The demographics and histopathological features of oral cavity cancers in Turkey*

Mehmet DÜZLÜ1,*, Recep KARAMERT1, Faruk Kadri BAKKAL1, Rasit CEVİZCI2, Hakan TUTAR1, Mehmet Ekrem ZORLU1, Alper DİLCİ1, Fakih Cihat ERAVCI1

1. Department of Otorhinolaryngology, Faculty of Medicine, Gazi University, Ankara, Turkey
2. Department of Otorhinolaryngology, Faculty of Medicine, Medipol University, İstanbul, Turkey

Background/aim: This study aimed to examine the demographics and histopathological features of oral cavity cancers (OCCs) managed in our clinic.

Materials and methods: Patients who were diagnosed with OCCs in the Gazi University Otorhinolaryngology Department between the years 1993 and 2013 were retrospectively enrolled in the study. Surgical archive charts and pathology records were reviewed in detail regarding the anatomical and histopathological profiles of the tumors, as well as the demographic data of the patients.

Results: Out of 230 patients with OCCs, the most common anatomic location and histopathological diagnosis were found to be the oral tongue (41.4%) and squamous cell carcinoma (SCC) (84.3%), respectively. A marked predominance of SCC was observed in all subsites of the oral cavity except the hard palate location. The mean age at presentation was 55.5 ± 13.4 years (±SD). The male:female ratio was found to be 2.2:1. A male predominance was also present in all subsites except the retromolar trigon.

Conclusion: OCCs particularly concern the elderly population with a male predominance. The most common location and histopathological type are the oral tongue and SCC, respectively.

Key words: Oral cavity cancer, squamous cell carcinoma, oral tongue

1. Introduction
Oral cavity malignancy is the 11th most common cancer worldwide (1). It accounts for nearly 30% of all head and neck cancers (2). Squamous cell carcinoma (SCC) is responsible for a majority of the cases (90%) while the remaining 10% represent rare malignancies as unusual forms of SCC, minor salivary gland tumors, lymphoma, sarcoma, and melanoma (2).

The most common preventable etiologic risk factors are tobacco and alcohol consumption, for which a synergistic relationship is also present (3). The most common well-known carcinogenic chemicals in tobacco smoke associated with oral cavity carcinogenesis are N-nitrosonornicotine, 4-(methyl-nitrosamino)-1-(3-pyridyl)-1-butanol, and polycyclic aromatic hydrocarbons (4). In particular ultraviolet radiation is the main predisposing factor for lip cancers (5). In addition, the incidence of HPV-related oral cancers has increased in the last decade (6).

Excluding skin and thyroid cancers, oral cavity cancers (OCCs) are supposed to be the second most common head and neck malignancy in Turkey after larynx carcinoma (7). However, there are very limited data in the literature concerning the profile of OCCs in Turkey (7–9). Therefore, in this study, we aimed to report the demographics and histopathological features of oral cavity malignancies managed in our clinic over a 20-year period to give an idea about the profile of OCCs in Turkey.

2. Materials and methods
This study was conducted in the Otorhinolaryngology Department of the Gazi University Faculty of Medicine in Ankara, Turkey. Approval was received from the local ethics committee. The surgical archive charts between the years 1993 and 2013 were retrospectively reviewed. The patients undergoing operation or biopsy procedure with the diagnosis or suspicion of malignancy in the oral cavity were enrolled in the study. All malignant tumors arising

* This study was presented at the 17th International Congress on Oral Pathology and Medicine, which was held in Istanbul, Turkey, on 25–30 May 2014.
** Correspondence: mehmetduzlu@gmail.com
in oral cavity sublocations such as the lip, oral tongue, buccal mucosa, alveolar ridge, hard palate, floor of mouth, and retromolar trigone were included in the study after confirming the histopathological diagnosis of malignancy. Patients lacking definitive histopathological records in the internal computer network were excluded from the study. The demographics and histopathological features of the patients were examined with regard to oral cavity sublocation in detail.

