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Abstract:We provide an update on five relatively well-motivated inflationary models in which the inflaton is a Standard

Model singlet scalar field. These include i) the textbook quadratic and quartic potential models but with additional

couplings of the inflaton to fermions and bosons, which enable reheating and also modify the naive predictions for

the scalar spectral index ns and r , ii) models with Higgs and Coleman–Weinberg potentials, and finally iii) a quartic

potential model with nonminimal coupling of the inflaton to gravity. For ns values close to 0.96, as determined by the

WMAP9 and Planck experiments, most of the considered models predict r ≳ 0.02. The running of the scalar spectral

index, quantified by |dns/d ln k| , is predicted in these models to be of order 10−4 –10−3 .
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1. Introduction

The dramatic announcement of a B-mode polarization signal possibly due to inflationary gravitational waves

by the BICEP2 experiment [1] brought new attention to a class of inflationary models in which the energy scale

during inflation is on the order of 1016 GeV. Subsequent results by the Planck experiment [2, 3, 4] and the joint

Planck–BICEP analysis [5] indicate that most (if not all) of the signal observed by the BICEP experiment was

caused by galactic dust. However, a significant contribution from inflationary gravitational waves is not ruled

out. The joint Planck–BICEP analysis provides a best fit value around 0.05 for the tensor to scalar ratio r .

Although this result is not statistically significant as it stands, it will soon be tested by forthcoming data.

Motivated by these rapid developments in the observational front, in this paper we briefly review and

update the results of five closely related, well-motivated, and previously studied inflationary models consistent

with values of r around 0.05, a signal level that will soon be probed. The first two models employ the very

well-known quadratic (ϕ2 ) and quartic (ϕ4 ) potentials [6], supplemented in our case by additional couplings

of the inflaton ϕ to fermions and/or scalars, so that reheating becomes possible. These new interactions have

previously been shown [7, 8, 9] to significantly modify the predictions for the scalar spectral index ns and r in

the absence of these new interactions.

The next two models exploit respectively the Higgs potential [8, 9, 10, 11, 12, 13, 14] and Coleman–

Weinberg potential [13, 15, 16, 17]. With the SM electroweak symmetry presumably broken by a Higgs potential,

it seems natural to think that nature may have utilized the latter (or the closely related Coleman–Weinberg
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potential) to also implement inflation, albeit with a SM singlet scalar field.

Finally, we consider a class of models [18, 19] that invokes a quartic potential for the inflaton field,

supplemented by an additional nonminimal coupling of the inflaton field to gravity [9, 20, 21, 22, 23, 24, 25, 26,

27, 28, 29, 30].

Our results show that the predictions for ns and r from these models are generally in good agreement

with the BICEP2, Planck, and WMAP9 measurements, except the radiatively corrected quartic potential, which

is ruled out by the current data. We display the range of r values allowed in these models that are consistent

with ns being close to 0.96. Finally, we present the predictions for |dns/d ln k| , which turn out to be of order

10−4 –10−3 .

Before we discuss the models, let us recall the basic equations used to calculate the inflationary parame-

ters. The slow-roll parameters may be defined as (see ref. [31] for a review and references):

ϵ =
1

2

(
V ′

V

)2

, η =
V ′′

V
, ζ2 =

V ′V ′′′

V 2
. (1.1)

Here and below we use units mP = 2.4 × 1018 GeV = 1, and primes denote derivatives with respect to the

inflaton field ϕ . The spectral index ns , the tensor to scalar ratio r , and the running of the spectral index

α ≡ dns/d ln k are given in the slow-roll approximation by

ns = 1− 6ϵ+ 2η , r = 16ϵ , α = 16ϵη − 24ϵ2 − 2ζ2 . (1.2)

The amplitude of the curvature perturbation ∆R is given by

∆R =
1

2
√
3π

V 3/2

|V ′|
, (1.3)

which should satisfy ∆2
R = 2.215 × 10−9 from the Planck measurement [32] with the pivot scale chosen at

k0 = 0.05 Mpc−1 .

