Pharmacotherapy In Cardiopulmonary Resuscitation (CPR)

Berrin GÜNAYDIN
Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara - Turkey

Received: June 30, 2005

Abstract: Cardiac arrest is defined as cessation of cardiac mechanical activity. Cardiopulmonary resuscitation (CPR) is an attempt to restore spontaneous circulation through several maneuvers and techniques. Although the two interventions, which are competent basic life support and prompt defibrillation, improve the survival rate, several adjuvant cardiac medication drugs are advocated to treat cardiac arrest during advanced cardiac life support. Since the introduction of modern CPR there have been many advances in the field of pharmacotherapy in CPR. Therefore, we aimed to summarise the cardiac medication drugs used for patients in ventricular fibrillation (VF) or pulseless ventricular tachycardia (VT) or non VF/VT in the practice of advanced cardiac life support. Towards achieving this aim, the effects and practical issues related to vasopressors, antiarrythmic agents and, others such as sodium bicarbonate, calcium, magnesium and atropine will be addressed in the scope of the recent updates in the literature.

Key Words: Advanced cardiac life support, Cardiopulmonary resuscitation (CPR), Drug therapy.

Introduction
Cardiac arrest is defined as cessation of cardiac mechanical activity. It is a clinical diagnosis, confirmed by unresponsiveness, absence of detectable pulse and apnea or agonal respirations. Cardiopulmonary resuscitation (CPR) is an attempt to restore spontaneous circulation through a broad range of maneuvers and techniques. Within 15 seconds of cardiac arrest, the patient loses consciousness, electroencephalogram becomes flat after 30 seconds, pupils dilate fully after 60 seconds and cerebral damage takes place within 90-300 seconds. Therefore, it is essential to act immediately as reversible damage can occur in a short time (1).

The range of activities and skills during Basic life support (BLS) has been expanded to include automated external defibrillators (AED) in addition to initial airway assessment, rescue breathing by small volumes of expired air ventilation and chest compressions. Uniform compression-ventilation ratio of 15:2 has been adopted for single as well as two rescues. AED have been made available to reduce time lapse in defibrillation. Defibrillators with biphasic current are also being used with several advantages. Standard manual chest compressions have been shown to be universally superior to alternative techniques (1-3).

In the present review pharmacotherapy in mainly two rhythm abnormalities such as VF/VT or nonVF/VT leading to cardiac arrest is addressed. Specific treatments for brady- and tachyarrhythmias are outside the scope of this article.

The reason for using vasoconstrictor agents in routine pharmacological efforts to increase coronary perfusion pressure is because of the insufficient release of endogenous vasoconstrictor caused by the neuroendocrine response to cardiac arrest. Vasopressors routinely used in CPR can be classified as adrenergic or nonadrenergic according to the mechanism of action (4).

Vasopressors
Vasopressor agents given during cardiac arrest aim to improve aortic diastolic pressure. Consequently, increases in coronary and cerebral perfusion pressures enhance both myocardial and cerebral blood flow and improve survival (4,5).
Adrenergic agonists

Adrenaline (epinephrine) is routinely used to enhance cerebral and myocardial blood flow by preventing arterial collapse and by augmenting aortic diastolic pressure through alpha 1 and 2 receptors. Its alpha adrenergic receptor stimulating properties improves coronary perfusion pressure, while its potentially harmful beta adrenergic effects primarily beta 1 actions (inotropic and chronotropic) result in increases in myocardial oxygen consumption, in the incidence of ventricular arrhythmias, and intrapulmonary shunting due to reduced hypoxic pulmonary vasoconstriction. Accordingly adrenaline increases myocardial lactate concentration and decreases myocardial ATP content. Although beta 2 actions are predominantly bronchodilatory, its stimulation in the myocardium further increases oxygen consumption during CPR and the severity of myocardial ischemic injury after successful CPR.

