Role of hygienic factors in the etiology of allergic disorders in children

Şule YEŞİL1,*, Ahmet KAN2, Olkar ABDULMAJED3, Arzu BAKIRTAŞ2, Nedim SULTAN3, M. Sadık DEMİRSOY2
1Department of Pediatric Oncology, Dr. Sami Ulus Maternity, Children's Health, and Disease Training and Research Hospital, Ankara, Turkey
2Department of Pediatric Allergy and Asthma, Faculty of Medicine, Gazi University, Ankara, Turkey
3Department of Microbiology, Faculty of Medicine, Gazi University, Ankara, Turkey

1. Introduction
The prevalence of atopic disorders (atopic dermatitis, allergic rhinoconjunctivitis, allergic asthma, food allergies) has been continuously increasing over the last 20 years (1). Atopic disorders occur because of interactions between complex genetic factors, allergens, and other environmental variables (1–3). The rapid increase in atopic disorders cannot be explained by genetic changes; instead, changes in environmental conditions and lifestyle must be involved. There is a close relationship between atopy, which is the result of excess sensitivity to several allergens, and other allergic disorders, particularly in children (4).

Epidemiological studies support the view that lifestyle, environmental factors, and less exposure to infections in early life are responsible for the increase in allergic disorders. Smaller family size in industrialized societies, development of personal care and hygiene standards, vaccination, frequent use of antibiotics, less exposure to infection, and significant decrease in parasitic infections may be associated with the increase in inappropriate immune responses against nonthreatening substances. This view is known as the hygiene hypothesis, which asserts that less exposure to microorganisms that stimulate the immune system (particularly in early life) may result in the development of atopy (5).

Several studies have shown an inverse relationship between infection and allergic disorder. Fewer intestinal helminth (Trichuris trichiura), hepatitis A virus (HAV), and protozoa (T. gondii) infections and lower bacterial (Helicobacter pylori) load have been shown to be related to the increased frequency of atopic disease (5–7). Some findings also suggest that measles, HAV, and tuberculosis infections prevent atopic disorders (5).

Intestinal flora has been shown to regulate immune system maturation in various studies (8,9). The differences in indigenous intestinal flora were proposed to affect the maturation of the immune system in early childhood (9).

The role of Mycobacterium in allergic disorders has also been investigated (10,11). Mycobacterial antigens have been shown to directly suppress the allergic response...
and this suppression was dependent on the release of the antiinflammatory cytokines transforming growth factor-beta (TGF-beta) and interleukin-10 (IL-10). These cytokines have also been shown to increase in chronic helminth infections and to suppress immunological responses (12).

In this study we compare evidence of exposure to pathologic microbes, levels of antiinflammatory cytokines, and occurrence of microorganisms in stool and throat cultures from atopic and nonatopic children seen at an allergy outpatient clinic with the goal of understanding the role of body flora and infection in the etiology of allergic disorders.

2. Materials and methods

2.1. Study subjects
This study included 40 atopic children who had been diagnosed with bronchial asthma and who had a positive skin prick test and 40 nonatopic healthy children (no asthma and negative skin prick test) who were seen at the allergy outpatient clinic. Skin prick tests were done on the volar part of the front arm. Alyostal prick tests manufactured by ALK were used. Reactions to house dust mites, fungi, animal epithelium and hair, grass pollens, tree pollens, grain pollens, and weeds were measured routinely. Other allergens, such as food and latex, were tested if a subject's medical history suggested possible allergy to these substances. Hyperemia greater than 3 mm and greater than the negative control was considered as positive. Subjects were diagnosed with asthma based on history of respiratory symptoms such as wheeze, shortness of breath, chest tightness, and cough that varied over time and in intensity, together with variable expiratory airflow limitation, positive response to bronchodilator medications, increased IgE levels, and positive skin prick test. The parents or the legal guardians provided informed consent and the study was approved by the local institutional review boards.

This study was funded by the Gazi University Scientific Research Projects Program (2004).

2.2. Serum-based assays for hepatitis and H. pylori exposure and cytokine levels
Blood samples were drawn and serum was prepared. Anti-HAV antibodies (IgM and IgG), hepatitis B virus surface antigen (HbsAg), and anti-HCV antibodies were measured using specific ELISA kits (Advia Centaur XP Immunoassay System, Siemens). Specific ELISA kits were also used to measure serum levels of anti-H. pylori antibody (H. pylori IgG ELISA kit, Trinity Biotech TM, USA, Ref: No: 2346400), TGF-beta 1 (Bender Med Systems, Austria, Cat. No: BMS249/2), and IL-10 (BioSource International, USA, Ref. No: 2346400). ELISA assays were scored using an ELX 800 universal microplate reader (Bio-Tec Instruments, Inc.).

