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The Lattice Dynamics and The Elastic Behaviour of
fcc and bcc Ba
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Abstract

The two-body pairwise E.G.E.P. (Extended Generalized Exponantial Potential)
type Morse potential and volume dependent energy are assumed to represent the
total energy of the Ba crystal. The parametrized potential is used to calculate the
second- and third-order elastic constants Cij and Cijk , pressure derivatives of bulk
moduli and Grüneisen parameter γ. The phonon frequencies are also computed and
plotted. The obtained results are compared with available experimental data and,
in general, the agreement is good.

1. Introduction

Alkaline earth metals exhibit a number of interesting properties. The most striking
one is the variety of crystal structures. At room temperature and normal pressure the
stable structure is bcc for Ba. Phase transitions can also be induced by pressure. For the
heavier elements of this group, e.g. Ca, Sr, and Ba, the situation is somewhat complicated
by the presence of an empty d band just above the Fermi Level. For quantitative tests
of theoretical calculations, the lattice dynamics is a useful tool since it contains detailed
information and can be calculated easily by any familiar methods. Phonon dispersion
curves of bcc Ba were determined experimentaly for the first time by U. Buchenau et al
[1].

The pairwise( e.g. Morse or Rydberg type) potential model is not adequate, so in this
study, the two-body pairwise E.G.E.P. (Extended Generalised Exponantial Potential)
type Morse potential proposed by Verma and Rathore[2] plus a volume dependent energy
(
∑
n
PnV

n ) are assumed to represent the total enegy of Ba crystal. This total energy is

applied to the second- and third-order elastic constants (Cij, Cijk) , pressure derivatives of
elastic constants, pressure derivative of bulk modulus, Grüneisen parameter and phonon
frequencies for fcc and bcc Ba.
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2. Computational Procedure and Applications

The total interaction energy used in this work is assumed to be expressed by

φ(r) =
D

(m− 1)
[ e−m α (r−r o )/(α r)n −m (α r)ne−α (r−r o) ] +

∑
n

PnV
n, (1)

where D, α and ro have their usual meanings. The parameter n appearing in(1) does
not account explicitly for the three-body interactions but its presence in the potential
function implicitly introduces the three- body character as stated by Verma [2]. The
potential parameter D, α and ro are calculated following the procedure given by Girifalco
and Weizer[3]. For the volume dependent energy term, (

∑
n
PnV

n), we choose n=1, and P1

is evaluated using the procedure given by Najafabadi [4]. Input parameters are presented
in Table 1. The calculated values of D, α and ro and P1 for fcc Ba and bcc Ba are listed
in Table 2.

Table 1. Input Data [5].

Metal Lattice
Constants (A)

Cohesive Energy
(eV/atom)

Bulk Modulus
1012 N/m2

fcc Ba 6.31005 1.90 0.103
bcc Ba 5.00000 1.90 0.105

Table 2. The Computed Potential Parameters.

Metals m n α(A−1) ro(A) D(erg) P1(dyn/cm2)
fcc Ba
bcc Ba

1.05
0.5

0.5
0.5

0.739138
1.355316

8.533380
2.659295

8.56164x10−15

5.27898x10−12
-0.30539x109

-0.57487x109

3. Elastic Constants and Related Properties

Second- and third-order elastic constants, at atmospheric pressure and 0 K, are evalu-
ated adopting the general expressions given by Born [6]. At T=0 K, the calculated values
of the elastic constants are given in Table 3.

The hydrostatic pressure derivatives of second-order effective elastic constants are
computed in terms of second- and third-order elastic constants by using the fallowing
formula [7]:

∂ c′11

∂ P
= −(

2c11 + 2c12 + c111 + 2c112

c11 + 2c12
) (2)

∂ c′12

∂ P
= −(

−c11 − c12 + c123 + 2c112

c11 + 2c12
) (3)
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∂ c′44

∂ P
= −(

−c11 − 2c12 + c44 + 2c144 + 2c166

c11 + 2c12
) (4)

Table 3. The Calculated Two- and Third- Order Elastic Constants in Units of x10 11

dyn/cm2.

fcc Ba bcc Ba
This work This work Experiment (293K)[1]

C11 1.213035 1.293198 1.0±0.3
C12 0.881489 0.610789 0.642±0.2
C44 0.51486 0.658536 0.95±0.05
C111 -11.20019 -20.90064
C112 = C166 -5.58522 -3.684452
C123 = C456 = C144 -1.854586 -3.26945

Also, the pressure derivative of Bulk modulus[8] and the Grüneisen parameter [9] are
computed from the usual equations:

∂B

∂P
= 1− r0

3

[
∂3φ
∂r3

∂2φ
∂r2

]
and γ = −a

6
(d

3φ
da3 )a=ao

(d
2φ
da2 )a=ao

(5)

and the obtained results are given in Table 4.

Table 4. Some Elastic Properties for fcc Ba and bcc Ba

Metals ∂C′11
∂P

∂C′12
∂P

∂C′44
∂P

∂B
∂P γ Cal. Exp.[10]

fcc Ba 6.10937 5.08047 3.203665 4.17977 1.17564 —
bcc Ba 9.72713 4.98745 2.995430 2.73316 0.81467 0.721

4. Phonon Dispersion Curves

For potential function in Eq.(1), the phonon frequencies are calculated in usual manner
for fcc and bcc Ba by solving the secular determinant

|Dα,β(q) − Imω2 | = 0, (6)

where m is ionic mass, ω is the angular frequency and I is unit matrix. Assumming the
interaction forces effective up to third-nearest neighbour for Eq.(1), the calculated force
constants (α angular force constants, β radial force constants) are given in Table 5. The
obtained results for the phonon frequencies of fcc and bcc Ba in the principal symmetry
directions are plotted in Figure 1 a and b, respectively.
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Table 5. Calculated Force Constants in units dyn/cm.

Metals α1 α2 α3 β1 β2 β3

fcc Ba 4981.791 67.296 -26.777 -513.041 72.228 4.7174
bcc Ba 6428.389 2886.077 -100.022 -515.490 -67.226 38.4425
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Figure 1. Phonon Dispersion Curves for a) fcc Ba and b) bcc Ba

5. Results and Discussion

The obtained phonon frequencies by using the E.G.E.P. function for bcc Ba are,
generally, in agreement with the experimental data. The experimental findings for fcc
Ba are not available, therefore we have compared our results with those computed by
Moriarty[11]. The phonon frequencies for fcc Ba, except for T [100] and T1[110] transverse
branches of fcc Ba, are generally in agreement with Moriarty’s data.

It can be seen from Table 3 that the computed values of SOEC for bcc Ba are in good
agreement with that observed experimentally (no experimental data for TOEC for bcc
phase). We belive that the volume dependent energy added to the two-body potential
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has improved the present results.
To our knowledge, this is first calculations of pressure derivatives of elastic constants,

pressure derivative of bulk modulu for Ba and, unfortunately, no experimental data are
available for comparison.
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