The Effect of Pre-and Postnatal Cd Exposure on Conduction Velocity in Sciatic Nerve

Introduction

Cadmium (Cd), one widely studied environmental contaminant, has been shown to cause functional disturbances in both the peripheral nervous system (PNS) and central nervous system (CNS) due to its toxic effects on various tissues (1-4). Among the various hazardous effects of Cd are inhibition of bioamine uptake, Na⁺-K⁺ ATPase and voltage-dependent Ca⁺⁺ channels which lead to alterations in the functions of transmitter systems (5-8). On the other hand, the major effect of Cd exposure has been reported to increase lipid peroxidation by reducing antioxidative enzymes associated with the protective mechanisms against free radicals (9-13). It is well known that lipid peroxidation plays an important role in the mechanism of many pathologic disorders. Therefore, peroxidative effect of Cd has attracted considerable interest in the last decade.

The neurotoxic effects of Cd depend on developmental stage (3,14). During pregnancy, the placenta partially protects the fetus from direct effect of Cd by accumulating it (4,15). But Cd enters the central nervous system of developing animal with relative ease because of immature blood brain barrier (3, 14, 16, 17). So brains of growing rats are more sensitive to the toxic effect of Cd than the brains of adults.

Therefore, the present study was undertaken, firstly, to investigate the effect of pre-and postnatal Cd exposure on conduction velocity of sciatic nerve. The means of the peripheral conduction velocities decreased significantly in all the Cd-treated groups compared with control group. The mean of the compound action potential amplitudes was significantly decreased only in Cd2 group compared with control group.

Material and Methods

Preparation of animals: Adult healthy Swiss albino rats were mated (two females with each male). Pregnancy was tested by vaginal smear test. Pregnant rats were removed and kept in separate cage. They were divided into three groups: Control (C), cadmium (Cd) and non-cadmium (NCd) groups. Control animals were given CdCl₂ during their pregnancy but given tap water after birth. Twenty-two days after birth (postnatal day 22) the rats were separated from the mothers. The present study was performed on 80 rats which were divided into C, NCd, Cd₁, and Cd₂ groups, each including 20 rats. Cd₁ group received CdCl₂ water for an additional 8 days. On postnatal day (PND) 30, conduction velocities and amplitudes of compound action potentials were determined from sciatic nerves of this group. The other rats were continued to be treated with Cd (Cd₂ group) or tap water (C and NCd groups) for an additional 38 days. On PND 60, the same measurements were made for these groups as mentioned above.

Abstract: The purpose of the study has been to investigate the effect of pre-and postnatal Cd exposure on conduction velocity of sciatic nerve. Pregnant Swiss albino rats were divided into three groups as control (C), cadmium (Cd) and non-cadmium (NCd) groups. Control animals received tap water while rats in Cd group received Cd as CdCl₂ in their drinking water during the experimental period. The mothers of the NCd group were given Cd during their pregnancy but given tap water after birth. Twenty-two days after birth (postnatal day 22) the rats were separated from the mothers. The present study was performed on 80 rats which were divided into C, NCd, Cd₁, and Cd₂ groups, each including 20 rats. Cd₁ group received CdCl₂ water for an additional 8 days. On postnatal day (PND) 30, conduction velocities and amplitudes of compound action potentials were determined from sciatic nerves of this group. The other rats were continued to be treated with Cd (Cd₂ group) or tap water (C and NCd groups) for an additional 38 days. On PND 60, the same measurements were made for these groups as mentioned above.

The means of the peripheral conduction velocities decreased significantly in all the Cd-treated groups compared with control group. The mean of the compound action potential amplitudes was significantly decreased only in Cd₂ group compared with control group.
The Effect of Pre-and Postnatal Cd Exposure on Conduction Velocity in Sciatic Nerve

received CdCl₂-water while the NCd and C groups were given tap water. The age of rats was recorded as zero day on the day of birth. At the end of 22 days (postnatal day 22), the rats were separated from the mothers. The present study was performed on 80 rats which were divided as control (20), NCd (20), Cd₁ (20), Cd₂(20). Each group including 20 rats which were taken from eight mothers. Because of a high incidence of pups of dams exposed to Cd, there were only one, two or three pups with each mother (Table 1). Cd₁ group received CdCl₂-water for an additional 8 days. On postnatal day (PND) 30, rats of Cd₁ group were deprived of food 24th and they were anaesthesied with diethylether (Merck) and all recordings were made under anaesthesia.

The other rats were continued to be treated with Cd (Cd₂ group) or tap water (C and NCd groups) for an additional 38 days. On PND 60, they were prepared for experiments as mentioned above.

Daily food and water consumption of every cage and weekly weight of each rats were recorded during the feeding period. The mean daily food and water consumption were estimated from the recorved values.

Recording: Stimulating and recording electrodes were placed on gastrocnemius and sciatic nerves, respectively. Bipolar compound action potentials (CAPs) were recorded from these extracelluler bipolar electrodes and amplified by a differential amplifier. Our electrodes and differential amplifier were designed in our department. The latencies, and amplitudes were measured. Conduction velocities were calculated by using nerve lengths and latency values of each rat.

Chemical Analysis: Blood samples were taken by cardiac puncture. The kidney and sciatic nerve tissues were then removed from rats. These tissues were used for cadmium analysis and sciatic nerve homogenates were used for thiobarbituric acid reactive substances (TBARS). Determination of TBARS mostly malondialdehyde (MDA), in body fluids and tissues is considered as an indicator of lipid peroxidation. TBARS were measured according to the procedure of Stocks et al. (18, 19). Protein contents were determined by the method of Lowry et al. (20) using bovine serum albumin as standard.

