Effects of valproic acid on sympathetic activity and left ventricular myocardial remodelling in rats during pressure overload

Yang LIU1,*, Siyu LI1, Zhigang ZHANG2, Zhanjun LV2, Huijie JIANG2, Xiao TAN2, Fengquan LIU1
1Department of Internal Medicine, Affiliated Hospital of Northeast Agricultural University, Harbin, P.R. China
2College of Veterinary Medicine, Northeast Agricultural University, Harbin, P.R. China
3Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, P.R. China

Received: 25.04.2017 • Accepted/Published Online: 20.06.2017 • Final Version: 13.11.2017

Background/aim: Pressure overload induces cardiac remodelling and results in heart failure. Enhanced sympathetic outflow participates in the development of cardiac remodelling for the duration of pressure overload as an independent factor. Valproic acid has recently been shown to reduce neuronal injury and have anti-inflammatory and antiapoptotic effects as a histone deacetylase inhibitor. We speculate that the drug plays a specific role in alleviating cardiac remodelling by inhibiting sympathetic activity.

Materials and methods: Surgery of partial abdominal aortic constriction was performed on male Sprague-Dawley rats. After 4 weeks, animal models of pressure overload were validated and then valproic acid (300 mg/kg) was administrated to rats once a day for the next 4 weeks. Experimental parameters were detected 4 weeks after validation.

Results: The administration of valproic acid alleviated cardiomyocyte hypertrophy, myocardial interstitial fibrosis and left ventricular diastolic dysfunction caused by partial abdominal aortic constriction. Valproic acid reduced the levels of plasma and local norepinephrine, augmented concentrations of hypothalamic gamma-aminobutyric acid, and had no side effects on the hepatic and renal function of the animals.

Conclusion: These results suggest that valproic acid may be a safe and effective therapeutic strategy for the inhibition of sympathetic outflow and cardiac remodelling.

Key words: Valproic acid, sympathetic activity, left ventricular myocardial remodelling, pressure overload, norepinephrine, gamma-aminobutyric acid

1. Introduction
Pressure overload on the heart leads to initial compensatory hypertrophy or myocardial interstitial fibrosis, and eventually results in decompensatory heart failure (1). Recent studies demonstrate that sympathetic overactivity exacerbates pressure overload-induced cardiac remodelling and contributes to the related cardiac diastolic dysfunction during the pressure overload (2,3). Levels of the adrenergic neurotransmitter norepinephrine (NE) released from sympathetic terminals reflect sympathetic activity.

Valproic acid (2-propylpentanoic acid sodium salt, VPA), commonly used to treat seizures and mood disorders, has recently been shown to reduce neuronal injury and have anti-inflammatory and cardioprotective effects as a histone deacetylase inhibitor in many different rat models (4–6). Previous studies demonstrated VPA could reduce synthesis of catecholamines in the cerebral cortex of animals or level of plasma NE in humans via its various gamma-aminobutyric acid (GABA)-ergic actions (7,8). These findings suggest a new perspective to understand the cardioprotective effects of VPA and explain the central effects of this drug as a GABA-receptor agonist on sympathetic outflow.

Based on the few reports of the effects of VPA on the sympathetic activity and pressure overload-induced cardiac remodelling, we designed a study to verify the hypothesis that VPA could alleviate cardiac remodelling by attenuating the sympathetic outflow and achieve a greater central GABAergic system effect. A method of partial abdominal aortic constriction (PAAC) was used to produce the pressure overload model, and the sympathetic activities were evaluated through examining the plasma and local NE levels after treatment with VPA. We also examined GABA levels in the hypothalamus, because GABA, an efficient inhibitory neurotransmitter,
participates in the regulation of the sympathetic outflow of hypothalamic and cardiovascular activities (9–14).

2. Materials and methods

2.1. Animals and experimental design

A total of 120 healthy male adult Sprague-Dawley rats were provided by the Experimental Animal Center of the First Clinical Medical College of Harbin Medical University (Harbin, China). Our experiments conformed to the Regulations for the Administration of Affairs Concerning Experimental Animals, National Committee of Science and Technology of China and Instructive Notions with Respect to Caring for Laboratory Animals, the Ministry of Science and Technology of China, and were approved by the Ethics Committee for Experimental Research, Northeast Agricultural University.

