Introduction

Obstruction of the urinary tract is a potential cause of renal failure. Acute unilateral obstruction of the kidney is associated with an increase in pelvic pressure followed by a decrease in ipsilateral renal blood flow (1). Concomitantly with these pressure changes the synthesis of renal vasoactive hormones is changed. There are different opinions about the effects of prostaglandins (PGs) on renal functions and the administration of PG synthesis inhibitors during acute urinary obstruction (AUO) (1-5). On the other hand, the lymphocytic infiltration and infection may occur in the renal parenchyma because of the decreased renal blood flow during AUO. Therefore, it is expected that prophylactic antibiotics are useful during the ureteral obstruction. This experimental study was planned to investigate the effects of diclofenac sodium (DS) which is a PGs and thromboxanes (TXs) synthesis inhibitor on both renal parenchyma during complete unilateral ureteral obstruction.

Materials and Methods

Animals

Adult albino rats (Sprague-Dawley) weighing 200-250g were used for the study. The animals were allowed at least 7 days for acclimation at a constant temperature with a 12-h light/dark cycle. They were provided with standard pellet food and water ad libitum before and after surgery.

Surgical Procedure

The rats were divided into 4 groups containing 10 rats in each group. By ketamine anaesthesia (5 mg/kg i.p.), and by a midline laparotomy, left ureteropelvic junction was completely ligated with a 4-0 silk. Then, abdomen was closed with a 3-0 silk suture. No drug was given to Group 1 (control). Then, both kidneys of all rats were removed and examined histopathologically. The parenchymal thickness of left kidneys was less than those of rights in all groups. Renal capsuli were moderately thickened in all obstructed kidneys. There were congestion in glomeruli and parenchymas of all kidneys, dilatation in proximal and distal tubuli of obstructed kidneys, and focal lymphocytic infiltration in all kidneys except right kidneys in group 1 and 2. There was hemorrhage in all kidneys of Group 3 and 4. These findings support the fact that DS may cause renal complications during complete ureteral obstruction.

Histological Examination

The kidneys were fixed with 10% neutral buffered formaline. After 24 hours fixation kidneys were sectioned corticomedullar plane and a 2 mm-thick tissue was processed and paraffin embedded routinely. Hematoxylin and eosin stained sections were examined.
The Effect of Diclofenas Sodium on the Renal Parenchyma During Complete Unilateral Ureteral Obstruction of the Rats

by light microscope. The parenchymal and capsular thickness of the kidneys were measured by Carl Zeiss Jena screw ocular eyepiece micrometer.

Statistical Analysis

The differences between left and right kidney thicknesses were statistically evaluated with Student t test.

Results

In all groups the parenchymal thickness of left (obstructed) kidneys were less than those of rights as shown in Table I. The thickness of left and right kidneys were significantly different (p<0.05). The renal capsules of right kidneys were normal in all groups, but there were moderate capsular thickening in all obstructed kidneys (Fig.2). Congestion was shown in glomeruli of all kidneys (Fig.4). Proximal and distal tubuli were dilated in obstructed kidneys (Fig.3), but normal in right kidneys. Focal lymphocytic infiltration (FLI) were determinated in all kidneys except right kidneys of Groups 1 and 2 (Fig.3). There was hemorrhage in all kidneys of Groups 3 and 4 (Figure 5). Congestion was shown in vessels of all kidneys. However, this finding was more severe in Groups 3 and 4 than the others.

