Evaluation of epidemiological characteristics and risk factors affecting mortality in patients with candidemia

Fatma YILMAZ KARADAĞ¹*, Pınar ERGEN¹, Özlem AYDIN¹, Arzu DOĞRU¹, Berrin TANIDIR², Mustafa Haluk VAHAZOĞLU¹

¹Department of Infectious Diseases and Clinical Microbiology, Istanbul Medeniyet University, Göztepe Training and Research Hospital, Istanbul, Turkey
²Department of Microbiology and Clinical Microbiology, Istanbul Medeniyet University, Göztepe Training and Research Hospital, Istanbul, Turkey

Background/aim: The aim of this study was to determine epidemiologic characters of patients with candidemia and to evaluate risk factors that can affect mortality rates among these patients.

Materials and methods: Patients admitted to the Istanbul Medeniyet University Göztepe Training Hospital between 2009 and 2011 who had a positive blood culture for Candida spp. during hospitalization were studied retrospectively for demographic characteristics and risk factors. Statistical comparisons were estimated with the Stata 12 package. Independent variables associated with mortality were estimated by Cox regression analyses.

Results: A total of 89 patients were identified with a positive blood culture. Of the isolates, 72% (64/89) were C. albicans and 10% (9/89) were non-albicans Candida, while 18% (16/89) were unidentified. C. parapsilosis was the most frequently isolated species among non-albicans Candida. The crude mortality rate among candidemia cases was 30% (27/89). By univariate analysis, being in the ICU and age (≥50 or ≥60) were found to be statistically significant, whereas by multivariate analysis only age of ≥50 years was independently more associated with mortality (OR, 2.7; CI, 1.05–6.73).

Conclusion: Candidemia is associated with high mortality rates. Patients older than 50 years are found to be at considerable risk in terms of adverse outcomes.

Key words: Candidemia, epidemiology, risk factors, mortality

1. Introduction
Candidemia is the most prevalent clinical invasive candida infection. Although it usually occurs in neutropenic patients, it has begun to be encountered in various patient groups in recent years and is at the forefront as a cause of nosocomial infections. In a study from the United States, fungi ranked fourth among the causes of circulatory infections (1). Candidemia is associated with high morbidity and mortality rates in patients that stay in the hospital for the long term. Candidemia-associated mortality rate ranges between 10% and 49% (2).

Candida reaches the blood circulation via three different routes: the gastrointestinal system, the urinary system, and intravascular catheters (3). There are certain risk factors that facilitate the development of candidemia. These include gastrointestinal surgical intervention, presence of a central venous catheter, mechanical ventilation, total parenteral nutrition, burns, malignancy, hemodialysis, long-term intensive care unit stay, broad-spectrum antibiotics, corticosteroid use, and Candida colonization in the oral mucosa (4–6).

In the present study, we aimed to retrospectively evaluate mortality-associated risk factors in candidemia cases developed in our hospital.

2. Materials and methods
2.1. Patients and variables
Files of the patients whose blood cultures revealed Candida growth in the microbiology laboratory between 1 January 2009 and 31 December 2011 at the Istanbul Medeniyet University Göztepe Training and Research Hospital were retrospectively reviewed. Patient age and sex, reason for hospitalization, the clinic at which the patient stayed, underlying disease, history of past surgical intervention, duration of hospital stay, time to Candida growth in
blood culture, use of antifungal agent, and prognosis were derived from the patient files and recorded.

For isolation and identification of Candida from blood culture, cultures that gave a positive signal in the automatized blood culture system (BacT/Alert 3D 120, BioMerieux, France) were transferred onto blood agar and Endo agar. The agars on which transfer was performed were incubated at 37 °C for 24–48 h. The samples that showed growth were examined by Gram staining and typing was performed using a fungi identification kit (Candifast Es Twin, ELITech Microbio, France) for the samples that revealed yeast.

2.2. Statistics
Statistical analyses were done with the Stata 12 (StataCorp, USA) statistical package. Categorical variables were analyzed by chi-square test or Fisher's exact test as necessary. Comparisons were done using 2 × 3 tables and the Fisher–Freeman–Halton test. Continuous variables were generally analyzed by Student's t-test. Independent risk factors were modeled by Cox regression analysis. Backward elimination was used for Cox regression analysis. Variables were tested in terms of collinearity and thereafter they were separately included into and excluded from the model and the final model was formed. Proportionality of variables and suitability of the final model were tested. Kaplan–Meier survival graphics were drawn and difference in survival function was assessed by log-rank test. Statistical significance was evaluated at P < 0.05 as two-sided.

