to the smearing of the Fermi surface by increasing
temperature.
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Table 1. The major low-energy states for GT− excitations in the 56Fe nucleus at T = 0, 1, and 2 MeV. The excited
states, transitions, and their contribution (X2 − Y 2) for a given excited state are also provided in percentages. Asterisk
indicates the unblocked transitions that start to contribute at finite temperatures. Herein, π and ν represent proton
and neutron, respectively.

Transitions T = 0.0 MeV T = 1.0 MeV T = 2.0 MeV
for the excited states at E = 6.72 MeV E = 6.68 MeV E = 6.55 MeV
ν1f7/2 → π1f7/2 63.1 65.2 58.3
ν2p3/2 → π2p3/2 35.1 31.9 29.6
ν1g9/2 → π1g9/2∗ - - 5.4
For the excited states at E = 8.48 MeV E = 8.44 MeV E = 8.42 MeV
ν2p3/2 → π2p3/2 97.9 98.2 98.6

Table 2. Same as in Table 1, but for GT+ excitation.

Transitions T = 0.0 MeV T = 1.0 MeV T = 2.0 MeV
for the excited states at E = 4.95 MeV E = 4.88 MeV E = 4.39 MeV
π1f7/2 → ν1f5/2 99.9 99.9 83.2
π1f5/2 → ν4p3/2∗ - - 14.8

Table 3. The selected low-energy states for GT+ and GT− excitations in the 56Fe nucleus at T = 2.0 MeV. The
transitions and their contributions for a given excited state are also provided in percentages. Asterisk indicates the
unblocked transitions that start to contribute at finite temperatures.

Low-energy states Transitions %

GT+ E = 0.24 MeV π1d5/2 → ν1d3/2∗ 99.8

E = 4.42 MeV π1f7/2 → ν1f5/2 14.5 85.1
π1f5/2 → ν4p3/2∗

GT−
E = 3.61 MeV ν2p1/2 → π2p3/2∗ 99.9

E = 5.52 MeV ν1f5/2 → π1f5/2 ∗ 94.3 3.6
ν1d3/2 → π1d3/2

E = 11.93 MeV ν1d5/2 → π1d3/2∗ 98.9

4. Summary and conclusions

The effect of the temperature on the GT excitations in the 56Fe nucleus was investigated using fully self-
consistent finite temperature PNRPA. The Skyrme-type SkM* interaction was employed in the calculations,
which was able to produce the experimental centroid energy for GT+ excitation in the 56Fe nucleus at zero
temperature.

It was shown that the temperature lowers the energies of the excited states and increases strength in the
low-energy region. The principal reason for these changes is the opening of the new excitation channels due to
the smearing of the Fermi surface at finite temperatures. Therefore, unblocked transitions become possible at
finite temperatures. In addition, the new excited states are found to be noncollective and mainly formed by pp

and hh single-particle transitions above and below the Fermi level, respectively. While the effect of temperature
is negligible below T = 1 MeV, its effect is more pronounced at higher temperatures.
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Finite temperature PNRPA is known as an appropriate tool in the investigation of excitations of closed
shell nuclei. For open shell nuclei, inclusion of the pairing correlations both in the ground state and excited
states is necessary, which is omitted in this work in order to disentangle the effect of temperature clearly. In
addition, these calculations should be performed at very low temperatures, at which pairing and temperature
effects are active. All of these issues will be undertaken in future works.
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