Airway inflammation and tiotropium treatment in stable COPD patients

Duygu ÖZOL1,*, Harun KARAMANLI1, Sema UYSAL2, Muhammet Ramazan YILDIRIM2, Zeki YILDIRIM1
1Department of Respiratory Medicine, Faculty of Medicine, Turgut Özal University, Ankara, Turkey
2Department of Biochemistry, Faculty of Medicine, Turgut Özal University, Ankara, Turkey

Background/aim: Chronic obstructive pulmonary disease (COPD) is an inflammatory disease of the lung associated with progressive airflow limitation. The aim of this study is to assess the influence of tiotropium treatment on airway inflammation and symptoms in stable COPD patients.

Materials and methods: Inflammatory markers were measured in the expired breath condensate fluid (EBC) before starting tiotropium treatment and at the end of the first month.

Results: Twenty-two patients (81% men) with a mean age of 65.4 ± 10.1 years completed the study. The mean nitrotyrosine and 8-isoprostane levels for oxidative stress markers in EBC before and after treatment were 4.5 ± 2.3, 3.5 ± 1.9 pg/mL (P = 0.06) and 7.3 ± 10.8, 8.1 ± 11.7 pg/mL (P = 0.28), respectively. The mean interleukin-6 and tumor necrosis factor-alpha levels for inflammation markers in EBC before and after treatment were 1.03 ± 1.1, 0.77 ± 0.8 pg/mL (P = 0.41) and 27.8 ± 2.6, 29.2 ± 5.7 pg/mL (P = 0.36) respectively. The mean symptom scores decreased significantly with tiotropium and a mean increase of 124.6 ± 0.86 mL was observed in a lung function test (FEV1).

Conclusion: Although a 4-week treatment with tiotropium did not modify any of the inflammatory or oxidative stress markers in EBC fluid, tiotropium treatment helps to control symptoms in COPD.

Key words: Tiotropium, inflammation, airways, COPD

1. Introduction

Chronic obstructive pulmonary disease (COPD), which is an important health problem and an increasing cause of mortality throughout the world, is characterized by a slowly progressive and irreversible reduction in the maximum expiratory flow due to a persistent abnormal inflammatory process in the pulmonary tissue (1). As a result of inhaled toxic gases, mainly tobacco smoke, increased oxidative stress with reactive oxygen species (ROS) and increased inflammation with neutrophils, macrophages, and CD8+ T lymphocytes form a vicious cycle that is implicated in the remodeling of the airways and lung parenchyma (2,3). Examination of exhaled breath condensate fluid (EBC) is a noninvasive method for studying the composition of airway lining fluid. EBC is mainly formed by water vapor but also contains cytokines such as interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) which have potent neutrophil chemotactic and activation properties (4,5), and also 8-isoprostane, which mediates certain aspects of oxidative injury (6). Thus, EBC measurements are useful for monitoring and assessing the efficacy of pharmacological therapy with various inflammatory and oxidative stress biomarkers in the respiratory tract (7–10).

The overall aims for COPD treatment are to prevent further decline in lung functions, treat exacerbations, and control symptoms like cough and dyspnea (11). Guidelines suggest starting a long-acting bronchodilator therapy when patients with COPD are symptomatic and once-daily long-acting anticholinergic bronchodilator tiotropium bromide is approved as a maintenance therapy. Since parasympathetic cholinergic pathways arising from the vagus nerve are implicated in the pathophysiology of airflow limitation in COPD, inhaled tiotropium bromide is very effective in reversing vagally mediated bronchoconstriction and decreasing hyperinflation, by blocking muscarinic receptors located in the airway smooth muscle in patients with COPD (12–15). Acetylcholine provides the dominant innervations of the airways and it has been shown that acetylcholine receptors activate the release of chemotactic factors that trigger granulocyte migration (16). Therefore, it can be suggested that
antagonizing the muscarinic receptors can modulate the inflammatory reactions. Although the role of tiotropium in the management of COPD is well documented, its effect on airway inflammation in stable COPD is not clear. A number of studies have been performed examining these effects of tiotropium upon various measures of inflammation with conflicting results (17,18). The aim of this study was to see if airway inflammation and oxidative stress markers in EBC would be changed by a 4-week course of tiotropium therapy, given at a dose of 18 µg daily.

