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Abstract: The n + 2-dimensional gravitational collapse of pressureless fluid is investigated in metric f(R) gravity.

Matching conditions are derived by taking the n+2-dimensional Friedmann–Robertson–Walker (FRW) metric as interior

spacetime and the n+ 2-dimensional Schwarzschild metric as exterior spacetime. In the analysis of the solution of field

equations, the scalar curvature is assumed to be a constant. It is observed that the scalar curvature constant term f(R0)

slows the collapse.
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1. Introduction

Recently, a number of research papers have been written to investigate gravitational collapse in extended theories

of gravity [1–12]. It is shown that the further one goes from general relativity, there is a greater chance of naked

singularity [4]. Sharif and Kausar [10] studied the spherically symmetric perfect fluid gravitational collapse in

the f(R) theory of gravity. Farasat et al. [11] investigated collapse with dust in the f(R) theory of gravity. They

concluded that f(R0) slows the collapse. For more references on this topic see [1–12].

Recent advancements in string theory and other field theories indicate that gravity is a higher-dimensional

interaction. It would be important to study gravitational collapse and singularity formation in higher dimen-

sions. Dadhich et al. [13] studied the gravitational collapse in pure Lovelock gravity in higher dimensions.

Ghosh and Beesham [14] investigated the higher-dimensional inhomogeneous dust collapse and cosmic censor-

ship. Patil et al. [15] investigated the naked singularities and structure of geodesics in higher-dimensional dust

collapse. Sharif and Ahmad [16] studied higher-dimensional perfect fluid collapse with a cosmological constant.

In f(R) gravity, higher-dimensional null dust collapse was studied by Ghosh and Maharaj [12] and they inves-

tigated a condition for the formation of a naked singularity. In this paper, the work done by Farasat et al. [11]

is extended for n+ 2-dimensional spacetime.

The scheme of the paper is as follows. In section two, the field equations are given. Section three is

devoted to junction conditions. The results are discussed in section four. In section five, the apparent horizons

are discussed. Section six contains the summarized results.
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2. Equations in f(R) gravity

Here the n + 2-dimensional spacetime is divided into interior and exterior space-times by n + 1-dimensional

hypersurface Σ. For the interior region, we take the n+ 2-dimensional FRW metric given by

ds2− = dt2 − a2(t)(dr2 + b2(r)dΩ2), (1)

where a(t) represents the cosmic scale factor and

b(r) =

 sin r, k = 1,
r, k = 0,
sinh r k = −1.

dΩ2 =
n∑

k=1

[
k−1∏
l=1

sin2θl]dθ
2
k = dθ21 + sin2θ1dθ

2
2 + sin2θ1sin

2θ2dθ
2
3

+ ...+ sin2θ1sin
2θ2sin

2θ3...sin
2θn−1dθ

2
n. (2)

The Einstein field equations in f(R) gravity are given as [17]

F (R)Rµν − 1

2
f(R)gµν −∇µ∇νF (R) + gµν∇σ∇σF (R) = κTm

µν . (3)

Here F (R) ≡ f ′(R), ∇µ is the covariant derivative, Tm
µν is the energy momentum tensor, and κ is the coupling

constant. Contracting with metric tensor gµν one can find the following trace of the field equations (3)

F (R)R− 2f(R) + 3∇σ∇σF (R) = κTm. (4)

We consider dust for which the energy momentum tensor is

Tm
µν = ρuµuν , (5)

where ρ denotes the energy density and uµ = δ0µ is the n + 2-dimensional velocity. For metric (1), the

independent field equations are

−(n+ 1)
ä

a
=

1

F
[κρ+

f

2
− (n+ 1)

ȧ

a
Ḟ ], (6)

ä

a
+ n(

ȧ

a
)2 − n

b′′

a2b
=

1

F
[−f

2
+ n

ȧ

a
Ḟ + F̈ ], (7)

ä

a
+ n(

ȧ

a
)2 − b′′

a2b
− (n− 1)(

b′

ab
)2 +

n− 1

a2b2
=

1

F
[−f

2
+ n

ȧ

a
Ḟ + F̈ ]. (8)

Here dot means differentiation with respect to t and prime represents differentiation with respect to r .
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3. Matching conditions

The matching conditions are defined as

(a) The continuity of interior and exterior spacetimes on Σ gives

(ds2+)Σ = (ds2−)Σ = (ds2)Σ. (9)

(b) The continuity of the extrinsic curvature Kcd over Σ gives

[Kcd] = K+
cd −K−

cd = 0, (c, d = 0, 2, 3, ...n+ 1). (10)

These equations give necessary and sufficient conditions for smooth matching of interior and exterior spacetimes.

