The Effect of Phonon Drag of Charge Carriers in In$_{1-x}$Ga$_x$Sb

Sadiyar Ahmedoglu ZEYNALOV
Institute of Physics Academy of Sciences Azerbaijan
Baku, 370143, G. Javid ave., 33 AZERBAIJAN

Received 20.01.1998

Abstract

The temperature dependencies of the thermal power $a_0$ and thermal conductivity $\kappa$ in two samples of In$_{1-x}$Ga$_x$Sb ($x = 0.65$ and $0.45$) doped by Te$^0.001$ at%, with electron concentration $n = 5.9 \cdot 10^{16}$ and $1.3 \cdot 10^{17}$ cm$^{-3}$ (at 100K), have been investigated. It is shown that in In$_{0.35}$Ga$_{0.65}$Sb $a_0$ increases with decreasing $T$ below 50K. At 14K $a_0$ passes through maximum and it falls sharply with decreasing $T$. It is shown that the maximum value of $a_0$ is in agreement with the maximum value of $\kappa$. In In$_{0.55}$Ga$_{0.45}$Sb, starting from $T = 4.2$K, $a_0$ is shown to increase monotonically. For In$_{0.35}$Ga$_{0.65}$Sb, thermal power due to phonon drag $a_{ph}$ is derived and its dependence on temperature, $a_{ph}(T)$, is plotted. It is shown that when $a_{ph}$ rises with decreasing $T$, $a_{ph}(T)$ changes as $T^{-2.6}$; and when the curve falls, it is characterized by a power index of 2.8. These results for In$_{0.35}$Ga$_{0.65}$Sb compare reasonably well to other semiconductors for solid solutions and are in good agreement with Herring theory.

1. Introduction

In semiconductors at low temperatures moreover the diffusion thermal power of electron gas $\alpha_0$, is possible for the additional coupling of the thermal power connected by the phonon drag effect of the charge carriers. This additional thermal power component owes its origin to the effect in which the phonon and electron flow moving in the same direction affects the electron distribution. It is known that the phonon drag effect is observed in samples having high lattice thermal conductivity $\kappa_L$ and when effective mass, $m^*$, of charge carriers is not excessively small. Since phonon drag is possible in semiconductors with small charge carrier concentration $n$ and low $T$, according to Herring theory [1], the total thermal power of $\alpha_0$ semiconductor with small $n$ can be presented as $\alpha_0 = \alpha_d + \alpha_{ph}$, where $\alpha_d$ is the diffusion thermal power of electron gas, and $\alpha_{ph}$ is the thermal power due
to phonon drag of the carriers. To determine the temperature dependence of $\alpha_{ph}$, one should assume that charge carriers are scattered on long-wave acoustic phonons (which have mobility with temperature dependence $U \sim T^{-3/2}$). Then, for cubic crystals, one must observe $\alpha_{ph} \sim T^{-3.5}$. Such a dependence is observed experimentally only for diamond [2], but for Ge, Si and p-InSb the dependence was weak, i.e. $\alpha_{ph} \sim T^{-3.3} [3]$. The phonon drag effect is observed in GaSb doped by Ge and Si [4]. The beginning of the phonon drag effect on the $\alpha_0(T)$ curve is shifted to the low $T$ region with increasing $n$. However, nothing has been reported about $\alpha_{ph}$ for the In$_{1-x}$Ga$_x$Sb system.

2. Results and Discussion

In this work measurements of $\alpha_0$ and $\kappa$ in two samples of In$_{1-x}$Ga$_x$Sb system ($x=0.5$) doped by $\sim 0.001$ at % Te is presented. The samples are cut from ingot and prepared by the method described in [5,6]. Both samples have $n$-type conduction. It is known that at zone level, due to mass transfer, it is difficult to obtain samples of solid solution with stable composition. Therefore the character of the Tellurium-doped In$_{0.5}$Ga$_{0.5}$Sb samples, i.e. main physical parameters such as $E_g$, $\rho$ and $m^*$ among others, vary with position within the ingot. The composition of investigated samples is determined via the lattice parameter constant $\bar{\sigma}$, which has the dependence $\bar{\sigma} = f (\text{mol}\% \text{ GaSb})$, and is determined by x-ray structure analysis. The investigated samples are found to have the following compositions: In$_{0.35}$Ga$_{0.65}$Sb and In$_{0.55}$Ga$_{0.45}$Sb.

The temperature dependencies of $\alpha_0$ and $\kappa$ are given in Fig. 1. As it can be seen, in In$_{0.35}$Ga$_{0.65}$Sb, beginning from 50K, $\alpha_0$ increases with decreasing $T$. Maximum value of $\kappa$ in In$_{0.35}$Ga$_{0.65}$Sb is more then the maximum value of thermal conductivity in In$_{0.55}$Ga$_{0.45}$Sb. In the In$_{0.35}$Ga$_{0.65}$Sb sample, beginning with $T = 50$ K, the thermal power increases with decreasing $T$, and at $T = 14$ K, $\alpha_0$ passes through a maximum, after which it monotonically decreases. In the In$_{0.55}$Ga$_{0.45}$Sb sample, the thermal power decreases with decreasing $T$. So, in the In$_{0.35}$Ga$_{0.65}$Sb sample there is the phonon drag effect of charge carriers. In this range the thermal power consists of two components, diffusion and phonon parts of $\alpha_0$. The diffusion part can be determined by extrapolation of experimental data of thermal power in the low $T$ range, as it can be seen in Fig. 2a (dot-dash curve). The temperature dependence of the diffusion part $\alpha_d$ has been calculated according to [7]:

