Anti TNF-α therapy might be responsible for an increased incidence of varicocele in patients with ankylosing spondylitis

Ömer YILMAZ1, Yunus UGAN2, Mahmut YENER3, Mehmet UMUL4, Mustafa KAYAN3, Aykut Recep AKTAŞ1, Elif Nisa ÜNLÜ5, Bünyamin KISACIK5, Bumem DEĞİRMENCİ1, Meltem ÇETİN1

1 Department of Radiology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
2 Department of Rheumatology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
3 Department of Physical Therapy and Rehabilitation, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
4 Department of Urology, Faculty of Medicine, Süleyman Demirel University, Isparta, Turkey
5 Department of Rheumatology, Faculty of Medicine, Gaziantep University, Gaziantep, Turkey

Aim: To evaluate the effects of anti-tumor necrosis factor-alpha (TNF-α) therapy on the frequency of varicocele in patients with ankylosing spondylitis (AS) using color Doppler ultrasound.

Materials and methods: The patients were divided into 2 groups: patients with AS who were on anti-TNF-α treatment and patients with AS who were not regularly taking any antiinflammatory drugs. Thirty-one healthy volunteers were included as controls.

Results: Left-sided varicocele was determined in 14 patients of Group 1 (44%), 10 patients of Group 2 (33%), and 7 of the controls (23%). There was a statistically significant difference only between Group 1 and controls (P = 0.009). However, right-sided varicocele was determined in 12 patients of Group 1 (38%), 2 patients of Group 2 (6%), and 2 of the controls (6%) (P = 0.01 vs. Group 2, P = 0.005 vs. controls).

Conclusion: The present study shows that patients with AS who were taking anti-TNF-α therapy had an increased prevalence of right-sided and bilateral varicocele compared to patients with AS who were not taking any disease-modifying antirheumatic drugs and the healthy control group.

Key words: Varicocele, ankylosing spondylitis, color Doppler ultrasound

1. Introduction

Ankylosing spondylitis (AS) is a chronic systemic inflammatory disease that predominantly affects young men (1). A combination of genetic and immune factors is responsible for its pathogenesis; it often affects the axial skeleton, enthesis regions, and, occasionally, peripheral joints (2). AS may incorporate extraarticular manifestations including vascular involvement (1,3). The association of AS and vascular involvement is common, but the exact causes are not fully known (3).

On the other hand, it has recently been shown that there is a relationship between AS and the development of varicocele (4,5). Varicocele is defined as the abnormal dilatation and tortuosity of the pampiniform plexus veins. It mainly occurs on the left side and can be associated with infertility in men (6). Varicocele may be clinical or subclinical. Clinical varicocele can be detected and graded by physical examination (7). However, subclinical varicocele is not palpable and requires imaging techniques for diagnosis, especially color Doppler ultrasound (8,9). Color Doppler sonography is a much more reliable and reproducible technique and is currently considered as the gold standard for the diagnosis of varicocele (6,10). There are 2 types of varicocele. The primary type affects nearly one-sixth of the male population and its etiopathogenesis is unclear (11). The secondary form of varicocele emerges as a result of diseases that cause high pressure levels on the testicular vein, like constipation, hydronephrosis, neoplasms, and cirrhosis, or after abdominal operations (12).

Tumor necrosis factor-alpha (TNF-α) is initially synthesized by activated macrophages and T cells as a transmembrane precursor protein. TNF-α is important for macrophage and phagosome activation, differentiation of monocytes to macrophages, granuloma formation, and maintenance of granuloma integrity (13). Given the
crucial role of TNF-α in many autoinflammatory diseases, in order to prevent damaging the signaling pathways, a protein-based soluble receptor antagonist and monoclonal antibodies are used (14). TNF-α is a major cytokine that is strongly related to disease activity and to the severity of inflammation in patients with AS (3); therefore, TNF-α blocking agents have become commonly used drugs in the treatment of AS (15). However, the effects of anti-TNF-α treatment on AS-related vascular changes has been poorly studied (16,17), and previous results are controversial. Since AS is associated with an increased incidence of varicocele and vascular involvement, and TNF-α blocking agents are commonly used in patients with AS, we aim to evaluate the effects of anti-TNF-α therapy on the frequency of varicocele in patients with AS using color Doppler ultrasound.