The condition (9) implies that the first fundamental form for interior and exterior spacetimes is the same on

hypersurface Σ. The second condition (10) shows that the second fundamental form is the same on hypersurface

Σ. In (10),

K±
cd = −n±

ω

(
∂2xω

±
∂ξc∂ξd

+ Γω
γδ

∂xγ
±∂x

δ
±

∂ξc∂ξd

)
, (ω, γ, δ = 0, 1, 2, 3, ...n+ 1). (11)

Here n±
ω , xω

± , and ξc denote the unit outward normals, coordinates on V ± and Σ, respectively.

The n+ 2-dimensional Schwarzschild metric is considered as exterior spacetime

ds2+ = (1− 2M

R̃
)dT 2 − 1

1− 2M
R̃

dR̃2 − R̃2dΩ2, (12)

where M is constant, and T and R̃ are the time and radial coordinates for exterior spacetime, respectively.

The equations of hypersurfaces are given by

h−(r, t) = r − rΣ = 0, (13)

h+(R̃, T ) = R̃− R̃Σ(T ) = 0, (14)

where rΣ is a constant. These equations imply that the radial coordinate of interior spacetime is constant

and the radial coordinate of exterior spacetime depends on its time coordinate, i.e. R̃Σ(T ) on Σ, respectively.

Using Eq. (13) in Eq. (1), the interior metric on the hypersurface Σ takes the following form:

ds2− = dt2 − a(t)2b(r)2dΩ2. (15)

Moreover, substituting Eq. (14) in Eq. (12), we get

ds2+ = (1− 2M

R̃Σ

− 1

1− 2M
R̃Σ

(
dR̃Σ

dT
)2)dT 2 − R̃2

ΣdΩ
2. (16)

For T , a timelike coordinate, we assume

(1− 2M

R̃Σ

− 1

1− 2M
R̃Σ

(
dR̃Σ

dT
)2) > 0. (17)
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Now from matching condition (9), we get

R̃Σ = a(t)b(rΣ), (18)

[1− 2M

R̃Σ

− 1

1− 2M
R̃Σ

(
dR̃Σ

dT
)2]

1
2 dT = dt. (19)

The unit normals on Σ can be found from Eqs. (13) and (14) as

n−
ω = (0, a(t), 0, 0, 0, ...0), (20)

n+
ω = (− ˙̃RΣ, Ṫ , 0, 0, 0, ...0). (21)

The components of K±
cd are

K−
00 = 0, (22)

K−
22 = csc2 θ1K

−
33 = csc2 θ1 csc

2 θ2K
−
44 =

... = csc2 θ1 csc
2 θ2... csc

2 θnK
−
n+1n+1 = (abb′)Σ, (23)

K+
00 = [ ˙̃RΣT̈ − Ṫ ¨̃RΣ +

3M ˙̃R2
ΣṪ

R̃Σ(R̃Σ − 2M)
− M(R̃Σ − 2M)Ṫ 3

R̃3
Σ

]Σ, (24)

K+
22 = csc2 θ1K

+
33 = csc2 θ1 csc

2 θ2K
+
44 =

... = csc2 θ1 csc
2 θ2... csc

2 θnK
+
n+1n+1 = (Ṫ (R̃Σ − 2M))Σ. (25)

Now from continuity of extrinsic curvature (10), it follows that

K+
00 = 0, K+

22 = K−
22. (26)

From Eqs. (22)–(26) and (18) and (19), the matching conditions take the form

(ḃ′)Σ = 0, (27)

M = [
n− 1

2
(ab)n−1 − n− 1

2
an−1ȧ2bn+1 − n− 1

2
(ab)n−1b′2]Σ. (28)

Eqs. (18), (19), (27), and (28) are necessary and sufficient matching conditions.

4. Solution

For obtaining a solution, we assume constant curvature scalar R = R0 . Using this assumption, Eq. (4) implies

that trace of energy momentum tensor Tm is constant and it is possible for constant energy density, i.e. ρ = ρ0 .