Discussion

Acute unilateral obstruction of the kidney is a potential cause of renal failure. This condition may be associated with renal stones, ureteral kinking, intraluminal polips or valves (6). However, total obstructions are rare in clinical practice, in contrast to partial ones. In this study, adult experimental rats were used and complete ureteral obstruction were performed. Therefore, to apply the results of this experimental model to congenital or chronic obstructive nephropathies as in ureteropelvic junction obstruction may be misleading.
It was not amazing that parenchymal thickness of obstructed kidneys were decreased according to contra-lateral ones in all groups. This finding was probably due to the increased intrarenal pressure and hydronephrosis of affected kidneys (7,8,9). The thickening

<table>
<thead>
<tr>
<th>Groups</th>
<th>Parenchymal thickness (mm)</th>
<th>Capsular thickness**</th>
<th>Glomeruli</th>
<th>Tubuli</th>
<th>Int. FLI***</th>
<th>Rate of hemorrh(%)</th>
<th>Vessels ****</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>R 5.9</td>
<td>N</td>
<td>Normal</td>
<td>Normal</td>
<td>-</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>L 2.5</td>
<td>++</td>
<td>Congestion</td>
<td>Dilated</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>2</td>
<td>R 5.6</td>
<td>N</td>
<td>Normal</td>
<td>Normal</td>
<td>-</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>L 2.5</td>
<td>++</td>
<td>Congestion</td>
<td>Dilated</td>
<td>++</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>3</td>
<td>R 6.0</td>
<td>N</td>
<td>Congestion</td>
<td>Normal</td>
<td>++,H</td>
<td>70</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>L 3.4</td>
<td>+</td>
<td>Congestion</td>
<td>Dilated</td>
<td>++++,H</td>
<td>80</td>
<td>+++</td>
</tr>
<tr>
<td>4</td>
<td>R 5.5</td>
<td>N</td>
<td>Congestion</td>
<td>Normal</td>
<td>++,H</td>
<td>60</td>
<td>++</td>
</tr>
<tr>
<td></td>
<td>L 2.9</td>
<td>+</td>
<td>Congestion</td>
<td>Dilated</td>
<td>++,H</td>
<td>80</td>
<td>++</td>
</tr>
</tbody>
</table>

(*): Right, L: left kidney.
(**): Capsular thickness: N (normal):<10 micron, +:10-50 micron, ++:>50 micron
(****): Renal vascular congestion: +minimal, ++: moderate, +++:severe
The Effect of Diclofenas Sodium on the Renal Parenchyma During Complete Unilateral Ureteral Obstruction of the Rats

The PGs and TXs have major well-documented effects on smooth muscles and platelets. The non-steroidal anti-inflammatory drugs (NSAID) (eg, aspirin, indomethacin, ibuprofen, diclofenac sodium) block both PG and TX formation by inhibiting cyclooxygenase activity (10,11). As a result, platelet aggregation is strongly inhibited. We consider that severe renal parenchymal congestion and hemorrhage seen in group 3 and 4 are due to PG and TX synthesis inhibition by DS. Indeed, hemorrhagic diathesis due to administration of DS has already been reported (12).

Interstitial FLI was seen in all obstructed kidney (Table 1). Because the neutrophilic infiltration rather than lymphocytic one are seen during the acute phase of infection, FLI must not probably due to the infection. We consider that FLI in obstructed kidneys was due to urinary obstruction rather than the infection. Therefore, cefoperazone was not useful during the first week in Groups 3 and 4.

On the other hand, by preventing arachidonic acid conversion via the cyclooxygenase pathway, NSAIDs may cause more substrate to be metabolized through the lipoxygenase pathway, leading to an increased formation of inflammatory leukotrienes (10). The leukotrienes are chemotactic and chemokinetic agents formed from eicosanoic acids in polymorphonuclear leukocytes, platelets and macrophages by the lipoxygenase pathway, in response to both immunologic and non-immunologic stimuli (13). We consider that the FLI in Groups 3 and 4 may also be explained by this mechanism together with urinary obstruction.

In conclusion, although the administration of DS has been recommended by some authors in the patients with renal colic (2,14,15), it can be predicted that DS may cause renal complications during complete ureteral obstruction.

Acknowledgement

This study was supported by Research Fund of Research Fund of Erciyes University (Pr.No.95.01.036).

References