The animals were kept under standard laboratory conditions (12 h light:12 h dark at 24 ± 3 °C) and the breeding room was well ventilated. Food and water were provided ad libitum. Water consumption, rat bodyweight, activities, and nutrition status were monitored daily during the experiments. The rats were kept under observation for 8 weeks. Sham-operated animals were divided into the following two groups: (1) Sham group or (2) Sham + VPA group. Four weeks after the surgery, PAAC-induced cardiac hypertrophy was validated using a colour ultrasound machine. Then all of the rats with PAAC were randomly divided into the following two experimental groups: (1) PAAC group and (2) PAAC + VPA group, using a computer-generated random number.

Valproic acid was purchased from Nankai Share Pharmaceutical Co. Ltd. (Inner Mongolia, China) and was reconstituted with normal saline (vehicle). After the validation, VPA (300 mg/kg) was administered via the tail vein once a day for the next 4 weeks to the Sham + VPA and PAAC + VPA groups. The VPA dose was determined according to previous reports, which investigated the neuroprotective effect of VPA in an animal model of ischaemic brain injury (15–18).

2.2. Treatment for partial abdominal aortic constriction

Mechanical constriction of the abdominal aorta has been used for many years to produce pressure overload-induced myocardial remodelling in a number of different species (19,20). The rats were anaesthetised with thiopentone sodium (35 mg/kg intraperitoneally). The depth of anaesthesia achieved was monitored using a positive toe and tail pinch, the respiration rate, and the degree of muscle relaxation. A 4- to 5-cm midline incision was made in the abdomen to expose the aorta between the diaphragm and celiac artery. The 40 silk suture was passed beneath the abdominal aorta and then placed around the middle of the aorta and tightened with a needle (0.7 mm diameter). The needle was withdrawn to leave the abdominal aorta partially constricted. The incision was sutured in layers and Neosporin antibiotic powder (GlaxoSmithKline, Shanghai, China) was applied locally to the sutured wound. Postoperatively, analgesic treatment was provided (a single local subcutaneous infusion of 0.1 mL of lidocaine) and a heating pad was used to provide supplemental heating until the rats fully recovered from the anaesthesia. Sham-operated animals underwent the same surgical procedures without PAAC. The rats were kept under observation for the next 4 weeks.

2.3. Blood and tissue samples assay

A blood sample was collected from the right carotid artery after haemodynamic measurements and stored in a tube containing ethylene diamine tetra acetic acid. The blood was centrifuged at 3000 × g for 15 min to separate the serum, and then stored at −80 °C until analysed. After blood collection was completed, an additional dose of pentobarbital was given to the rats. With the rats under deep anaesthesia, the hearts were rapidly excised, washed of blood, trimmed of fat and weighed, then rapidly frozen in liquid nitrogen, and stored at −176 to −196 °C. Hypothalamic tissues were carefully removed and preserved until analysed. Concentrations of NE and GABA were measured using enzyme linked immunosorbent assay kits (Jianglai Biotechnology Company, Shanghai, China) as instructed by the manufacturer. The biochemical tests were performed by experienced laboratory assistants that were unaware of the group assignments for the animals and other laboratory test results.

2.4. Morphological assessments

Excised tissue samples from the lateral wall of the left ventricle were prepared for haematoxylin and eosin (HE) staining. After staining, a light microscope (Olympus BX50 microscope, Tokyo Electronic Industry, Co., Ltd, Tokyo, Japan) connected to a personal computer was used to analyse cardiomyocyte diameter. To quantify cardiomyocyte size, digital images were captured of the cardiomyocyte cross-sectional area and measured using image analysis software (Image-Pro Plus, Media Cybernetics, Inc., Silver Spring, MD, USA). Twenty cells from two distinct sites were measured per sample. The average size of all measured cardiomyocytes within a sample was determined and expressed in units of cross-sectional area (in 2 µm). Only cardiomyocytes with a well-defined cellular membrane and visible nucleus were considered suitable for measurement.