3. Results
Positive blood culture was detected in a total of 89 cases over the course of study period. While C. albicans was identified in 72% (64/89) and non-albicans Candida species were identified in 10% (9/89) of these cases, typing failed in 18% (16/89). C. parapsilosis was the most frequently isolated species among non-albicans Candida species. Solid organ tumors were present in six of the cases and none of these patients had been using chemotherapeutic agents at the time that candidemia was detected. Four patients were followed at the Department of Pediatric Hematology for febrile neutropenic episodes. No data were obtained from the records involving long-term use of agents that suppress the immune system, such as corticosteroids or tumor necrosis factor alpha inhibitors. Table 1 illustrates the distribution of candidemia cases among clinics and Table 2 illustrates characteristics of living and dead patients.

The crude mortality rate among cases was 30% (27/89). Of the patients with candidemia, 42% were over the age of 50 years and 63% were male. Staying in the intensive care unit and age (≥50 or ≥60) were found to be significant for mortality, particularly during univariate comparisons, whereas the multivariate model found that only the age of 50 years and over (OR = 2.7; CI = 1.05–6.73) was a significant risk factor for mortality. Statistical data are demonstrated by Cox regression analysis in Table 3 and by a Kaplan–Meier survival graphic in the Figure.

4. Discussion
Candida species that cause candidemia show variation among countries and regions (7,8). Yapar et al. from Turkey conducted a study on candidemia and found the prevalence of C. albicans to be 75.7% and non-albicans to be 43.5%, but they reported that Candida species have increased in recent years (9). In a study that evaluated 12-year candidemia cases in the Uludağ University Hospital of the Faculty of Medicine, C. albicans (45%) was found to be the leading agent, followed by C. parapsilosis (26%) (10). A study from Spain reported an increase in non-albicans Candida species, although the prevalence of C. albicans was found to be 51% and that of non-albicans species was found to be 49% (11). Another study reported the most frequently isolated agents to be C. albicans (40%), C. parapsilosis (23%), C. glabrata (15%), C. tropicalis (9%), and other species (13%), respectively, from 182 Candida attacks in the intensive care unit. The same study emphasized that there is an increase in Candida species that cause candidemia.

Table 1. Distribution of the patients with candidemia among clinics.

<table>
<thead>
<tr>
<th>Clinics</th>
<th>Exitus (n = 27)</th>
<th>Survivors (n = 62)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult ICU*</td>
<td>16 (0.59)</td>
<td>11 (0.18)</td>
</tr>
<tr>
<td>Internal clinics</td>
<td>4 (0.15)</td>
<td>9 (0.15)</td>
</tr>
<tr>
<td>Surgical clinics</td>
<td>3 (0.11)</td>
<td>21 (0.34)</td>
</tr>
<tr>
<td>Pediatric diseases</td>
<td>4 (0.15)</td>
<td>11 (0.18)</td>
</tr>
<tr>
<td>Newborn ICU</td>
<td>0 (0.00)</td>
<td>10 (0.16)</td>
</tr>
</tbody>
</table>

*: ICU: intensive care unit.
species, which might have most significantly resulted from intensive use of azole prophylaxis in their unit (12). In the candidemia cases investigated in the present study, the most frequently isolated agent was *C. albicans* (72%), followed by *C. parapsilosis* (9%), whereas *C. krusei* was isolated from a single case. Nevertheless, typing could not be performed for sixteen yeast cells. Our data show similarity to the data from both Turkey and European countries in terms of distribution of the species (8).

The literature contains numerous studies concerning the risk factors for the development of candidemia. It was demonstrated that long-term hospital stay and presence of a central venous catheter in a patient enhance the risk of developing candidemia (13). Barberino et al. determined the risk factors associated with candidemia to be the presence of a central venous catheter, total parenteral nutrition, broad-spectrum antibiotic use, and chronic renal insufficiency (14). In a study from Thailand, staying in the intensive care unit was emphasized as a risk factor for developing candidemia (15). Das et al. stated that broad-spectrum antibiotic use, presence of intravascular catheter, staying in an intensive care unit, and history of surgical intervention are significant risk factors that influence the development of candidemia. Moreover, the same study determined that the risk of developing candidemia is higher in those having a history of gastrointestinal surgery as compared to other types of surgical interventions (16). In a study carried out in medical and surgical intensive care units, it was emphasized that there was no relation between *Candida* species and risk factors that play a