2.3. Detection and identification of microorganisms in stool and throat cultures
Throat and stool culture specimens were collected from the study subjects. None of the study subjects were using antibiotics before collection of samples. Throat specimens were plated on one EMB agar plate to propagate gram-negative bacteria and two sheep blood agar plates. One blood agar plate was incubated in anaerobic conditions and the other in aerobic conditions. Stool specimens were first examined by direct microscopy, after mixing them with one drop of physiological saline, for the presence of parasites and leukocytes. Stool specimens were then plated on Schadler agar for propagation of anaerobic gram-negative bacteria, Columbia CNA agar for propagation of anaerobic gram-positive bacteria, methicillin-resistant Staphylococcus aureus (MRSA) agar including 0.3% potassium for propagation of Lactobacillus and Streptococcus, and Sabouraud dextrose agar for propagation of fungi. Types and subtypes of bacteria that reproduced were determined.

2.4. Statistical analysis
Analysis of data was performed using SPSS 15.0 (SPSS Inc., Chicago, IL, USA). Level of significance was set at P < 0.05 for all variables. The normality of distribution was assessed by Kolmogorov–Smirnov test. The Student t-test was used for variables with normal distribution. The Mann–Whitney U test was utilized comparing groups without normal distribution. The Fisher exact chi-square test was used for comparison of two groups in examination of stool and throat flora. HbsAg, anti-HAV, anti-HCV, and anti-H. pylori antibody levels were also compared using the Fisher exact chi-square test.

3. Results

3.1. Characteristics of study subjects
Characteristics of study subjects are shown in Table 1. The mean age of subjects was 10.38 ± 2.18 years (range: 7–15 years). No difference in age and sex distribution was recorded between the patient and control groups (P > 0.05).

3.2. Comparison of serum antibodies indicative of pathogen exposure in atopic and nonatopic subjects
We measured the serum levels of antibodies to hepatitis A, hepatitis C, HbsAg, and H. pylori as indicators of exposure to pathogenic microorganisms and compared the values from atopic and nonatopic subjects (Table 2). While a higher percentage of nonatopic subjects tested positive for anti-HAV antibodies compared to atopic subjects (32.5% vs. 17.5%), this difference was not statistically significant. Only one atopic subject tested positive for HBs, with no significant difference between atopic and nonatopic subjects. The same was true for HCV antibodies. However, a significantly higher percentage of nonatopic subjects
tested positive for anti-H. pylori antibodies compared to atopic subjects (60% vs. 20%) (P = 0.012).

3.3. Comparison of serum cytokine levels in atopic and nonatopic subjects
We also measured serum levels of the cytokines IL-10 and TGF-beta, both of which have been shown to suppress immune function (Table 3). The average serum IL-10 concentration was significantly higher in nonatopic subjects compared to atopic subjects (27.43 ± 28.92 pg/mL vs. 5.61 ± 2.46 pg/mL) (P = 0.001). Average serum TGF-beta levels were within the normal range for both atopic and nonatopic subjects, with no significant difference between them.

3.4. Comparison of microorganisms in stool samples from atopic and nonatopic subjects
Microscopic examination of stool samples from atopic and nonatopic subjects showed no leukocytes in any samples. No evidence of parasites was seen in samples from atopic and nonatopic subjects, but Giardia cysts were observed in 2 of the 40 samples from atopic subjects. This difference in parasite prevalence was not significant.

Stool samples were cultured on various media to identify microorganisms present. No significant differences were found between stool samples from atopic and nonatopic subjects with regard to the occurrence of Candida or E. coli, Corynebacterium, Enterococcus, Streptococcus, and other bacteria (Table 4). E. coli was the most frequently observed bacteria in stool samples from both the atopic and nonatopic subjects, occurring in 97.5% of samples from atopic subjects and 95% of samples from nonatopic subjects (Table 4).

3.5. Comparison of bacteria in throat cultures from atopic and nonatopic subjects
Throat cultures from atopic and nonatopic subjects were examined for the presence of bacteria. No statistically significant differences were observed between atopic and nonatopic groups in occurrence of Streptococcus, coagulase-negative Staphylococcus, diphtheroids, Pneumococcus, or Klebsiella in throat cultures (Table 5). Neisseria and beta-hemolytic Streptococcus were observed in a significantly higher percentage of samples from nonatopic subjects compared to atopic subjects, while Bacillus was observed

Table 1. Characteristics of study subjects.

<table>
<thead>
<tr>
<th>Group</th>
<th>Number</th>
<th>Sex, female/male</th>
<th>Age (years)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atopic group</td>
<td>40</td>
<td>15 / 25</td>
<td>10.38 ± 2.12</td>
</tr>
<tr>
<td>Nonatopic group</td>
<td>40</td>
<td>21 / 19</td>
<td>10.38 ± 2.25</td>
</tr>
</tbody>
</table>

Table 2. Serum antibodies indicative of pathogen exposure in atopic and nonatopic subjects.

<table>
<thead>
<tr>
<th>Pathogen</th>
<th>Atopic (n = 40)</th>
<th>Nonatopic (n = 40)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td>Anti-HAV (total)</td>
<td>7 (17.5%)</td>
<td>33 (82.5%)</td>
</tr>
<tr>
<td>HbsAg</td>
<td>1 (2.5%)</td>
<td>39 (97.5%)</td>
</tr>
<tr>
<td>Anti-HCV</td>
<td>1 (2.5%)</td>
<td>39 (97.5%)</td>
</tr>
</tbody>
</table>

Table 3. Cytokine levels in atopic and nonatopic subjects.