$$\alpha_d = \frac{k_0}{e} \left[ \frac{I_{r+1,2}^m (\eta^*, \beta)}{P_{r+1,2}^m (\eta^*, \beta)} - \eta^* \right],$$

where $I_{n,p}^m$ are two-parameter Fermi integrals; $\eta^*$ is the reduced chemical potential; $\beta = k_0 T / E_g$ is a non-parabolic parameter, and $r$ is the scattering mechanism parameter. These calculations allow one to determine the temperature dependencies of reduced chemical potentials (see bottom part of Fig. 1), allowing one to conclude the degree of carrier degeneracy in the 40-300K region. It can be seen that in In$_{0.55}$Ga$_{0.45}$Sb the degeneracy is strong and in In$_{0.35}$Ga$_{0.65}$Sb the partial degeneracy at low temperatures...
is gradually removed with increasing $T$. Evaluating $\eta^*$ in In$_{0.35}$Ga$_{0.65}$Sb ($n = 6 \cdot 10^{16}$ cm$^{-3}$), the degree to which $\beta = k_0 T/E_g$ is non-parabolic is considered Band gap $E_g$ is taken from [8] to be 0.5 and 0.43 eV at temperatures 0 and 300K respectively. Thus after determination of $\alpha_0 - \alpha_{ph}$, which is equal to $\alpha_d$, $\eta^*(T)$ is calculated with correction for the non-parabolicity of band dispersion.

Figure 1. Dependence of thermal conductivity (1), thermal power (2) and reduced chemical potential (3) on temperature.

Samples: 0 - In$_{0.35}$Ga$_{0.65}$Sb
x - In$_{0.55}$ Ga$_{0.45}$Sb.

Figure 2b presents $\alpha_{ph}(T)$, with both axes in logarithmic scale. The right part of the curve seems to be governed by exponential index equal to -2.6, in good agreement with Herring theory; the left side of the curve shows exponential index equal to 2.8. We note that, as in $\alpha_{ph}(T)$ and $\kappa(T)$ for In$_{0.35}$Ga$_{0.65}$Sb, degree index in the dip are close and are equal 2.8 and -2.6, respectively. Both curves of $\alpha_0(T)$ and $\kappa(T)$ passes through a maximum at $T_{max} \approx 14$ K for the In$_{0.35}$Ga$_{0.65}$Sb sample. In both samples of In$_{1-x}$Ga$_x$Sb ($x=0.35$ and 0.55) the heat transport is realized mainly by the longwave phonons at $T < T_{max}$. According to [8,9] at low temperatures the phonons in In$_{0.35}$Ga$_{0.65}$Sb are scattered mainly by the point defects, and in In$_{0.55}$Ga$_{0.45}$Sb by the charge carriers. The maxima in $\kappa(T)$ (see Fig. 1) curves in investigated samples have been displaced on the temperature scale. This fact is due to the distinction of component contents and the distinction of the principal scattering mechanism of phonons (recall that the $\kappa(T)$ maximum in InSb takes place at $T \approx 8K$, while in GaSb it takes place at $T \approx 28K$ [8,9]).

To determine the scattering mechanism, diffusion thermal power of charge carriers for two values of $r$ were calculated, results of which are given in Fig. 2a. We note that in
the temperature range 4.2-300K, Hall coefficient $R$ changes very slightly, and does not depend on magnetic field $H$. These results indicate that only electrons take part in the physical effects. These results, together with experimental data for $n$ and the effective mass of current carriers at the bottom of the conduction band for sample $\text{In}_{0.35}\text{Ga}_{0.65}\text{Sb}$ ($m^* - 0.0295m_0$) [8], allow determination of the temperature dependence $\alpha_d$ using the following relationship [7]:

$$\alpha_d = \frac{k_0}{e} \left[ r + 2 + \ln \frac{2(2\pi m_0 k T)^{3/2}}{h^3 n} \right].$$

![Figure 2. The temperature dependence of the thermal power in $\text{In}_{0.35}\text{Ga}_{0.65}\text{Sb}$.](image)

- a) The total thermal power. The dotted curves are calculated curves of diffusive thermal power of $a_d$ at various scatter mechanisms ($r=1$ is scatter by optical phonons; $r=2$ is scatter by charge impurities); the point-dotted curve is extrapolated diffusive thermal power in phonon drag region.
- b) The separated phonon contribution of thermal power

where $r$ is the parameter for the scattering mechanism of the charge carriers, $m_0^*$ is the effective mass of electrons at the bottom of the conduction band and $n$ is electron
concentration. Calculations of $\alpha_d$ are performed for both cases of charge carrier scattering on impurity ions and optical lattice vibrations. As can be seen in Fig. 2a, $\alpha_0(T)$ and $\alpha_d(T)$ (the latter is calculated with the regard of scattering of charge carriers on impurity ions $r = 2$) lie parallel with $\alpha_d(T)$ above $\alpha_0(T)$. Thermal power calculated with charge carriers scattering on optical thermal lattice vibrations of ($r = 1$) in mind lies lower and is close to experiment. It is seen that below 160K, $\alpha_0$ compares well with the calculated value of $\alpha_d$ at $r = 1$. Above 160K, the contribution from optical thermal vibrations is reduced, whereas the contribution from scattering on impurity ions increases. We note that the contribution of scattering of charge carriers on impurity ions at 20K is less than 10% and starting from 160K it increases with temperature. The displacement of $\alpha_0$ between calculated curves for $\alpha_d$ at $r = 1$ and $r = 2$ indicate the equivalent effects of these mechanisms at 300K.

References