The number of e-folds is given by

N =

∫ ϕ0

ϕe

V dϕ

V ′ , (1.4)

where ϕ0 is the inflaton value at horizon exit of the scale corresponding to k0 , and ϕe is the inflaton value at

the end of inflation, defined by max(ϵ(ϕe), |η(ϕe)|, |ζ2(ϕe)|) = 1. The value of N depends logarithmically on

the energy scale during inflation as well as the reheating temperature, and is typically around 50–60.

2. Radiatively corrected quadratic and quartic potentials

Inflation driven by scalar potentials of the type

V =
1

2
m2ϕ2 +

λ

4!
ϕ4 (2.1)

provides a simple realization of an inflationary scenario [6]. However, the inflaton field ϕ must have couplings to

‘matter’ fields that allow it to make the transition to hot big bang cosmology at the end of inflation. Couplings
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such as (1/2)hϕN̄N or (1/2)g2ϕ2χ2 (to a Majorana fermion N and a scalar χ respectively) induce correction

terms to the potential that, to leading order, take the Coleman–Weinberg form [33]

Vloop ≃ −κϕ4 ln

(
ϕ

µ

)
. (2.2)

Here, µ is a renormalization scale that we set to µ = mP
1, and κ = (2h4 − g4)/(32π2) in the one loop

approximation.

First, assume that λ ≪ m2/ϕ2 during inflation, so that inflation is primarily driven by the quadratic ϕ2

term. In the absence of radiative corrections, this quadratic case of the well-known monomial model [6] predicts

ns = 1− 2/N , r = 8/N , α = −2/N2 . (2.3)

As discussed in ref. [7], when κ is positive there are two solutions for a given κ . The “ϕ2 solution”

approaches the tree level result eq. (2.3) as κ decreases, whereas inflation takes place close to the local maximum

for the “hilltop solution”, resulting in a strongly tilted red spectrum with suppressed r . As the value of κ is

increased, the two branches of solutions approach each other and they meet at κ ≃ 7 × 10−15 for N = 60.

For negative κ values the ϕ4 lnϕ correction term in the potential leads to predictions similar to those for the

quartic potential given by

ns = 1− 3/N , r = 16/N , α = −3/N2 . (2.4)

For each case, we calculate the inflationary predictions scanning over various values of κ , while keeping

the number of e-folds fixed. Figure 1 shows the predictions for ns , r , and α with the number of e-folds N = 50

(left curves in each panel) and N = 60 (right curves in each panel), along with the Planck results [4]. The

values of parameters for selected values of κ are displayed in Table 2.
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Figure 1. Radiatively corrected ϕ2 potential: ns vs. r (left panel) and ns vs. α (right panel) for various κ values,

along with the ns vs. r contours (at the confidence levels of 68% and 95%) given by the Planck collaboration (Planck

TT+lowP) [4]. The black points and triangles are predictions in the textbook quartic and quadratic potential models,

respectively. The dashed portions are for κ < 0. N is taken as 50 (left curves) and 60 (right curves).

The one loop contribution to λ is of order (4!)κ , which is ∼ m2/ϕ2 in the parameter range where the κ

term has a significant effect on inflationary observables. In this case our assumption λ ≪ m2/ϕ2 corresponds

1For the radiatively corrected quartic potential the observable inflationary parameters do not depend on the choice of the
renormalization scale. However, this may not be the case for the radiatively corrected quadratic potential, as discussed in ref. [34].
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Table 1. Radiatively corrected ϕ2 potential: The values of parameters for number of e-folds N = 60, in units mP = 1

unless otherwise stated.