Table 2. Characteristics of deceased and surviving patients.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Number (%)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exitus (n = 27)</td>
<td>Survivors (n = 62)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥50</td>
<td>16 (59.26)</td>
<td>21</td>
</tr>
<tr>
<td>≥65</td>
<td>12 (44.44)</td>
<td>11</td>
</tr>
<tr>
<td>Male</td>
<td>18 (66.67)</td>
<td>38</td>
</tr>
<tr>
<td>C. albicans</td>
<td>16 (59.26)</td>
<td>48</td>
</tr>
<tr>
<td>Fluconazole</td>
<td>10 (37.04)</td>
<td>18</td>
</tr>
<tr>
<td>CanTime (days)*</td>
<td>16.52 (11.92)</td>
<td>15.32</td>
</tr>
<tr>
<td>Duration of hospital stay (days)</td>
<td>33.96 (28.24)</td>
<td>41.65</td>
</tr>
<tr>
<td>ICU*</td>
<td>6 (0.22)</td>
<td>11</td>
</tr>
</tbody>
</table>

^a: Continuous variables, age, CanTime, and duration of hospital stay are given as “mean (SD)”.

^b: CanTime: time from hospitalization to the isolation of *Candida*; ICU: intensive care unit.

^h: McCabe and Jackson classification.

Table 3. Hazard ratios and confidence intervals obtained from Cox regression model of variables for outcome.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Hazard ratio</th>
<th>[95% CI]<sup>h</sup></th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. albicans</td>
<td>0.7</td>
<td>[0.27–1.61]</td>
<td>0.20</td>
</tr>
<tr>
<td>Staying in ICU</td>
<td>2.1</td>
<td>[0.85–5.01]</td>
<td>0.06</td>
</tr>
<tr>
<td>Age ≥50</td>
<td>2.7</td>
<td>[1.05–6.73]</td>
<td>0.01</td>
</tr>
</tbody>
</table>

^h: CI: Confidence interval.
role in the development of candidemia, but that non-
albicans Candida was the most prevalent agent in those
with a history of any surgical intervention, particularly
gastrointestinal surgery (17).

Mortality rate shows variations among candidemia
cases. Fraser et al. determined the mortality rate to be
57% and demonstrated that severity and prognosis of
the underlying disease, duration of candidemia, and
APACHE II score are closely associated with mortality
(18). It was emphasized that mortality rate is higher in
non-albicans candidemia as compared to C. albicans
in immunosuppressed and nonneutropenic patients
staying in intensive care units (19). In another study in
the literature, it was stated that Candida species do not
influence mortality (20). In the present study, the most
prevalent agent was C. albicans, with no statistically
significant effect on mortality. It is known that
commencing empirical antifungal therapy in the early
period favorably influences the mortality rate. However, a
study conducted in nonneutropenic patients determined
no difference in mortality rate with early antifungal
therapy (21). A study from the United Kingdom
demonstrated that neither empirical antifungal therapy
nor treatment after positive blood culture significantly
influenced the mortality rate (16). In the present study,
most of the patients did not receive empirical antifungal
therapy. Antifungal therapy was commenced after
blood culture positivity with no statistically significant
difference in mortality rate. Erdem et al. demonstrated that
candidemia-associated mortality rate was higher among
patients staying in the intensive care unit. In addition,
they explained that presence of a central venous catheter
or urinary catheter did not influence the mortality rate
in candidemia patients because all patients staying in
the intensive care unit had invasive catheters (22). In
the present study, univariate comparisons revealed that
staying in the intensive care unit is a significant factor for
mortality, whereas the multivariate model determined
no significant relation with mortality and only the age
of 50 and over was found to be significantly correlated
with mortality.

The most important limitation of this study is that the
percentage of nonidentified species of Candida is very
high and this may have affected the results of logistic
regression analysis.

In conclusion, candidemia is a serious condition with
high mortality. The risk of mortality is significantly higher
particularly in patients at the age of 50 years and over
and those staying in the intensive care unit. Therefore,
candidemia should be considered in the differential
diagnosis. Moreover, knowing local epidemiological
trends of Candida species that are isolated from blood
cultures would be a guide in choosing empirical
antifungal agents.