Masson's Trichrome Stain was used for evaluation of interstitial fibrosis. Ventricular cardiac muscle stored in 70% ethanol was dehydrated, cleared, and embedded in paraffin. Routine 4 µm serial sectioning was performed, and slides were dried in a 60 °C oven. For Masson staining, slides were submerged in Masson's Trichrome solution (Harbin Medical University Pathology Laboratory,
were calculated using the following formulae, respectively:

\[\text{LVFS} = \frac{\text{LVIDd} - \text{LVIDs}}{\text{LVIDd}} \times 100\% \]

$$ RWT = \frac{\text{IVS} \text{mm} + \text{LVPW} \text{mm}}{\text{LVIDd} \text{mm}} \]

\[\text{LVM(mg)} = 1.05 \times [\text{IVS(mm)} + \text{LVIDd(mm)} + \text{LVPW(mm)}]^3 - \text{LVIDd}^3 \text{(mm)} \]

Doppler imaging was used to record the transmitral velocities at the tips of the mitral valve leaflets, rate of blood flow, and pressure gradient at the left ventricular outflow tract. The left atrial dimensions were used for excluding pseudo-normalization of E/A values.

\[\text{Doppler imaging and Doppler imaging} \]

\[\text{2.5. Echocardiography and Doppler imaging} \]

Four weeks after validation, the cardiac structure and function of rats in the four groups were evaluated. The rats were lightly anaesthetised (chloral hydrate) and then echocardiography was performed on the animals using a GE Vivid5 colour ultrasound machine (GE Vingmed; GE Healthcare Fairfield, CT, USA) with a linear 13 MHz probe. The left ventricular posterior wall (LVPW) thickness, the left ventricular internal dimensions at diastole and systole (LVIDd and LVIDs, respectively), and left ventricular ejection fraction were measured from the two-dimensional targeted M-mode echocardiographic tracings in the parasternal long-axis view at the level of the mitral leaflet tips. Left ventricular fractional shortening (LVFS) (1), relative wall thickness (RWT) (2), and left ventricular mass (LVM) (3) were calculated using the following formulae, respectively:

\[\text{LVFS} = \frac{\text{LVIDd} - \text{LVIDs}}{\text{LVIDd}} \times 100\% \]

$$ RWT = \frac{\text{IVS(mm)} + \text{LVPW(mm)}}{\text{LVIDd(mm)}} \]

\[\text{LVM(mg)} = 1.05 \times [\text{IVS(mm)} + \text{LVIDd(mm)} + \text{LVPW(mm)}]^3 - \text{LVIDd}^3\text{(mm)} \]

2.6. Haemodynamic measurements

Four weeks after validation, the animals were anaesthetised with a sodium pentobarbitone solution (60 mg/kg, intraperitoneally). A fluid-filled polyethylene catheter connected to a RM-600 4-channel physiologic recorder (Nihon Kohden, Tokyo, Japan) was inserted into the right common carotid artery, which was then advanced into the left ventricular cavity and synchronously recorded the systolic pressures (LVSP), end-diastolic pressures (LVEDP), and the maximum rate of pressure rise and fall (dP/dt max and dP/dt min, respectively). All records were obtained at 2 kHz.

2.7. Biochemical detection

To assess the side effects of VPA, 4 weeks after treatment we examined the hepatic and renal function of rats, including concentrations of plasma aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, creatinine, and blood urea nitrogen (BUN), which were measured using an automatic biochemical analyser, AU400 (Olympus, Tokyo, Japan).

2.8. Statistical analysis

Statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL, USA) and GraphPad Prism 5.0 (GraphPad Software Inc., San Diego, CA, USA). All results were expressed as mean ± SD. The data obtained from various groups were analysed using one-way analysis of variance followed by the Tukey or Dunnett’s T3 test, as appropriate. P < 0.05 was considered to be statistically significant.

3. Results

A total of six rats died during the experiment. Four weeks after the surgery, 24/25 and 26/29 animals of the sham-operated and PAAC groups, respectively, were alive. At 8 weeks, 12/12, 12/12, 12/14, and 12/12 animals of the Sham, Sham + VPA, PAAC, and PAAC + VPA groups, respectively, were alive. The remaining rats without surgery or drug treatment were kept for standby.