log10(|κ|) m (GeV) V (ϕ0)
1/4 (GeV) ϕ0 ϕe ns r α (10−4)

negative κ branch

−14.0 1.38× 1013 2.23× 1016 17.0 1.42 0.962 0.215 −4.81

−14.5 1.46× 1013 2.07× 1016 16.0 1.41 0.967 0.159 −5.32

−16.0 1.46× 1013 1.98× 1016 15.6 1.41 0.967 0.133 −5.46

V = (1/2)m2ϕ2

1.46× 1013 1.98× 1016 15.6 1.41 0.967 0.132 −5.46

ϕ2 branch

−16.0 1.46× 1013 1.97× 1016 15.5 1.41 0.967 0.131 −5.47

−14.5 1.41× 1013 1.85× 1016 15.0 1.41 0.965 0.102 −5.15

−14.3 1.30× 1013 1.69× 1016 14.4 1.41 0.959 0.070 −3.79

−14.2 1.22× 1013 1.59× 1016 14.0 1.41 0.954 0.056 −2.59

Hilltop branch

−14.2 1.01× 1013 1.37× 1016 13.2 1.41 0.940 0.031 0.58

−14.3 7.9× 1012 1.16× 1016 12.5 1.41 0.921 0.016 3.41

to the renormalized coupling being small compared to the one loop contribution. Alternatively, assume that

λ ≫ m2/ϕ2 during inflation, so that inflation is primarily driven by the quartic term. The numerical results

for this case are displayed in Figure 2 and Table 2. As before, there are two solutions for a given positive value

of κ , and the predictions interpolate between a strongly tilted red spectrum with suppressed r to the tree level

result given in eq. (2.4). For negative κ values the potential during inflation interpolates between ϕ4 and

ϕ4 lnϕ potentials, as a consequence the predictions remain close to eq. (2.4).
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Figure 2. Radiatively corrected ϕ4 potential: ns vs. r (left panel) and ns vs. α (right panel) for various κ values,

along with the ns vs. r contours (at the confidence levels of 68% and 95%) given by the Planck collaboration (Planck

TT+lowP) [4]. The black points and triangles are predictions in the textbook quartic and quadratic potential models,

respectively. The dashed portions (extending just beyond the black points) are for κ < 0. N is taken as 50 (left curves)

and 60 (right curves).
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Table 2. Radiatively corrected ϕ4 potential: The values of parameters for number of e-foldsl N = 60, in units mP = 1

unless otherwise stated.

log10(|κ|) log10(λ) V (ϕ0)
1/4 (GeV) ϕ0 ϕe ns r α (10−4)

negative κ branch
−14.3 −12.4 2.36× 1016 22.6 3.67 0.950 0.269 −8.11
−15.0 −12.1 2.34× 1016 22.3 3.49 0.951 0.262 −7.97
V = (1/4!)λϕ4

−12.1 2.34× 1016 22.2 3.46 0.951 0.260 −7.93
ϕ4 branch
−15.0 −12.0 2.34× 1016 22.1 3.44 0.951 0.258 −7.90
−14.0 −11.8 2.30× 1016 21.5 3.28 0.953 0.241 −7.64
−13.5 −11.5 2.17× 1016 20.3 3.12 0.957 0.193 −7.23
−13.3 −11.4 1.99× 1016 19.1 3.03 0.957 0.135 −6.24
−13.26 −11.3 1.87× 1016 18.5 3.00 0.954 0.106 −4.96
Hilltop branch
−13.26 −11.4 1.70× 1016 17.8 2.97 0.947 0.073 −2.28
−13.30 −11.4 1.55× 1016 17.2 2.95 0.937 0.051 0.51
−13.35 −11.5 1.44× 1016 16.8 2.94 0.929 0.038 2.61

3. Higgs potential

In this section we consider an inflationary scenario with the potential of the form

V =
λ

4!

(
ϕ2 − v2

)2
, (3.1)

where ϕ is the inflaton field, λ is a real, positive coupling, and v is the vacuum expectation value (VEV) at

the minimum of the potential. This Higgs potential was first considered for inflation in refs. [35, 36], and more

recently in refs. [9, 10, 13, 15]. Radiative corrections to the Higgs potential were analyzed in refs. [8, 14]. Here,

for simplicity, we have assumed that the inflaton is a real field, but it is straightforward to extend the model

to the Higgs model, where the inflaton field is the Higgs field and a gauge symmetry is broken by the inflaton

VEV.