2. Materials and methods
2.1. Study population
The study consisted of 63 adult male patients who met the modified New York criteria for AS (18). The patients with AS were divided into 2 groups: 1) patients with AS who were on anti-TNF-α treatment according to the Assessment in AS (ASAS) group guidelines (19,20) and 2) patients with AS who were not regularly taking any antiinflammatory drugs, including nonsteroid antinflammatory drugs. The patients that had a history of atherosclerotic diseases, such as coronary artery disease and cerebrovascular disease, or systemic diseases such as diabetes mellitus, hypertension, and renal failure, were excluded. Subjects receiving lipid-lowering drugs were also excluded. A comprehensive physical examination was applied by an expert rheumatologist, and all patients were appraised for disease characteristics. Clinical data on AS, such as disease duration and drug usage, were obtained from file records and patients’ medical histories. The same clinician evaluated the patients in terms of scrotal masses or pain, and the subjects were clinically categorized as having the presence or absence of varicocele. Thirty-one healthy male volunteers with no distinct symptoms or signs associated with genitourinary system disorders were included as the control group. The local ethics committee approved the study protocol, and all participants provided written informed consent.

2.2. Sonographic assessment
A color Doppler ultrasound scanner (Aplio 80; Toshiba, Tokyo, Japan) equipped with a 5- to 10-MHz linear transducer was used for sonographic examination. The diameters of the pampiniform plexus veins on the gray-scale imaging were measured. The patient was placed in a supine position, and all measurements were made both at rest and during the Valsalva maneuver (21). Varicocele was diagnosed based on standard sonographic criteria, including a pampiniform plexus vein diameter exceeding 2.5 mm at rest and a reversed flow duration of greater than 1 s during the Valsalva maneuver. For the same vessel, the measurements were obtained 3 times using the multiplanar scanning technique and then averaged. Sonographic examinations were performed by 2 sonographers who were experts on color Doppler ultrasound examination and were unaware of the patients’ clinical data. Intra- and interobserver agreement for the measurements was evaluated in all groups. Intra- and interobserver agreement rates for the pampiniform plexus vein measurements by the 2 examiners were 97% and 94.5%, respectively.

2.3. Statistical analyses
The analyses were performed using SPSS 15.0 for Windows (SPSS, Chicago, IL, USA). Categorical variables were expressed as number and percentage, and numeric data were expressed as mean ± SD. The groups were compared using the chi-square test regarding categorical variables. One-way ANOVA followed by Tukey’s test was used to compare continuous variables. A P-value of less than 0.05 was considered significant.

3. Results
Age, duration of AS, and varicocele status of the groups are presented in the Table. Age did not significantly differ among the groups (30.28 ± 7.15 years for Group 1, 28 ± 4.81 for Group 2, and 28.25 ± 3.59 for controls). The disease durations were similar between the 2 AS groups (79.6 ± 44.0 vs. 88.8 ± 34.7 months). Group 1 patients were receiving anti-TNF-α treatment for 6 to 48 months; however, there was no significant correlation between the duration of the anti-TNF-α therapy and the development of varicocele. In physical examinations, varicocele was detected in 13 patients of Group 1 (41%), 10 patients of Group 2 (33%), and 9 controls (29%); however, these differences were not statistically significant. In the color Doppler examination, left-sided varicocele was determined in 14 patients of Group 1 (44%), 10 patients of Group 2 (33%), and 7 controls (23%). There was only a statistically significant difference between Group 1 and the controls (P = 0.009; Figures 1 and 2). Right-sided varicocele was determined in 12 patients of Group 1 (38%), 2 patients of Group 2 (6%), and 2 controls (6%) (P = 0.01 vs. Group 2, P = 0.005 vs. controls). The diameters of both left and right pampiniform plexus veins did not significantly differ among the groups. Similarly, reversed flows during the Valsalva maneuver were similar among the groups.