3. Results
Overall histopathological analysis is shown in the Table. Oral tongue cancers were the most common among 230 cases of OCCs. It was diagnosed in 95 of the patients (41.3%). Lip tumors were the second most common malignancy and were diagnosed in 37 patients (16.1%). Incidences of tumors in the other subsites of the oral cavity were as follows: 25 in the alveolar arch (10.9%), 25 in the floor of mouth (10.9%), 22 in the hard palate (9.6%), and 13 in both the retromolar trigon and the buccal mucosa (5.7%) (Figure 1). When considering the diversity of the histopathological diagnoses, the most homogeneous group was the oral tongue with a rate of 100% diagnosis of SCC. A marked dominance of SCC was observed in all subites except the hard palate location. Nearly half of the patients were diagnosed with minor salivary gland malignancies in the hard palate (n: 10, 45.4%). Among all OCCs there were 194 (84.3%) diagnosed cases of SCC, 20 (8.7%) cases of minor salivary gland malignancy, 6 cases of malignant melanoma (2.6%) and three (1.3%) cases of soft tissue carcinoma as represented in Figure 2. One hundred and fifty-eight males and 72 females were affected by oral cavity cancer and the male:female ratio was found to be 2.2:1. A male predominance was also present in all subites except the retromolar trigon tumors, as shown in Figure 3. The mean age (±SD) at presentation was 55.5 ± 13.4 years. Most of the patients were in the fifth and sixth decades (median: 56, range: 15–85). There were 48 patients (20.8%) under 45 years old.

The demographics and histopathological features of the patients are given in detail below with regards to oral cavity sublocation.

3.1. Lip
Thirty-seven (16.1%) patients met the criteria for inclusion. Almost all patients (34 cases, 91.9%) were diagnosed with SCC. In one case upper lip basal cell carcinoma was observed. The remaining histopathological types are listed in the Table.

Table. Histopathological analysis of oral cavity cancers.

<table>
<thead>
<tr>
<th></th>
<th>Lip</th>
<th>Oral tongue</th>
<th>Buccal mucosa</th>
<th>Alveolar arch</th>
<th>Floor of mouth</th>
<th>Hard palate</th>
<th>Retromolar trigone</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Squamous cell carcinoma</td>
<td>34</td>
<td>95</td>
<td>11</td>
<td>21</td>
<td>18</td>
<td>4</td>
<td>11</td>
<td>194</td>
</tr>
<tr>
<td>Verrucous carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Basaloid carcinoma</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Basal cell carcinoma</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Basosquamous cell carcinoma</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Adenocarcinoma</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>Adenoid cystic carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3</td>
<td>4</td>
<td>-</td>
<td>7</td>
</tr>
<tr>
<td>Adenosquamous carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Mucoepidermoid carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>5</td>
</tr>
<tr>
<td>Malign melanoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>4</td>
<td>-</td>
<td>6</td>
</tr>
<tr>
<td>Lymphoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Myoepithelial carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2</td>
<td>-</td>
<td>2</td>
</tr>
<tr>
<td>Oncocytic carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Chondroid myxosarcoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Undifferentiated carcinoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>-</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td>37</td>
<td>95</td>
<td>13</td>
<td>25</td>
<td>25</td>
<td>22</td>
<td>13</td>
<td>230</td>
</tr>
</tbody>
</table>
5.2:1 (31/6) and 58.3 years (range: 30–85). Only in three cases was the tumor origin the upper lip, whereas in the remaining 34 cases it was the lower lip.

3.2. Oral tongue
There were 95 patients (41.3%) with oral tongue carcinoma and all of them were diagnosed with SCC. We did not
observe any other histopathological type of malignancy in this region. The male:female ratio was 1.9:1 (62/33). Most of the patients were in the fifth and sixth decades (mean: 54.3, range: 18–83).

3.3. Floor of the mouth
There were 25 (10.9%) patients undergoing operation due to the malignancy in the floor of mouth while meeting the inclusion criteria. The majority (18, 72%) of the patients were operated on with the diagnosis of SCC. The second leading pathology was adenoid cystic carcinoma (3, 12%). The male:female ratio was 2.1:1 (17/8) and the mean age at presentation was 58.4 years (range: 35–80).

3.4. Buccal mucosa
Thirteen patients (5.7%) met the criteria for inclusion. Almost all patients (11, 84.6%) were diagnosed with SCC, whereas two had adenoid cystic carcinoma and SCC variant verrucous carcinoma. The male:female ratio and the mean age were 3.3:1 (10/3) and 64.3 years (range: 38–80).

3.5. Retromolar trigone
Thirteen (5.7%) patients underwent operation due to a malignancy located in the retromolar trigone. Seven of these originated from the right side whereas 6 of them arose in the left retromolar trigone. The final pathologic diagnosis was SCC in the majority (11, 84.6%) of the cases. The remaining two patients were operated on due to minor salivary gland malignancies: mucoepidermoid carcinoma and adenoid carcinoma. The male:female ratio was 0.9:1 (6/7). Most of the patients were in the fifth decade (mean: 54.3, range: 40–68).