In the inflationary scenario with the Higgs potential, we can consider two cases for the inflaton VEV

during inflation. One is that the initial inflaton VEV is smaller than its VEV at the potential minimum

(ϕ0 < v ), and the other is the case with ϕ0 > v . For each case, we calculate the inflationary predictions for

various values of the inflaton VEV keeping the number of e-folds fixed. Numerical results are displayed in Table

3. Figure 3 shows the predictions for ns , r , and α with the number of e-folds N = 50 (left curves in each

panel) and N = 60 (right curves in each panel).

For the case with ϕ0 < v , if the inflaton VEV is large (v ≫ 1 in Planck units) the inflation potential is

dominated by the VEV term and well approximated as the quadratic potential

V ≃
(
λv2

6

)
χ2 , (3.2)

where χ = ϕ − v plays the role of inflaton. Thus the predictions approach the values given by eq. (2.3),

corresponding to the black triangles in Figure 3. On the other hand, for v ≪ 1, the potential is of the new
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Table 3. Higgs potential: the values of parameters for number of e-folds N = 60, in units mP = 1 unless otherwise

stated.

log10(λ) v V (ϕ0)
1/4 (GeV) ϕ0 ϕe ns r −α (10−4)

solutions below the VEV (ϕ < v)
−12.3 13 1.18× 1016 1.91 11.7 0.947 0.0170 2.67
−12.4 17 1.45× 1016 4.64 15.7 0.960 0.0385 4.06
−12.6 23 1.64× 1016 9.64 21.7 0.966 0.0626 4.82
−12.9 32 1.76× 1016 17.9 30.6 0.968 0.0834 5.14
−13.3 53 1.86× 1016 38.3 51.6 0.968 0.104 5.32
−14.9 300 1.96× 1016 285 299 0.967 0.128 5.44
solutions above the VEV (ϕ > v)
−12.1 1 2.33× 1016 22.3 3.69 0.952 0.258 7.85
−12.2 5 2.28× 1016 24.3 6.81 0.955 0.237 7.02
−12.5 10 2.22× 1016 28.1 11.6 0.959 0.212 6.36
−12.8 19 2.15× 1016 36.2 20.5 0.962 0.186 5.91
−13.3 41 2.08× 1016 57.4 42.5 0.965 0.161 5.65
−14.9 300 1.99× 1016 316 301 0.967 0.137 5.49
V = (1/2)m2ϕ2

1.97× 1016 15.6 1.41 0.967 0.132 5.46
V = (1/4!)λϕ4

−12.1 2.34× 1016 22.2 3.46 0.951 0.260 7.93

inflation or hilltop type:

V ≃ λ

4!
v4

[
1− 2

(
ϕ

v

)2
]
, (3.3)

which implies a strongly red tilted spectrum with suppressed r .

In the other case with ϕ0 > v , the inflationary predictions for various values of v are shown as dashed

lines in Figure 3. For a small VEV (v ≪ 1) and ϕ0 ≫ v , the inflaton potential is well approximated as the

quartic potential, and hence the predictions are well approximated by eq. (2.4), corresponding to the black

points in Figure 3. On the other hand, for v ≫ 1 the potential during the observable part of inflation is

approximately the quadratic potential, so that the inflationary predictions approach the values given by eq.

(2.3) as the inflaton VEV is increased.

4. Coleman–Weinberg potential

In this section we briefly review a class of models that appeared in the early eighties in the framework of

nonsupersymmetric GUTs and employed a GUT singlet scalar field ϕ [16, 37, 38, 39]. These (Shafi–Vilenkin)

models are based on a Coleman–Weinberg potential [33], which can be expressed as [40, 41, 42]:

V (ϕ) = Aϕ4

[
ln

(
ϕ

v

)
− 1

4

]
+

Av4

4
, (4.1)

where v denotes the ϕ VEV at the minimum. Note that V (ϕ = v) = 0, and the vacuum energy density at

the origin is given by V0 = Av4/4. Inflationary predictions of this potential were recently analyzed in refs.