312
In the present study, we found that patients with AS who were taking anti-TNF-α therapy had an increased prevalence of right-sided and bilateral varicocele compared to patients with AS who were not taking any disease-modifying antirheumatic drugs and to the healthy control group. The prevalence of left-sided varicocele was also significantly higher in patients with AS who were receiving anti-TNF-α therapy. The present research is a pilot study showing a possible association between anti-TNF-α therapy and the frequency of varicocele.

4. Discussion

In the present study, we found that patients with AS who were taking anti-TNF-α therapy had an increased prevalence of right-sided and bilateral varicocele compared to patients with AS who were not taking any disease-modifying antirheumatic drugs and to the healthy control group. The prevalence of left-sided varicocele was also significantly higher in patients with AS who were receiving anti-TNF-α therapy. The present research is a pilot study showing a possible association between anti-TNF-α therapy and the frequency of varicocele.

Varicocele is the most common reversible cause of infertility (22,23). Anatomical variations and valvular incompetence of testicular veins are the most common etiological factors, with left-sided dominance (24). The other etiological factors of varicocele are constipation, effects of physical activity, body stature, spinal cord injury, and rheumatologic disorders such as Behçet's disease and AS (5,21,25–28).

Recently, the prevalence of varicocele in patients with AS was reported to be as high as 57% and 40% (4,5). Although the relationship between AS and an

Table. Demographic characteristics and color Doppler findings of the groups.

<table>
<thead>
<tr>
<th>Characteristics</th>
<th>Group 1 (n = 32)</th>
<th>Group 2 (n = 31)</th>
<th>Controls (n = 31)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age, years</td>
<td>30.28 ± 7.15</td>
<td>28 ± 4.81</td>
<td>28.25 ± 3.59</td>
<td>NS</td>
</tr>
<tr>
<td>Varicocele in clinical examination</td>
<td>13/32 (40.6%)</td>
<td>10/31 (32.25%)</td>
<td>9/31 (29.03%)</td>
<td>NS</td>
</tr>
<tr>
<td>Color Doppler findings</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Right pampiniform plexus, rest, mm</td>
<td>1.83 ± 0.57</td>
<td>1.62 ± 0.32</td>
<td>1.68 ± 0.67</td>
<td>NS</td>
</tr>
<tr>
<td>Left pampiniform plexus, rest, mm</td>
<td>2.24 ± 0.61</td>
<td>2.04 ± 0.6</td>
<td>1.91 ± 0.71</td>
<td>NS</td>
</tr>
<tr>
<td>Right pampiniform plexus, Valsalva, mm</td>
<td>2.28 ± 0.56</td>
<td>1.95 ± 0.43</td>
<td>2.00 ± 0.82</td>
<td>NS</td>
</tr>
<tr>
<td>Left pampiniform plexus, Valsalva, mm</td>
<td>2.75 ± 0.68</td>
<td>2.42 ± 0.76</td>
<td>2.28 ± 0.9</td>
<td>NS</td>
</tr>
<tr>
<td>Right sided varicocele</td>
<td>12/32 (37.5%)</td>
<td>2/31 (6.45%)</td>
<td>2/31 (6.45%)</td>
<td>0.0051,2</td>
</tr>
<tr>
<td>Left sided varicocele</td>
<td>14/32 (43.75%)</td>
<td>10/31 (32.25%)</td>
<td>7/31 (22.5%)</td>
<td>0.0091</td>
</tr>
<tr>
<td>Bilateral varicocele</td>
<td>11/32 (34.37%)</td>
<td>2/31 (6.45%)</td>
<td>2/31 (6.45%)</td>
<td>0.011,2</td>
</tr>
</tbody>
</table>

Values are mean ± SD and number (percentage). NS indicates not significant (P > 0.05).
1Between group 1 and control groups.
2Between group 1 and group 2.
increased frequency of varicocele has been reported, the underlying mechanisms of this association have not been clarified. Several plausible mechanisms have been suggested regarding the increased prevalence of varicocele in patients with AS. The first is endothelial dysfunction. Previous studies clearly demonstrated that patients with AS have impaired endothelial function and subclinical atherosclerosis using carotid intima-media thickness, brachial flow mediated dilatation, and aortic pulse valve velocity. Microparticles, which are mainly released from platelets, leukocytes, and endothelial cells, play an important role in pathological processes of inflammation. Therefore, they are considered as a surrogate marker of endothelial dysfunction and vascular damage. It was shown that patients with AS who are treated with biological anti-TNF-α therapy have significantly reduced endothelial and platelet microparticles (29).

