Relationship between placental localisation, birth weight, umbilical Doppler parameters, and foetal sex

Müzeyyen DURAN ERDOLU1,*, Aydın KÖŞÜŞ2, Nermin KÖŞÜŞ2, Gülçin DILMEN3, Hasan KAFALI2
1Department of Obstetrics and Gynaecology, Bursa Şevket Yılmaz Education and Research Hospital, Bursa, Turkey
2Department of Obstetrics and Gynaecology, Faculty of Medicine, Turgut Özal University, Ankara, Turkey
3Department of Radiology, Turgut Özal University, Faculty of Medicine, Ankara, Turkey

Received: 09.11.2013 ● Accepted: 03.01.2014 ● Published Online: 24.10.2014 ● Printed: 21.11.2014

Background/aim: The aim of this study is to examine the relationship between placental localisation, birth weight, and foetal sex. It also evaluates umbilical artery Doppler parameters and their relationship with placental localisation.

Materials and methods: This is a retrospective study of 500 healthy pregnant women who gave birth at our university. All women had undergone a detailed ultrasound and Doppler examination at 20–23 weeks. The ultrasonography results of the patients were examined retrospectively. Foetal biometry, birth weight, and umbilical artery Doppler parameters were recorded and compared according to placental localisation.

Results: Birth weight was significantly higher in foetuses with anteriorly located placenta. The incidence of female foetuses was higher (62%) in relation to anteriorly located placentas, whereas male incidence was higher (51.9%) in relation to posterior placentas. A comparison of Doppler parameters between groups revealed significantly higher pulsatility index (PI) and resistance index (RI) values in posteriorly located placentas.

Conclusion: Foetal sex might affect placental localisation. Doppler parameters and birth weight might also differ according to placental side. These factors should be taken into consideration during the evaluation of obstetric patients.

Key words: Placenta, birth weight, Doppler, foetal sex

1. Introduction
Normal placental function is important for foetal growth and development. The placenta is the site of nutrient and waste exchange, so adequate placental growth is essential for adequate foetal growth (1).

In most pregnancies, implantation occurs in the upper portion of the fundus. It has been found that 37% of placentas attach anteriorly, 24% posteriorly, and 34% in fundal position (2). Placental position and morphology may change considerably during pregnancy. If the area of implantation is less than optimal for placental development, the placenta moves to a more suitable region of the endometrium for adequate blood supply. Parts of the placenta located in less favourable positions atrophy with time. For example, low implantation of the placenta occurs frequently in early pregnancy, but this may change through differential growth of the placenta and uterus.

The relationship between placental morphology (placental width, volume, and circumference), foetal development, and pregnancy-related complications has been investigated previously (3–6). However, the relationship between placental localisation, birth weight, foetal sex, and Doppler parameters is less known. Lateral placentaion may predispose certain women to uteroplacental insufficiency and low birth weight. Similarly, the blood supply of the anterior and posterior parts of the uterus may differ, possibly causing differences in birth weight and Doppler parameters.

In this study, we examine the relationship between placental localisation, birth weight, and foetal sex. Umbilical artery Doppler parameters and their relationship with placental localisation are also evaluated.

2. Materials and methods
This is a retrospective study of 500 healthy pregnant women who gave birth at the Turgut Özal University Faculty of Medicine’s Department of Obstetrics and Gynaecology between January 2010 and October 2011. The exclusion criteria were multiple pregnancy, polyhydramnios or oligohydramnios, foetal death, existence of congenital
A comparison of groups for Doppler parameters revealed no difference in terms of systolic and end-diastolic flow and S/D ratio (P > 0.05). PI and RI values were significantly higher in posteriorly located placentas than in anterior placentas (P = 0.005 and P = 0.035, respectively) (Table).

4. Discussion

Adequate trophoblast invasion and placental perfusion is required for normal foetal growth (7,8). The study of Belogolovkin et al. examined the effect of placental localisation on birth weight in twin pregnancies. It did not find any correlation between birth weight and placental position (9). However, another study comparing placental localisation in intrauterine growth retardation (IUGR) cases and non-IUGR controls found that the most common placental location in both cases was the anterior, accounting for roughly 1/3 in the IUGR group and 1/2 in the non-IUGR group. IUGR pregnancies were nearly 4 times more likely than non-IUGR pregnancies to have lateral placenta compared to anterior or posterior placenta (10).

The main blood supply of the uterus comes from uterine and ovarian arteries. The blood supply of the uterus is not uniformly distributed, so placental location is an important determinant of placental blood flow (11–14). The lateral parts of the uterus may receive less blood flow from the ipsilateral uterine artery than the central regions, which can derive flow from both uterine arteries. In pregnancies with unilateral placenta, uterine artery resistance is lower in the ipsilateral side than in the contralateral side. This resistance is similar in the left and right uterine arteries in pregnancies with centrally located placentas (12,14,15). Therefore, lateral placenta may predispose foetuses to less uteroplacental perfusion and low birth weight.

In our study, we found that the birth weight of anteriorly implanted foetuses was significantly higher than that of posteriorly implanted ones. Difference in birth weight between the anterior and posterior placenta could be caused by difference in blood flow. Although the comparison of groups for umbilical artery Doppler parameters revealed no difference in terms of systolic and diastolic blood flow and S/D ratio, PI and RI were significantly higher in posteriorly located placentas. It is possible that placental position and placental distance from the uterine arteries are important for placental perfusion and foetal weight. Higher birth weight and lower RI in anterior placentas are indicators of better blood supply and/or better trophoblastic invasion in the anterior uterus. An explanation of better placenta on the anterior part may be the greater extent of anastomoses between the uterine arteries on the anterior part and
better blood supply. The position of the uterus is mostly anteverted. This position, and better blood supply to the anterior, could make implantation on the anterior wall physiologically easier.

Another important result of the present study is the detection of a higher female foetus ratio to anterior placenta than to posterior ones. The female-male ratio of anterior placenta was 1.63. Although the exact cause of this placental localisation according to sex is not known, some suggestions have been made. According to Kavraiska et al. (16), the right side of the uterus receives a higher blood flow than the left side. This differential blood flow may affect sex determination, or the foetus may prefer the most suitable area for blood flow according to its sex. Several previous studies have shown that endometrial movement and electrical activity appear to affect sperm transport; positively charged male sperm can be transported selectively to one side of the uterus, and negatively charged female sperm can be transported to the other. Polarity of uterine wall and sperm might be another possible explanation for different implantation sides according to sex (17).

There are some limitations to this study. Although the number of subjects was sufficient, new studies including larger series and additional placental locations (lateral, fundal, etc.) would offer a better explanation of the condition. In this study, we only evaluated umbilical artery Doppler results. The addition of Doppler parameters of other vessels would increase the explanatory power of the study.

In conclusion, foetal sex might affect placental localisation. Doppler parameters and birth weight might also differ according to placental side. These factors should be taken into consideration during the evaluation of obstetric patients.

References