[13, 15, 17].
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Figure 3. Higgs potential: ns vs. r (left panel) and ns vs. α (right panel) for various v values, along with the ns

vs. r contours (at the confidence levels of 68% and 95%) given by the Planck collaboration (Planck TT+lowP) [4]. The

dashed portions are for ϕ > v . The black points and triangles are predictions in the textbook quartic and quadratic

potential models, respectively. N is taken as 50 (left curves) and 60 (right curves).

The magnitude of A and the inflationary parameters can be calculated using the standard slow-roll

expressions given in Section 1. For V
1/4
0 ≳ 2 × 1016 GeV, observable inflation occurs close to the minimum

where the potential is effectively quadratic as in Section 3 (V ≃ 2Av2χ2 , where χ = ϕ−v denotes the deviation

of the field from the minimum). The inflationary predictions are thus approximately given by eq. (2.3).

For V
1/4
0 ≲ 1016 GeV, assuming inflation takes place with inflaton values below v , the inflationary

parameters are similar to those for new inflation models with V = V0[1−(ϕ/µ)4] : ns ≃ 1−(3/N), α ≃ −3/N2 .

We also consider the case where inflation takes place at inflaton values above v (see also [15]), in which case for

V
1/4
0 ≲ 1016 GeV the inflationary parameters are similar to those for the quartic potential given by eq. (2.4).

We display the predictions for ns , r , and α in Figure 4. The dependence of ns on V0 is displayed in

Figure 5. Numerical results for selected values of V0 are displayed in Table 4. Note that in the context of

nonsupersymmetric GUTs, V
1/4
0 is related to the unification scale, and is typically a factor of 3–4 smaller than

the superheavy gauge boson masses due to the loop factor in the Coleman–Weinberg potential. For a discussion

of inflation in nonsupersymmetric GUTs such as SU(5) and SO(10) with a unification scale of order 1016 GeV,

see ref. [15]. As discussed in ref. [38], in this class of models it is possible for cosmic topological defects to

survive inflation, remaining at an observable level.

5. Quartic potential with nonminimal gravitational coupling

Finally we consider a quartic inflaton potential with a nonminimal gravitational coupling [18, 19, 20]. One of the

simplest scenarios of this kind is the so-called Higgs inflation, which has received a fair amount of attention [43,

44, 45, 46, 47, 48, 49, 50, 51, 52, 53]. In Higgs inflation, the SM Higgs field plays the role of inflaton with a strong

nonminimal gravitational interaction and a typical prediction is (ns, r) = (0.968, 0.003) for N = 60 e-folds.2 In

nonminimal ϕ4 inflation, the inflationary predictions vary from those in ϕ4 inflation (eq. (2.4)) to those in Higgs

inflation, depending on the strength of the nongravitational coupling [9, 18, 19, 20]. Nonminimal ϕ4 inflation

2The predictions of SM Higgs inflation depend sensitively on the Higgs and top quark masses, and a larger r value is also
possible, see ref. [54, 55] and references therein. For SM Higgs inflation with a nonminimal coupling of the kinetic term, see ref.
[56].

156



OKADA et al./Turk J Phys

0.93 0.94 0.95 0.96 0.97 0.98 0.99
0.0

0.1

0.2

0.3

0.4

ns

r

0.93 0.94 0.95 0.96 0.97 0.98 0.99

–0.0014

–0.0012

–0.0010

–0.0008

–0.0006

–0.0004

ns

α

Figure 4. Coleman–Weinberg potential: ns vs. r (left panel) and ns vs. α (right panel) for various v values,

along with the ns vs. r contours (at the confidence levels of 68% and 95%) given by the Planck collaboration (Planck

TT+lowP) [4]. The dashed portions are for ϕ > v . The black points and triangles are predictions in the textbook

quartic and quadratic potential models, respectively. N is taken as 50 (left curves) and 60 (right curves).
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Figure 5. ns vs. log[V
1/4
0 /GeV] for the Coleman–Weinberg potential. The dashed portions are for ϕ > v . Top to

bottom: N = 60, 50.

can be embedded into well-motivated particle physics models [19, 57, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67].