Cadmium Determination: Acid washed glassware was used during metal analysis. Tissues in glass tubes kept overnight at 65 centigrade, then about 100 mg of dry samples were digested in 1 ml of concentrated HNO₃ at 65 centigrade until they become clear. After appropriate dilution with deionized water, graphite furnace of atomic absorption spectrophotometry (Hitachi Z 8000) was used for cadmium analysis in blood and the clear digested samples (kidney and sciatic nerve). The procedure used for Cd analysis was given in detail in a previous study (21).

Statistical Analysis: Differences of parameters between groups were tested by an analysis of variance (one-way ANOVA). Values of p<0.05 were considered significant.

A: The number of offspring
B: The number of living animal
C: The number of offspring were taken

<table>
<thead>
<tr>
<th>Dams/litters</th>
<th>Control</th>
<th>NCd</th>
<th>Cd₁ (One Month)</th>
<th>Cd₂ (Two Months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>A</td>
<td>B</td>
</tr>
<tr>
<td>1</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>2</td>
<td>9</td>
<td>9</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>7</td>
<td>7</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>6</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>8</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Table 1. The table shows how many offspring were taken from each dams within each group.
Results

The mean Cd values of kidney, sciatic nerve and blood samples of rats are summarized in Table 2. The mean Cd levels of kidney, sciatic nerve and blood were significantly increased in experimental groups compared with control group.

Lipid peroxidation was measured as the amount of TBARS. The data in Table 2 show that Cd treatment has caused an increase in lipid peroxidation in the sciatic nerves of Cd-treated rats.

The means and standard deviations of the peripheral conduction velocities and compound action potential amplitude (CAP) amplitudes are shown in the same table. The means of peripheral conduction velocities were decreased significantly in all the Cd-treated groups compared with control group.

The means of CAP amplitudes were not altered in NCd and Cd1 groups, but significantly decreased in Cd2 group compared with control group.

Discussion

Oral Cd exposure caused no significant changes in
The Effect of Pre-and Postnatal Cd Exposure on Conduction Velocity in Sciatic Nerve

both food or water intake of the rats at the any stage of experimental period. Therefore, the mean weight gain was not different in control and Cd exposed rats. However, as reported previously (4, 22), high incidence of fetal mortality occurred due to direct toxicity to the placenta (Table 1).

Our data clearly showed that Cd treatment caused a significant Cd accumulation in bloods, kidneys and sciatic nerves of Cd-treated groups compared with control group. But the concentration of Cd was increased in kidney much more than in blood and sciatic nerve. Because kidneys are major target organs to Cd exposure (4, 17). On the other hand, concentrations of Cd in blood and tissues of Cd-treated animals were increased dependent on the duration of Cd administration. So the mean conduction velocities of CAPs decreased in Cd-treated rats in accordance with the administration of Cd. Our finding is also consistent with previously reported data (23, 24).

The mechanisms of Cd toxicity that contribute to decrease in nerve conduction velocity and amplitude of CAPs have been attributed to many factors. One of them have been related to channels. Experimental studies have revealed that there are three channels, which contribute to CAPs in the peripheral nerves. Cd is known to show unspecific blocking effects on calcium and sodium tetradotoxin (TTX)-resistant channels (23, 25-28). TTX-resistant action potentials were shown to originate from unmyelinated C fibers (25, 26). In the light of previous studies, the decrease in conduction velocity and amplitude of CAPs due to increased levels of Cd in the sciatic nerve were resulted from the blocking of TTX-resistant, cadmium-sensitive sodium and calcium channels of C fibers.

In conclusion, according to our study, it can be concluded that there is a close relationship between slowing of nerve conduction velocity and Cd-induced lipid peroxidation.

The focus of the present study is to evaluate the peroxidative effect of Cd on electrophysiological properties of sciatic nerve. Therefore, TBARS were determined as an indicator of lipid peroxidation. Hence, TBARS level of sciatic nerves increased in Cd-treated animals in relation with Cd accumulation. The comparison of data among Cd-treated groups revealed that peripheral conduction velocities progressively decreased as TBARS contents of sciatic nerve increased. This result also demonstrated that there was a close relationship between conduction velocity and TBARS levels which was associated with the duration of Cd exposure.

Increased TBARS levels as observed in sciatic nerves of pre-and postnatal Cd administered rats are an appropriate indicator of oxidative stress. In the present study, the presence of significant increase of both Cd and TBARS contents in the sciatic nerves of Cd-treated rats strongly supports that enhanced lipid peroxidation caused the decrease in conduction velocities. Among hazardous effect of Cd, lipid peroxidation resulted from the failure of protective mechanisms due to Cd exposure plays an important role in the mechanism of Cd toxicity (9, 10, 12, 13, 29, 30). This is because peroxidative damage of membrane lipids leads to altered membrane structure and changes in physiological functions (9, 29, 30). In addition, damage of myelin specific lipids produced by oxidative stress caused hypomyelination (3, 14) and in turn slowing of the nerve conduction velocity.

In conclusion, according to our study, it can be concluded that there is a close relationship between slowing of nerve conduction velocity and Cd-induced lipid peroxidation.

References