2. Materials and methods

2.1. Patients

Thirty patients with stable COPD were recruited from the outpatient department of our university hospital during a 2-month summer period. All patients were at least 40 years of age, with a smoking history of at least 20 pack-years, and they had all ceased smoking at least 6 months prior to enrollment. Inclusion criteria were: 1) postbronchodilator forced expiratory volume in first second (FEV1)/forced vital capacity (FVC) ratio of <70% and FEV1 of ≥50% of the predicted value, 2) reversibility with inhaled beta-2 agonists of less than 12% of the predicted FEV1, 3) stable COPD defined as no acute exacerbation within the preceding 3 months, 4) no history of systemic disease or other pulmonary disease, 5) no therapy with inhaled or systemic corticosteroids within 3 months prior to entry into the study, and 6) no history of asthma, rhinitis, or atopy. Exacerbations were defined as an increase in or the new onset of more than 1 respiratory symptom (cough, sputum, sputum purulence, wheezing, or dyspnea) lasting 3 days or more and requiring treatment with an antibiotic or a systemic corticosteroid.

Informed content was obtained from the patients and this study was approved by the ethics committee of our university.

2.2. Spirometric tests and symptom scores

Spirometric tests, EBC, and symptom scores were ascertained upon entry into the study and after 4 weeks of treatment. All patients were assessed within 2 weeks for treatment compliance and side effects. Pulmonary function tests were performed by the standard method using a dry rolling-seal spirometer. Three technically adequate maneuvers were required and the best values for FVC and FEV1 were accepted.

Each subject was evaluated for symptoms in detail. Dyspnea was scored as “0” for no symptoms, “1” for 1–2 episodes of breathlessness daily, “2” for 3 or more episodes, and “3” for breathlessness most of the time. Cough was scored as “0” for none, “1” for 1–2 episodes daily, “2” for 3 or more episodes, or “3” for persistent cough. Sputum production was ranked as “0” for none, “1” for production only on rising, “2” for occasional sputum production, and “3” for frequent episodes.

2.3. Exhaled breath condensate and markers

EBC was collected over 10–15 min of quiet breathing using a condenser EcoScreen (Jaeger, Germany) according to standard protocol and using a nasal clip. After rinsing their mouths, the recruited subjects breathed tidally through a mouthpiece that was connected through a unique one-way valve to a cooled collection tube where vapors, aerosols, and moisture in the breath condensed along the walls of the tube. The design of the system prevented salivary contamination of EBC. Each subject was asked to breathe through the device, while wearing a nose clip, for 10 min so that more than 1 mL of EBC could be collected from each subject. EBC was transported to the analytical laboratory in tightly closed and cooled containers and stored at −70 °C until analysis/further examination. EBC samples were collected in the morning, from 0900 to 1000 hours. Concentrations of IL-6, TNF-α, 8–isoprostane, and nitrotyrosine in EBC were determined by a 2-site sandwich quantitative enzyme-linked immunosorbent assay (ELISA) using commercially available kits (Chemikline). The markers’ concentrations were expressed in pg/mL. The concentration of all markers in the samples was calculated by comparison to the curve obtained with different concentrations of standards included in each kit. Tests were done twice for validation.

2.4. Statistical analysis

Parametric data were expressed as the mean ± SEM and were compared using Student’s t-test. Comparisons between baseline and end of treatment data from the treatment and control groups were made using Wilcoxon’s signed rank test (2-tailed). Correlations between different parameters were tested with Spearman’s rank test. In each case, P < 0.05 was considered significant.

3. Results

Initially, a total of 30 ambulatory patients with a medical history of clinical and radiological findings consistent with stable COPD were included in the study. During the follow-up period, 3 patients were excluded from the study for failure to take the medication consistently and 3 patients did not come to their last visit. One patient had an upper airway infection during this period and 1 patient had an appendectomy. Therefore, the results presented are an analysis of 22 subjects (81% men), with a mean age of 65.4 ± 10.1 years (Table 1). All of the patients continued on their preexisting therapies with 18 µg of tiotropium added once daily. The 1-month course of treatment with inhaled tiotropium was well tolerated, with no significant side effects except for minor oral dryness in 4 patients. All patients underwent EBC procedures without any complications.

After the treatment period, none of the markers changed significantly in EBC. A 4-week treatment with
Table 1. Demographic data of all patients.