Radiative corrections to the potential have been considered in refs. [9, 18, 19].

The basic action of nonminimal ϕ4 inflation is given in the Jordan frame

Stree
J =

∫
d4x

√
−g

[
−
(
1 + ξϕ2

2

)
R+

1

2
(∂ϕ)2 − λ

4!
ϕ4

]
, (5.1)

where ϕ is a gauge singlet scalar field, and λ is the self-coupling. We rewrite the action in the Einstein frame
as

SE =

∫
d4x

√
−gE

[
−1

2
RE +

1

2
(∂EσE)

2 − VE(σE(ϕ))

]
, (5.2)

where the canonically normalized scalar field has a relation to the original scalar field as

(
dσ

dϕ

)−2

=

(
1 + ξϕ2

)2
1 + (6ξ + 1)ξϕ2

, (5.3)
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Table 4. Coleman–Weinberg potential: the values of parameters for number of e-folds N = 60, in units mP = 1 unless

otherwise stated.

V
1/4
0 (GeV) V (ϕ0)

1/4(GeV) A(10−14) v ϕ0 ϕe ns r −α(10−4)

solutions below the VEV (ϕ < v)

1.× 1015 1.× 1015 1.60 1.63 0.034 0.898 0.946 10−6 9.11

1.× 1016 9.92× 1015 4.37 12.7 3.38 11.4 0.954 0.008 5.97

1.5× 1016 1.43× 1016 2.41 22.1 10.2 20.8 0.964 0.036 4.87

1.75× 1016 1.58× 1016 1.43 29.4 16.5 28.0 0.967 0.055 4.95

2.× 1016 1.7× 1016 0.812 38.7 25.1 37.3 0.968 0.072 5.09

3.× 1016 1.87× 1016 0.121 93.4 78.6 92.0 0.968 0.107 5.33

6.× 1016 1.95× 1016 0.0059 397. 382. 396. 0.967 0.126 5.43

solutions above the VEV (ϕ > v)

6.× 1016 2.00× 1016 0.0050 414. 430. 416. 0.967 0.138 5.49

3.× 1016 2.05× 1016 0.0623 110. 126. 112. 0.965 0.152 5.57

2.× 1016 2.11× 1016 0.215 53.9 70.6 55.4 0.964 0.171 5.70

1.4× 1016 2.17× 1016 0.496 30.6 48.0 32.2 0.961 0.193 5.93

1.× 1016 2.24× 1016 0.847 19.1 37.3 20.7 0.958 0.217 6.30

6.× 1015 2.31× 1016 1.29 10.3 29.7 12.1 0.954 0.247 7.02

1.× 1015 2.38× 1016 1.20 1.76 23.8 4.64 0.949 0.276 8.24

1.× 1013 2.36× 1016 0.50 0.022 22.6 3.67 0.950 0.269 8.10

and the inflation potential in the Einstein frame is

VE(σE(ϕ)) =
1
4!λ(t)ϕ

4

(1 + ξ ϕ2)
2 . (5.4)

The inflationary slow-roll parameters in terms of the original scalar field (ϕ) are expressed as

ϵ(ϕ) =
1

2

(
V ′
E

VEσ′

)2

,

η(ϕ) =
V ′′
E

VE(σ′)2
− V ′

Eσ
′′

VE(σ′)3
,

ζ(ϕ) =

(
V ′
E

VEσ′

)(
V ′′′
E

VE(σ′)3
− 3

V ′′
Eσ′′

VE(σ′)4
+ 3

V ′
E(σ

′′)2

VE(σ′)5
− V ′

Eσ
′′′

VE(σ′)4

)
, (5.5)

where a prime denotes a derivative with respect to ϕ . Accordingly, the number of e-folds is given by

N =
1√
2

∫ ϕ0

ϕe

dϕ√
ϵ(ϕ)

(
dσ

dϕ

)
. (5.6)