Considering these assumptions, Eqs. (6)–(8) become

−(n+ 1)
ä

a
=

1

F (R0)
[κρ0 +

f(R0)

2
], (29)

ä

a
+ n(

ȧ

a
)2 − n

b′′

a2b
= − f(R0)

2F (R0)
, (30)

ä

a
+ n(

ȧ

a
)2 − b′′

a2b
− (n− 1)(

b′

ab
)2 +

n− 1

a2b2
= − f(R0)

2F (R0)
. (31)
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Now from Eqs. (29)–(31), we can obtain

2
ä

a
+ (n− 1)(

ȧ

a
)2 + (n− 1)(

1− b′2

a2b2
) = − 1

F (R0)
(
κρ0
n

+
f(R0)

2
). (32)

Now from Eq. (27), it follows that

b′ = X, (33)

where X(r) is an arbitrary function. Using Eq. (33), Eq. (32) becomes

2
ä

a
+ (n− 1)(

ȧ

a
)2 + (n− 1)(

1−X2

a2b2
) = − 1

F (R0)
(
κρ0
n

+
f(R0)

2
). (34)

Integrating the above equation, we get

(ȧ)2 =
X2 − 1

b2
+ 2

m(r)

an−1bn+1
− a2

(n+ 1)F (R0)
(
κρ0
n

+
f(R0)

2
), (35)

where arbitrary function m(r) represents the mass and is given by

m(r) =
κρ0a

n+1bn+1

n(n+ 1)F (R0)
. (36)

The function m(r) must be positive. Using the second matching condition from Eqs. (28) and (35), we get

M = (n− 1)m− (n− 1)an+1bn+1

2(n+ 1)F (R0)
(
κρ0
n

+
f(R0)

2
). (37)

Now using the mass function [18], the total energy M̃(r, t) for the interior spacetime is defined as

M̃(r, t) = (n− 1)
(ab)n−1

2
[1 + gµν(ab),µ(ab),ν ]. (38)

Using Eq. (35), the mass function becomes

M̃(r, t) = (n− 1)m(r)− (n− 1)an+1bn+1

2(n+ 1)F (R0)
(
κρ0
n

+
f(R0)

2
). (39)

Now we consider X(r) = 1 to find the solution of Eq. (35). Eq. (35) implies that

ȧ2b2 =
4n(n+ 1)mF (R0)− an+1bn+1(2κρ0 + nf(R0))

2n(n+ 1)F (R0)an−1bn−1
, (40)

and the above equation gives

ȧb = ±

√
4n(n+ 1)mF (R0)− an+1bn+1(2κρ0 + nf(R0))

2n(n+ 1)F (R0)an−1bn−1
, (41)
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for the collapsing process, taking a negative sign only, and after some simplification Eq. (41) can be written as

follows:

n+1
2 (ab)

n−1
2 d(ab)√

(
√

−4n(n+1)mF (R0)
2κρ0+nf(R0)

)2 + ((ab)
n+1
2 )2

= −

√
−(n+ 1)(2κρ0 + nf(R0))

8nF (R0)
dt. (42)

Integrating the last equation with assumption 2κρ0 + nf(R0) < 0, we get

ab = (
−4n(n+ 1)m(r)F (R0)

2κρ0 + nf(R0)
)

1
n+1 sinh

2
n+1 α(r, t), (43)

where

α(r, t) =

√
− (n+ 1)[2κρ0 + nf(R0)]

8nF (R0)
[ts(r)− t]. (44)

Here ts(r) is considered as an arbitrary function. For f(R0) → − 2κρ0

n , the solution reduces to the solution

obtained by Tolman–Bondi [19]

ab = [
(n+ 1)2m(r)

2
(ts − t)2]

1
n+1 . (45)

5. Apparent horizons

The apparent horizon is obtained when the boundary of trapped n -sphere with outward null normals is formed.