3.1. The effects of VPA on ventricular weight

Eight weeks after surgery, heart wet weight (HWW) and HWW normalized to bodyweight (HWW/BW) were increased in the PAAC group compared with the Sham group (P < 0.01, P < 0.01, respectively), which reflects the presence of pressure overload-induced cardiac remodelling. The administration of VPA significantly decreased the HWW and HWW/BW (P < 0.05) (Table 1).

3.2. The effects of VPA on the echocardiographic parameters

Echocardiography was used to validate the PAAC procedure. Four weeks after surgery, the IVS thickness and the LVPW thickness significantly increased (P < 0.05). The LVIDd was decreased (P < 0.05). These results indicate that the PAAC procedure successfully established the animal model of cardiac remodelling (Table 2). Four weeks after validation, the Sham group, Sham + VPA group, PAAC group, and PAAC + VPA group exhibited similar left ventricular ejection fraction and left ventricular fractional shortening values, indicating that the overall systolic functions of the heart could still compensate for the enhanced afterload by PAAC. The administration of VPA inhibited the progress of myocardial remodelling from increasing IVS thickness and LVPW thickness, and from decreasing the LVIDd and E/A values. These results were supported by reduced relative wall thickness and left ventricular mass that were obtained from mathematical...
methods (Table 3; Figure 1). These findings suggest that VPA attenuates PAAC-induced cardiac remodelling.

HE staining revealed a higher cardiomyocyte cross-sectional area in the PAAC group compared with the Sham group (P < 0.05). The administration of VPA significantly reduced the cardiomyocyte cross-sectional area (P < 0.05), confirming that VPA treatment alleviates cardiomyocyte hypertrophy (Figures 2A and 2B).

3.3. The effects of VPA on the haemodynamic parameters

The changes in haemodynamic parameters developed in parallel with the changes in the echocardiographic parameters. The levels of LVEDP and LVSP were significantly higher in the PAAC group compared with the Sham group (P < 0.05). The administration of VPA significantly reduced the cardiomyocyte cross-sectional area (P < 0.05), confirming that VPA treatment alleviates cardiomyocyte hypertrophy (Figures 2A and 2B).

3.4. The effects of VPA on myocardial pathological changes

The extent of collagen hyperplasia was evaluated using Masson's Tricolor staining. A robust myocardial interstitial fibrosis with increased amounts of surrounding matrix was found in the Sham animals, indicating that the PAAC procedure induced cardiac collagen remodelling in addition to the cardiomyocyte hypertrophy. The administration of VPA improved the myocardial interstitial fibrosis (P < 0.05) (Figures 3A and 3B).

3.5. The effects of VPA on concentrations of plasma NE and local NE

PAAC induced an enhanced sympathetic outflow that was reflected by increased concentrations of plasma and local NE compared with the Sham groups (P < 0.05). However, sympathetic overexcitation was inhibited by VPA for the duration of the sustaining pressure overload (P < 0.05) (Figures 4A and 4B).

3.6. The effects of VPA on the concentrations of hypothalamic GABA

Concentrations of hypothalamic GABA decreased in the PAAC group compared with the Sham group (P < 0.05). The administration of VPA increased the concentration of hypothalamic GABA in the PAAC + VPA group (P < 0.05) (Figure 4C).

3.7. The effects of VPA on the biochemical parameters

There were no differences in serum concentrations of aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase, and creatinine among the

Table 1. The heart wet weights at 8 weeks among the 4 groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sham</th>
<th>Sham + VPA</th>
<th>PAAC</th>
<th>PAAC + VPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HWW (g)</td>
<td>0.90 ± 0.08</td>
<td>0.91 ± 0.07</td>
<td>1.29 ± 0.15**</td>
<td>1.01 ± 0.18$</td>
</tr>
<tr>
<td>BW (kg)</td>
<td>0.27 ± 0.01</td>
<td>0.26 ± 0.01</td>
<td>0.29 ± 0.01</td>
<td>0.27 ± 0.01</td>
</tr>
<tr>
<td>HWW/BW (g/kg)</td>
<td>3.33 ± 0.16</td>
<td>3.40 ± 0.18</td>
<td>4.49 ± 0.40$**</td>
<td>3.70 ± 0.21#$</td>
</tr>
</tbody>
</table>

Abbreviations: HWW: heart wet weight; BW: body weight; n = 10 in each group. *P < 0.05, **P < 0.01 vs. Sham group; $P < 0.05 vs. PAAC group; #P < 0.05 vs. Sham + VPA group.