3.6. Alveolar arch
Twenty-five (10.9%) patients were met criteria for inclusion. Twenty-one of them were diagnosed with SCC (84%). Only four cases were diagnosed as something other than SCC. The male:female ratio and the mean age were 2.6/1 (18/7) and 56.4 years (range: 39–79), respectively. The inferior alveolar arch was the most common site (20 cases, 80%) for tumor origin in this location.

3.7. Hard palate
There were 22 (9.6%) cases with hard palate localization. Nearly half of the patients were diagnosed with minor salivary gland malignancies (10 cases, 45.4%). The other histopathological types are represented in the Table. The male:female ratio was 1.8/1 (14/8). Most of the patients were in the fifth and sixth decades (mean: 55.8, range: 37–74).

4. Discussion
In this study the anatomical and the histopathological profiles as well as the demographic data of OCCs from a single center in Turkey were reviewed in detail. SCC was observed to be the most common (84.3%) histopathological type among all oral cavity malignancies managed in our clinic. This finding is compatible with previous reports (10). SCC was also found to be the most common histopathological type among all oral cavity subsites except the hard palate. In the hard palate location, 10 (45.4%) cases were diagnosed as minor salivary gland malignancy, whereas 4 (18.2%) patients had SCC. Likewise, in the previous study of Tian et al., mucoepidermoid and adenoid cystic carcinomas were reported to be equally the most common malignant tumors arising in this region, compatible with our findings (11).

In the study there were a total of 230 malignancies that originated from the oral cavity during a 20-year time period. With regard to our literature review, this is one of the largest samples from Turkey regarding OCCs (7–9). Midilli et al. reported a series of 231 patients with oral cavity and oropharynx carcinomas from Turkey. In their study the oral tongue was found to be the most common location with a male predominance, compatible with our findings (8). Uğurluer et al. reported the survival rates of a sample of 32 patients from their clinic in Turkey. They stated that the oral tongue (15 cases, 46.9%) and lip (13 cases, 40.6%) locations were the most common subsites (9).

OCCs are known to be more common in males with a male:female ratio ranging from 6:1 to 2:1 (12). In the current study the male:female ratio was found to be 2.2:1 (158/72). An increase is reported in the number of affected females, especially in recent studies (13). This may be due to increased carcinogen exposure, such as tobacco and alcohol consumption, as a result of increased social and economic status of females in communities. However, there was a female predominance in the retromolar trigone location as opposed to other sites of the oral cavity.

The average age at presentation is reported to be in the fifth and sixth decades in the literature (14,15). Likewise, in our study, the mean age at presentation was 56.2 years (range: 15–85), compatible with previous reports. The prevalence of OCCs has increased among young patients in the past years (16). In the study of Santos et al., 76 patients (3%) diagnosed with oral cavity SCC out of 2311 cases were under 45 years (16). Falaki et al. found that 21 patients out of 158 cases of OSCC were under 40 years old (13.2%) (17). Likewise, in our study, 48 patients (20.8%) were under 45 years old among 230 cases of OCCs.

In general lip tumors are the most common cancers among all oral cavity malignancies. They account for nearly 30% of cases (18). However, there are also many reports showing that the majority of OCCs involve the oral tongue (19,20). Likewise, the oral tongue was found to be the most common location in our institution, which is a tertiary reference center. In our opinion, this may also be due to the easy management of early-stage tumors in
secondary reference centers and/or due to the referral of lip cancer cases to the Plastic and Reconstructive Surgery Department. In addition, there may also be some regional variations in the epidemiology of oral cancers. For instance, the buccal mucosa is the most common site for oral cancers in India, where betel quid and tobacco chewing is common (21,22). The main limitation of this study is the lack of information regarding smoking and alcohol consumption among the patients, which is attributed to the retrospective design of the study. With such data we would be able to expand on the differences revealed between male/female ratios based on those etiologic factors.

In conclusion, this is one of the largest sample reports regarding oral cavity malignancies in Turkey. With the findings of our study, oral cavity malignancies particularly concern the elderly population with a male predominance. The most common location and histopathological type are the oral tongue and SCC, respectively. However, a more comprehensive study with a multiinstitutional design is needed to ascertain the demographics and histopathological profile of OCCs in Turkey.

References