<table>
<thead>
<tr>
<th>n</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number (male/female)</td>
<td>22 (18/4)</td>
<td></td>
</tr>
<tr>
<td>Age (years)</td>
<td>65.4 ± 10.1</td>
<td></td>
</tr>
<tr>
<td>Smoking history pack-years</td>
<td>45.58 ± 6.3</td>
<td></td>
</tr>
<tr>
<td>Spirometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FVC (mL)</td>
<td>2505 ± 151.7</td>
<td></td>
</tr>
<tr>
<td>FEV1 (mL)</td>
<td>1568 ± 150.48</td>
<td></td>
</tr>
<tr>
<td>Degree of COPD</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mild</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Moderate</td>
<td>16</td>
<td></td>
</tr>
</tbody>
</table>

Table 2. Influence of treatment on markers in exhaled breath condensate.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Before treatment</th>
<th>After treatment</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrotyrosine (pg/mL)</td>
<td>4.5 ± 2.3</td>
<td>3.5 ± 1.9</td>
<td>0.06</td>
</tr>
<tr>
<td>8-isoprostane (pg/mL)</td>
<td>7.3 ± 10.8</td>
<td>8.1 ± 11.7</td>
<td>0.28</td>
</tr>
<tr>
<td>IL-6 (pg/mL)</td>
<td>1.03 ± 1.1</td>
<td>0.77 ± 0.8</td>
<td>0.41</td>
</tr>
<tr>
<td>TNF-α (pg/mL)</td>
<td>27.8 ± 2.6</td>
<td>29.2 ± 5.7</td>
<td>0.36</td>
</tr>
</tbody>
</table>

IL-6: interleukin 6, TNF-α: tumor necrosis factor alpha.
One of the clinical trials that compared the antiinflammatory effects of salmeterol/fluticasone, tiotropium/fluticasone, and tiotropium alone in induced sputum showed that all treatment groups failed to reduce the numbers of total cells, neutrophils, and macrophages in induced sputum. Only 12 weeks of treatment with salmeterol/fluticasone caused a significant reduction in IL-8 and matrix metallopeptidase-9 compared with tiotropium alone. Thus, in this clinical trial, the authors also failed to show any antiinflammatory effect of tiotropium (18). Similarly, Powrie et al. (25) also found that there were no differences between the start and the end of a 1-year course of tiotropium in sputum, serum IL-6, and myeloperoxidase levels in 48 COPD patients in vivo. Surprisingly, they found that tiotropium therapy was associated with a significant increase in the concentration of sputum IL-8. They explained this by suggesting that sputum cytokine measurements might not be an optimal means of assessing airway inflammation. Although in our study we used EBC for assessing the effect of tiotropium, our results were similar with induced sputum.

Isoprostanes are a new class of lipids, isomers of the conventional enzymatically derived prostaglandins, which are produced in vivo primarily by a free radical-catalyzed peroxidation of polyunsaturated fatty acids (26,27). Increased concentrations of 8-isoprostane, hydrogen peroxide, nitrite, and 3-nitrotyrosine are found in EBC in inflammatory lung diseases. Vacca et al. (28) investigated the ability of tiotropium bromide to inhibit alveolar macrophage (AM)-mediated chemotaxis of neutrophils and release of ROS in 71 COPD patients. They showed that blocking muscarinic cholinergic receptors with tiotropium bromide decreases TNF-α mediated neutrophilic migration properties and ROS release of human AM but tiotropium bromide did not affect cellular IL-8, IL-6, LTB4, GM-CSF, or MIPalpha/SZ release in this study. Supernatant from AM stimulated with LPS-induced neutrophilic migration is reduced by tiotropium in a dose-dependent manner. In our study, a 4-week tiotropium therapy did not significantly decrease nitrotyrosine and 8-isoprostane levels in EBC. Thus, as tiotropium may act in a dose-dependent manner, we thought that higher concentrations of tiotropium might be needed for antiinflammatory and antioxidative effects in vivo. As we showed a positive effect of tiotropium on symptom scores, probably the standard dosage (18 µg daily) is enough for bronchodilation, but for in vivo conditions it may be not enough for an antiinflammatory and antioxidative effect. We also know that bronchial inflammation increases with the severity of the COPD, so including only mild and moderate COPD patients, with less oxidative stress and airway inflammation, may make the demonstration of the antiinflammatory effects of tiotropium more difficult.

Our study has certain limitations. Our patient number is relatively small, but this is because of our strict inclusion criteria. We tried to exclude all comorbid and confounding factors. We collected all our patients during summer in order to prevent seasonal variations. On the other hand, the strength of our study is that both subjective symptoms and objective lung functions with EBC were determined. We also tried to examine both inflammatory and oxidative stress markers.

In conclusion, although in vitro studies suggest that anticholinergics have the potential to control antiinflammatory processes in the lung, our study supports the previous clinical trials showing no improvement in the inflammatory markers in stable COPD patients using long-term inhaled anticholinergics in vivo. We think that further studies are needed to elucidate the different results between in vivo and in vitro studies for the antiinflammatory effects of tiotropium.

Acknowledgment
This study was supported by the Fatih University Project Office (P53010905_1).

References