Table 2. Echocardiographic parameters at 4 weeks after partial abdominal aortic constriction.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sham</th>
<th>Sham + VPA</th>
<th>PAAC</th>
</tr>
</thead>
<tbody>
<tr>
<td>IVS thickness (mm)</td>
<td>1.22 ± 0.20</td>
<td>1.24 ± 0.18</td>
<td>1.48 ± 0.24*#</td>
</tr>
<tr>
<td>LVPW thickness (mm)</td>
<td>1.23 ± 0.13</td>
<td>1.20 ± 0.17</td>
<td>1.41 ± 0.17*#</td>
</tr>
<tr>
<td>LVIDd (mm)</td>
<td>5.10 ± 0.28</td>
<td>5.00 ± 0.28</td>
<td>4.77 ± 0.33*</td>
</tr>
<tr>
<td>LVIDs (mm)</td>
<td>3.68 ± 0.25</td>
<td>3.71 ± 0.25</td>
<td>3.64 ± 0.23</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>62.34 ± 3.85</td>
<td>59.15 ± 2.81</td>
<td>54.18 ± 1.18</td>
</tr>
<tr>
<td>LVFS (%)</td>
<td>27.86 ± 2.39</td>
<td>25.84 ± 1.70</td>
<td>23.42 ± 6.58</td>
</tr>
</tbody>
</table>

Abbreviations: IVS: interventricular septum; LVPW: left ventricular posterior wall; LVIDs: left ventricular internal dimensions at systole; LVIDd: left ventricular internal dimensions at diastole; LVEF: left ventricular ejection fraction; LVFS: left ventricular fractional shortening. *P < 0.05 vs. Sham group; $P < 0.05 vs. PAAC group; #P < 0.05 vs. Sham + VPA group.
Table 3. The echocardiographic parameters at 8 weeks among the 4 groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sham</th>
<th>Sham + VPA</th>
<th>PAAC</th>
<th>PAAC + VPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>HR (beats/min)</td>
<td>306.9 ± 15.1</td>
<td>315.3 ± 22.3</td>
<td>322.9 ± 27.4</td>
<td>311.3 ± 20.0</td>
</tr>
<tr>
<td>LAd (mm)</td>
<td>38.2 ± 2.7</td>
<td>40.1 ± 2.4</td>
<td>47.2 ± 4.7*</td>
<td>42.1 ± 2.9</td>
</tr>
<tr>
<td>IVS thickness (mm)</td>
<td>1.12 ± 0.12</td>
<td>1.21 ± 0.10</td>
<td>1.90 ± 0.15*</td>
<td>1.53 ± 0.13*#$</td>
</tr>
<tr>
<td>LVPW thickness (mm)</td>
<td>1.15 ± 0.13</td>
<td>1.12 ± 0.11</td>
<td>1.82 ± 0.19*</td>
<td>1.45 ± 0.16*#$</td>
</tr>
<tr>
<td>LVIDd (mm)</td>
<td>5.30 ± 0.22</td>
<td>5.28 ± 0.23</td>
<td>4.76 ± 0.16*</td>
<td>5.17 ± 0.37$</td>
</tr>
<tr>
<td>LVIDs (mm)</td>
<td>3.98 ± 0.21</td>
<td>3.89 ± 0.19</td>
<td>3.76 ± 0.16</td>
<td>3.80 ± 0.23</td>
</tr>
<tr>
<td>LVEF (%)</td>
<td>57.66 ± 2.31</td>
<td>60.00 ± 1.68</td>
<td>50.26 ± 7.24*</td>
<td>59.73 ± 6.91</td>
</tr>
<tr>
<td>LVFS (%)</td>
<td>24.93 ± 1.38</td>
<td>26.33 ± 1.02</td>
<td>20.94 ± 3.90*</td>
<td>26.34 ± 3.90</td>
</tr>
<tr>
<td>E/A radio</td>
<td>1.72 ± 0.17</td>
<td>1.62 ± 0.18</td>
<td>0.58 ± 0.06*</td>
<td>1.59 ± 0.12$</td>
</tr>
<tr>
<td>LVOT, PG (mmHg)</td>
<td>0.46 ± 0.10</td>
<td>0.49 ± 0.08#</td>
<td>0.75 ± 0.33*</td>
<td>0.45 ± 0.13#</td>
</tr>
<tr>
<td>LVOT, BFR (cm/s)</td>
<td>0.33 ± 0.03</td>
<td>0.35 ± 0.03#</td>
<td>0.42 ± 0.09*</td>
<td>0.33 ± 0.06#</td>
</tr>
<tr>
<td>LVM (mg)</td>
<td>310.2 ± 60.6</td>
<td>318.8 ± 60.1</td>
<td>537.8 ± 101.5*</td>
<td>437.0 ± 98.3*#$</td>
</tr>
<tr>
<td>RWT</td>
<td>0.43 ± 0.03</td>
<td>0.44 ± 0.02</td>
<td>0.78 ± 0.46*</td>
<td>0.58 ± 0.04*#$</td>
</tr>
</tbody>
</table>