For spacetime (1), this boundary is given by

gµν(ab),µ (ab),ν = (ȧ)2b2 − b′2. (46)

Using Eqs. (33) and (35) with assumption X(r) = 1 , above equation yields

1

F (R0)
[
κρ0
n

+
f(R0)

2
]an+1bn+1 + (n+ 1)an−1bn−1 − 2(n+ 1)m = 0. (47)

The values of ab give the apparent horizons. For f(R0) =
−2κρ0

n , we have ab = (2m)
1

n−1 , i.e. the Schwarzschild

horizon. It gives the de-Sitter horizon when m = 0, i.e.

ab =

√
−(n+ 1)F (R0)

κρ0

n + f(R0)
2

. (48)

The approximate solutions of Eq. (47) up to first order in m and 1
F (R0)

[κρ0

n + f(R0)
2 ] can be obtained by

perturbation method. For a solution up to first order in m , let

ab = (ab)0 +m(ab)1 + ... (49)

be the solution of Eq. (47). Putting Eq. (49) in Eq. (47) and comparing coefficients of power of m , we get

(ab)0 =
(−2n(n+ 1)F (R0)

2κρ0 + nf(R0)

) 1
2

, (50)
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and

(ab)1 = 2
(
(

2nF (R0)

2κρ0 + nf(R0)
)
(−2κρ0 + nf(R0)

2nF (R0)

)n
2

+

( −2κρ0 + nf(R0)

2n(n− 1)(n+ 1)F (R0)

)n−2
2

)
. (51)

Substituting the value of (ab)0 and (ab)1 in Eq. (49), we get

(ab)c = (
−2n(n+ 1)F (R0)

2κρ0 + nf(R0)
)

1
2 + 2((

2nF (R0)

2κρ0 + nf(R0)
)(
−2κρ0 + nf(R0)

2nF (R0)
)

n
2

+(
−2κρ0 + nf(R0)

2n(n− 1)(n+ 1)F (R0)
)

n−2
2 )m+ ...,

(52)

and for a solution up to first order in 1
F (R0)

[κρ0

n + f(R0)
2 ] , let

ab = (ab)0 +
1

F (R0)
[
κρ0
n

+
f(R0)

2
](ab)1 + ... (53)

be the solution of Eq. (47). Putting Eq.(53) in Eq. (47) and comparing coefficients of power of 1
F (R0)

[κρ0

n +

f(R0)
2 ] , we get

(ab)0 = (2m)
1

n−1 , (54)

and

(ab)1 = − (2m)
3

n−1

(n+ 1)(n− 1)
. (55)

Thus, putting the value of (ab)0 and (ab)1 in Eq.(53), it follows that

(ab)bh = (2m)
1

n−1 − (
(2m)

3
n−1

(n− 1)(n+ 1)
)

1

F (R0)
(
κρ0
n

+
f(R0)

2
) + .... (56)

(ab)c and (ab)bh are called cosmological and black hole respectively. Now from Eqs. (44) and (47), the time

for the formation of apparent horizon is given by

tk = ts −

√
8nF (R0)

(n+ 1)(2κρ+ nf(R0))
sinh−1[

(abk)
n−1

2m(r)
− 1]

1
2 , k = 1, 2. (57)

For f(R0) → − 2κρ0

n , the result corresponds to the Tolman–Bondi case

tk = ts −
(2nm)

1
n−1

n+ 1
. (58)

Eq. (57) shows that both the horizons (cosmological and black hole) form before the singularity t = ts formation.

Eq. (58) gives the time for the formation of apparent horizons in higher-dimensional Tolman–Bondi spacetime.
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6. Conclusion

In this paper, we have investigated gravitational collapse in f(R) gravity by considering the metric approach .

We have considered the n + 2-dimensional FRW and n + 2-dimensional Schwarzschild spacetimes for interior

and exterior regions, respectively. Matching interior and exterior regions, the matching conditions have been

derived. For the solution, constant curvature scalar is assumed.

Two horizons, which are black horizon and cosmological horizon, are formed. The black hole and

cosmological horizon are formed before the singularity formation. This favors the cosmic censorship conjecture.

The collapsing rate is calculated from (35) as

äb = − (n− 1)m

anbn
− ab

2n(n+ 1)F (R0)
[2κρ0 + nf(R0)]. (59)

For the collapsing process, the acceleration should be negative, which is possible when

ab < [−2n(n− 1)(n+ 1)mF (R0)

2κρ0 + nf(R0)
]

1
n+1 . (60)

It follows from Eq. (59) that the f(R0) slows the collapse when 2κρ0 + nf(R0) < 0. Further, due to f(R0)

there exist two physical horizons, namely block hole horizon and cosmological horizon. It is mentioned here

that the effects of f(R0) are the same as the cosmological constant in general relativity [16]. For n = 2, our

results reduced to the four-dimensional case given by Farasat et al. [11]. Therefore, this work is a generalization

of Farasat et al. [11].
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