<table>
<thead>
<tr>
<th>Cytokine</th>
<th>Atopic (n = 40)</th>
<th>Nonatopic (n = 40)</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>IL-10 (pg/mL)</td>
<td>5.61 ± 2.46</td>
<td>27.43 ± 28.92</td>
<td>0.001</td>
</tr>
<tr>
<td>TGF-beta (pg/mL)</td>
<td>8.26 ± 5.11</td>
<td>7.75 ± 4.69</td>
<td>0.419</td>
</tr>
</tbody>
</table>

HAV: Hepatitis A virus; HbsAg: hepatitis B surface antigen; HCV: hepatitis C virus; NC: not calculated.
in a significantly higher percentage of samples from atopic subjects compared to nonatopic subjects. Viridans streptococci were the most frequently observed bacteria in throat cultures from atopic and nonatopic subjects, occurring in 85% of samples from atopic subjects and 92.5% of samples from nonatopic subjects.
4. Discussion
We found that anti-\(H.\) pylori antibodies were significantly higher in nonatopic subjects compared to atopic and that, while not a significant difference, anti-HAV antibodies tended to be higher in nonatopic compared to atopic subjects. Several studies have shown that infections that are transmitted through ingestion, such as HAV, T. gondii, and \(H.\) pylori, decrease the risk of atopy (5–7). In a study of 240 atopic and 240 nonatopic young adults from Italy, Matricardi et al. (13) found a lower prevalence of HAV and \(T.\) gondii, as well as \(H.\) pylori, in atopic subjects. The incidence of atopy was lowest in subjects who had been exposed to more than one of these agents. Thus, infection via ingestion seems to effectively protect against the development of allergy and atopic disorders.

Many studies have focused on the effect of chronic parasite infections on the prevalence of atopy. Scrivener et al. conducted a broad-range study in urban and rural areas of Ethiopia and found that parasite infections were more common in rural areas and asthma prevalence was significantly lower in rural areas (14). Other studies support the idea that chronic parasitic infections lower the risk of atopy (15–17). Unfortunately, no conclusion on the association of parasite infection and atopy could be made from our study since none of the subjects were found to have parasitic infections. This may be due to the fact that all the subjects in the present study lived in urban areas.

Release of antinflammatory cytokines IL-10 and TGF-beta occur as the result of continuous antigenic stimulation in cases of chronic inflammatory infections (HAV, \(H.\) pylori, Toxoplasma) and chronic parasitic infections (12). These cytokines play a key role in the development of tolerance against environmental allergens. In the present study, we found that serum IL-10 levels were significantly higher in nonatopic subjects compared to atopic subjects. Similar results were found in a study of Danish babies (18). However, Corne et al. (19) found higher levels of IL-10 in nasal lavage from atopic subjects compared to nonatopic subjects.

TGF-beta has also been implicated in the development of atopic disease. An in vitro study showed that TGF-beta inhibits the release of the proinflammatory cytokines gamma-interferon and alpha-TNF in keratinocyte cells (20). Lower expression of the TGF-beta effector molecule Smad7 was found in asthma patients compared to controls (21). In the present study, however, we did not find a significant difference in serum TGF-beta levels between atopic and nonatopic subjects.

In the present study, we did not observe significant differences in direct microscopy and culture specimens of stools from atopic and nonatopic subjects. We found significant differences in throat flora between atopic and nonatopic subjects. Unlike intestinal microflora, throat microflora has not been well studied in the context of allergic disease. Thus, these findings are quite novel. We found that gram-positive \(beta\)-hemolytic \(Streptococcus\) and gram-negative \(Neisseria\) were significantly more prevalent in throat cultures from nonatopic subjects compared to atopic subjects. The high prevalence of gram-negative \(Neisseria\) is particularly interesting. Heterogeneous lipopolysaccharide (LPS) in the cell wall of gram-negative bacteria is one of the most important immune-stimulating molecules. LPS induces IL-12 production and a proinflammatory Th1 response. It stimulates type 1 immunity through molecular mechanisms such as inhibition of Th2 response and allergic inflammation (17). Our finding that throat cultures from nonatopic subjects had a higher occurrence of \(Neisseria\) and beta-hemolytic \(Streptococcus\) suggests that exposure to these microorganisms may protect against atopic disease.

In conclusion, the prevalence of anti-\(H.\) pylori antibodies and serum levels of antinflammatory cytokine IL-10 were higher in nonatopic subjects than in atopic subjects, suggesting that chronic infection and inflammation may protect against atopic disease. Examination of throat flora showed significantly higher occurrence of the LPS-producing gram-negative bacteria \(Neisseria\) and gram-positive \(beta\)-hemolytic \(Streptococcus\) in nonatopic subjects compared to atopic subjects. These novel findings lend further support to the hygiene hypothesis.

References