Abbreviations: LAd: left atrial dimension; LVOT: left ventricular outflow tract; PG: pressure gradient; BFR: blood flow rate; RWT: relative wall thickness; n = 10 in each group. *P < 0.05 vs. Sham group; $P < 0.05 vs. PAAC group; #P < 0.05 vs. Sham + VPA group.

Figure 1. Echocardiography and Doppler imaging. The left ventricular posterior wall (LVPW) thickness, interventricular septum (IVS) thickness, and the left ventricular internal dimensions at diastole and systole (LVIDd and LVIDs, respectively) were measured from the two-dimensional targeted M-mode echocardiographic tracings in the parasternal long-axis view at the level of the mitral leaflet tips and apexes of LV. Doppler imaging was used to record the transmitral peaks of early (E) and late (A) diastolic mitral inflow velocities at the tips of the mitral valve leaflets, rate of blood flow, and pressure gradient at the left ventricular outflow tract.
four groups. Compared with the PAAC group, serum concentrations of BUN were decreased in the PAAC + VPA group (P < 0.05) (Table 5).

4. Discussion
Cardiac remodelling was regarded as an adaptive response to an increased workload. However, clinical and experimental observations have shown that the degree of cardiac hypertrophy or interstitial fibrosis is not proportional to workload, which means that extra factors participate in the pathological process of cardiac remodelling (21). Overactivation of the sympathetic nervous system plays a pivotal role in hypertrophic remodelling by modulating the cardiovascular growth response; cardiac performance decreases as sympathetic activity increases. Emerging experimental evidence suggests that adrenaline receptor signalling contributes to the development of cardiac hypertrophy and fibrosis (22). Sympathectomy, which abolishes the collagen deposition and myocardial interstitial fibrosis of the left ventricle, has been implicated experimentally with aortic banding-induced pressure overload (23). In this study, PAAC produced significant cardiac hypertrophy, myocardial interstitial fibrosis, and left ventricular diastolic dysfunction as well as enhancement of sympathetic outflow. VPA exhibited an anti-remodelling effect, by
significantly decreasing normalised left ventricular weight, cardiomyocyte cross-sectional area, and myocardial fibrotic area. This was supported by the improvement of haemodynamic parameters and the reduction in plasma and local NE levels. These findings indicate that VPA is cardioprotective against PAAC-induced cardiac remodelling.