Once the nonminimal coupling ξ and the number of e-folds N are fixed, the inflationary predictions for

ns , r , and α are obtained. Approximate formulas for the predictions of nonminimal ϕ4 inflation are given
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by [18]:

ns ≃ 1− 3(1 + 16 ξN/3)

N (1 + 8 ξN)
, (5.7)

r ≃ 16

N (1 + 8 ξN)
, (5.8)

α ≃ −
3
(
1 + 4 (8 ξN)/3− 5 (8 ξN)2 − 2 (8 ξN)3

)
N2 (1 + 8 ξN)4

+
r

2

(
16 r

3
− (1− ns)

)
. (5.9)

The predictions in the textbook quartic potential model are modified in the presence of the nonminimal coupling

ξ . For ξ > 0, these results exhibit a reduction in the value of r and an increase in the value of ns , as ξ is

increased. Here we have varied ξ along each curve from 0 to ξ ≫ 1. The numerical results for selected values

of ξ are displayed in Table 5. The predicted values of ns , r , and α are shown in Figure 6 for the number of

e-folds N = 50 (left curves in each panel) and N = 60 (right curves in each panel), along with the ns vs. r

contours given by the Planck collaboration [4].

Table 5. ϕ4 potential with nonminimal gravitational coupling: the values of parameters for number of e-folds N = 60,

in units mP = 1 unless otherwise stated.

ξ log10(λ) V (ϕ0)
1/4 (GeV) ϕ0 ϕe ns r −α (10−4)

10−5 −12.1 2.34× 1016 22.2 3.46 0.951 0.259 7.93
3.98× 10−4 −12.0 2.24× 1016 22.2 3.45 0.954 0.218 7.86
0.001 −11.9 2.12× 1016 22.2 3.43 0.957 0.174 7.65
0.002 −11.8 1.97× 1016 22.1 3.40 0.959 0.131 7.29
0.00398 −11.6 1.79× 1016 22.0 3.34 0.962 0.0884 6.79
0.01 −11.3 1.51× 1016 21.7 3.18 0.965 0.0451 6.12
1.00 −8.55 0.794× 1016 8.52 1.00 0.968 0.00346 5.25
100 −4.62 0.764× 1016 0.920 0.107 0.968 0.00297 5.23
V = (1/4!)λϕ4

−12.1 2.34× 1016 22.2 3.46 0.951 0.260 7.93

6. Conclusion

We have restricted our attention in this paper to models based on relatively simple nonsupersymmetric infla-

tionary potentials involving a SM (or even GUT) singlet scalar field. In the framework of slow-roll inflation,

a tensor to scalar ratio r ∼ 0.02–0.1 for spectral index ns ≃ 0.96 is readily obtained in these well-motivated

models. This range of r is of great interest as it is experimentally accessible in the very near future. The running

of the spectral index in all these models is predicted to be fairly small, |α| being of order few×10−4–10−3 .

For the Higgs and Coleman–Weinberg potentials, a more precise measurement of r should enable one

to ascertain whether the inflaton field was larger or smaller than its VEV during the last 60 or so e-folds

(the current data favor the latter). For the quadratic and quartic inflationary potentials we have emphasized,

following earlier work, that the well-known predictions for ns and r can be significantly altered if the inflaton

couplings to additional fields, necessarily required for reheating, are taken into account. Despite these radiative

corrections, the predictions for the quartic potential are not compatible with the current data. A more precise

determination of ns and r should enable one to also test the radiatively corrected quadratic model.
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Figure 6. ϕ4 potential with nonminimal gravitational coupling: ns vs. r (left panel) and ns vs. α (right panel)

for various ξ values, along with the ns vs. r contours (at the confidence levels of 68% and 95%) given by the Planck

collaboration (Planck TT+lowP) [4]. The black points and triangles are predictions in the textbook quartic and quadratic

potential models, respectively. N is taken as 50 (left curves) and 60 (right curves).

We also explored inflation driven by a quartic potential with an additional nonminimal coupling of the

inflaton field to gravity. With plausible values for the new dimensionless parameter ξ associated with this

coupling, the predictions for ns and r are in good agreement with the observations.
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