The second possible mechanism is mechanical overload. It is speculated that the presence of incompetent valves within the spermatic vein results in retrograde venous flow and is primarily responsible for the development of varicocele, which is negatively affected by the Valsalva maneuver (6). Patients with AS have weak low back muscles due to chronic low back pain. Therefore, it may be much more important for patients with AS to compensate for this weakness using the Valsalva maneuver during their daily living activities. Increased abdominal pressure leads to a mechanical overload to the testicular vessels and can facilitate the development of varicocele.

The third mechanism is increased oxidative stress. It was reported that there is an association between nitric oxide (NO) levels and frequency of varicocele (30). NO is a water-soluble and lipid-soluble free radical that plays an important role in the modulation of blood flow (31). Microcirculatory stagnation of blood was found to be associated with hypoxia in testes of men with varicocele (32). The increase in nitric oxide synthase (NOS) activity in varicocele seems to be a compensatory mechanism to reduce the effect of hypoxia by increasing testicular blood flow (33). Briefly, NO is a strong vasodilator, determining vasodilatation and contributing to blood stasis, resulting in the generation and progression of varicocele. Shiraishi et al. reported a strong correlation between nitrite concentration and the internal spermatic vein diameter (31). Ozgocmen et al. (4) reported that NO levels in the sera of individuals drawn from the dilated spermatic vein were nearly 2-fold higher than in the sera from the peripheral vein. The authors suggested that there was a high oxidative stress due to the release of NO synthase and xanthine oxidase within the dilated spermatic vein and that spermatozoa function might be adversely affected by the rise of the NO levels in the dilated spermatic vein (34).

In another study, Mitropoulos et al. (35) proposed that the formation of peroxynitrite from the reaction of NO with superoxide could be a causative factor for impaired sperm function in patients with varicocele.

TNF-α is involved in reducing vascular NO availability. This process might be a result of the activation of nicotinamide adenine dinucleotide phosphate (NAD[P]H) oxidase and inducible NOS (iNOS), or the inhibition of endothelial NOS (eNOS) activity, which causes the induction of reactive oxygen species (36). In addition, expression of phosphodiesterase type 5 has been shown to be upregulated by TNF-α, which may blunt the proerectile action of NO (37). Accordingly, it has been demonstrated that blockage of TNF-α activity by anti-TNF-α therapy may result in NO expression, which causes cavernosal smooth muscle relaxation (38). In this respect, it can be argued that anti-TNF-α therapy reduces endothelial relaxation. In the present study, we found that anti-TNF-α therapy was associated with increased frequency of varicocele in patients with AS. We believe that anti-TNF-α therapy induces endothelial eNOS activity, resulting in increased synthesis of NO. Consequently, increased levels of NO can augment dilatation of testicular veins and facilitate the development of varicocele in patients with AS.

In conclusion, the present study found that patients with AS who were receiving anti-TNF-α therapy had an increased prevalence of right-sided and bilateral varicocele as compared to patients with AS who were not taking any disease-modifying antirheumatic drugs and to the healthy control group. This pilot study shows a possible association between anti-TNF-α therapy and the frequency of varicocele. Further large prospective randomized studies are needed to determine the underlying mechanisms of the increased prevalence of varicocele and the possible association between anti-TNF-α therapy and the frequency of varicocele in patients with AS.

Several study limitations should be noted. The present study had a relatively small sample size. A larger number of subjects is needed to determine the mechanism of varicocele formation in patients with AS who are receiving anti-TNF-α therapy. Additionally, sperm analyses of patients were not done. A spermiogram could have shown a possible increased incidence of sperm abnormalities in patients with AS and varicocele who were receiving anti-TNF-α therapy.
References