Increased sympathetic outflow may play a key role in the pathogenesis and maintenance of hypertension and heart failure, including pressure overload (2,3,24). However,
LIU et al. / Turk J Med Sci

Table 5. The hepatic and renal function parameters at 8 weeks among the four groups.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sham</th>
<th>Sham + VPA</th>
<th>PAAC</th>
<th>PAAC + VPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>AST (U/L)</td>
<td>104.5 ± 11.7</td>
<td>109.2 ± 14.3</td>
<td>107.9 ± 22.7</td>
<td>107.0 ± 18.0</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>34.0 ± 3.4</td>
<td>35.5 ± 4.6</td>
<td>36.1 ± 4.3</td>
<td>31.5 ± 5.5</td>
</tr>
<tr>
<td>LDH (U/L)</td>
<td>840.0 ± 336.1</td>
<td>839.1 ± 261.5</td>
<td>1054.5 ± 378.2</td>
<td>772.7 ± 343.2</td>
</tr>
<tr>
<td>CREA (µmol/L)</td>
<td>37.6 ± 5.1</td>
<td>38.9 ± 5.6</td>
<td>34.6 ± 5.4</td>
<td>33.6 ± 2.7</td>
</tr>
<tr>
<td>BUN (mmol/L)</td>
<td>8.2 ± 2.9</td>
<td>7.8 ± 2.1</td>
<td>10.1 ± 1.9</td>
<td>6.2 ± 2.4$</td>
</tr>
</tbody>
</table>

Abbreviations: AST: aspartate aminotransferase; ALT: alanine aminotransferase; LDH: lactate dehydrogenase; CREA: creatinine; BUN: blood urea nitrogen; n = 10 in each group; $P < 0.05$ vs. PAAC group.

the mechanisms underlying heightened sympathetic outflow in hypertension remain poorly understood. Most studies on the central alterations in hypertensive animals have focused on the hypothalamus (25–27), which is an important brain region controlling sympathetic outflow and arterial blood pressure through projections to the intermediolateral cell column of the spinal cord and the rostral ventrolateral medulla (28–31). A lesion of the hypothalamus reduces sympathetic activity and attenuates the development of hypertension in experimental animals (32,33). The role of the hypothalamus in nerve action relies on many neurotransmitters, including glutamic acid and GABA. Modulating ambient GABA levels or the efficacy of GABAergic synaptic inputs in the hypothalamic pressor area tonically inhibits sympathetic outflow and arterial blood pressure (34–36). Therefore, regulation of GABA levels in the hypothalamus might be a potential target for inhibiting sympathetic outflow.

As a drug for the treatment of neurological disease, VPA can suppress neuronal activity by employing multiple neurochemical mechanisms. Regardless of the various opinions on the action of VPA on membrane ion channels, intracellular messenger systems, amino acid release, and metabolism of monoamines, the vast majority of researchers agree that the main neuro pharmacological effect of this drug is the enhancement of GABAergic transmission and a rise in GABA levels in the central nervous system (37–43). In this study, a reduced GABA level in the hypothalamus was observed in the PAAC group, but VPA significantly boosted the GABA level in the region as well as sympathetic inhibition. Therefore, we speculate that the independent pharmacological effect of VPA on hypothalamic GABA levels contributes to reduced sympathetic activity and cardiac remodelling.

In forming the conclusions of this study, we recognise the straightforward effects of VPA on the heart as a histone deacetylase inhibitor, which were demonstrated in recent years (44,45). However, we suggest that VPA has multiple positive effects of cardiac remodelling, via regulation of sympathetic excitability through the central pathway.

The findings from this study indicate that VPA can effectively inhibit the sympathetic outflow, alleviate cardiac remodelling, and improve left ventricular function during pressure overload. Moreover, VPA also increases the GABA level in the hypothalamus, which might contribute to decreasing sympathetic outflow.

Acknowledgements
We sincerely thank professor Guang Xing Li (Northeast Agricultural University) and Wei Yu (Affiliated Hospital of Northeast Agricultural University) for their encouragement and advice, and Li Huang of Biovol Technology Company (Shanghai, China) for his helpful comments. This work was supported by the Heilongjiang Province Foundation for Young Scholars (QC2010057).

References

29. Pyner S, Coote JH. Identification of branching paraventricular neurons of the hypothalamus that project to the rostroventrolateral medulla and spinal cord. Neuroscience 2000; 100: 549-556.