Adrenaline has not been shown to improve outcome (Class indeterminate), although it is one of the mainly used vasopressors in the practice of advanced cardiac life support (ACLS). Standard optimal dose recommendation for intravenous adrenaline is 1 mg (10 ml of a 1 in 1000 solution) every 3-5 minutes according to ACLS guidelines. However, in the majority of cases adrenaline did not appear to be administered according to current ACLS guidelines. The median interval between adrenaline doses during CPR was 6.5 min. Additionally, adrenaline is believed to stiffen the major vessels leading away from the heart, thus adding to the transmission of the raised intrathoracic pressure and the forward flow of the blood, which is known as the chest pump theory. If venous cannulation has not

<table>
<thead>
<tr>
<th>Drug</th>
<th>Indication</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adrenaline</td>
<td>Alternative to adrenaline in VF/pulseless VT refractory to three initial shocks</td>
<td>Indeterminate</td>
</tr>
<tr>
<td>Vasopressin</td>
<td>Following adrenaline as early as after the third shock provided in the treatment of shock refractory VF/pulseless VT</td>
<td>Iib</td>
</tr>
<tr>
<td>Amidarone</td>
<td>Alternative if amiodarone is unavailable</td>
<td>Iib</td>
</tr>
<tr>
<td>Lidocaine</td>
<td>Alternative if amiodarone is unavailable</td>
<td>Iib</td>
</tr>
<tr>
<td>Procaainamid</td>
<td>Refractory VF if suspicion of hypomagnesemia</td>
<td>Iib</td>
</tr>
<tr>
<td>Sodium bicarbonate</td>
<td>If known preexisting hyperkalemia</td>
<td>I</td>
</tr>
<tr>
<td>Calcium</td>
<td>Routine use</td>
<td>III</td>
</tr>
</tbody>
</table>
Ventricular Fibrillation/Ventricular Tachycardia (VF/VT)

- Precordial thump if witnessed/monitored arrest
- BLS until defibrillator monitor attachment
- Defibrillation X 3
 - 200 J, 200 J, 360 J
- Evaluate rhythm:

Refractory VF/VT

- Continue CPR 1 min
- Intubation and IV access
- Adrenaline 1 mg IV or 3 mg ET
 - repeat every 3-5 min or
- Vasopressin 40 IU IV single bolus dose
- Defibrillation 360 J

Pulseless Electrical Activity (PEA)

Any pulseless rhythm

- Continue CPR 3 min
- Intubation and IV access
- Adrenaline 1 mg IV or 3 mg ET
 - repeat every 3-5 min
- Atropine 3 mg IV or 6 mg ET
 - HR < 60 beat/min

Asystole

- Confirm asystole in at least 2 derivations
- Continue CPR 3 min
- Intubation and IV access
- Consider transcutaneous pace
- Adrenaline 1 mg IV or 3 mg ET
 - (Repeat every 3-5 min)
- Atropine 3 mg IV or 6 mg ET
 - (Complete vagolysis)

ET: Endotracheal

The 4H:
1. Hypoxia
2. Hypovolemia
3. Hyper/hypokalemia, hypocalcemia and acidemia
4. Hypothermia

The 4T:
1. Tension pneumothorax
2. Cardiac tamponade
3. Thromboembolic or mechanical obstruction (e.g., pulmonary embolism)
4. Toxic or therapeutic substances in overdose

Figure. Algorithm of advanced cardiac life support including ventricular fibrillation/ventricular tachycardia (VF/VT), refractory VF/VT, pulseless electrical activity (PEA) and asystole.
been achieved immediately, then adrenaline 2-3 mg diluted in 10 ml normal saline (0.9%) may be administered via the endotracheal (ET) route and followed by five ventilations to aid spread throughout the lungs (6).

Since each drug used in pediatric resuscitation has a different dosage in mg/kg weight and a different presentation in ml/kg in the ampule, a common dose of 0.1 ml/kg body weight has been established in order to simplify drug use in emergency so that all the new ampules contain the same dose (8). In children, adrenaline can be given at a dose of 10 µg/kg or 0.1 ml/kg 1 in 10000 solution (1).

Dose dependent improvement in regional myocardial and cerebral blood flow has been recorded in various studies but no improvement in hospital discharge and survival has been seen (1,6). High doses up to 0.2 mg/kg adrenaline may further enhance coronary perfusion pressure, but does not seem to improve long-term survival after out of hospital or in hospital cardiac arrest (4). On the other hand a higher dose of 0.01 to 0.1 mg/kg improved the resuscitation rate from 40% to 90% (5). Comparison of standard and high doses of adrenaline did not show statistically significant improvement. In addition to the detrimental effects of beta 1 and alpha 1 actions of adrenaline, it induces disproportionate increases in systolic pressures of the pulmonary artery, pulmonary capillary, and pulmonary venous pressure. Excessive increases in pulmonary capillary filtration pressure may precipitate pulmonary edema (5).

Alpha-2 adrenergic agonist

Stimulation of postsynaptic alpha-2 adrenergic receptors increases endothelial nitric oxide production which counterbalances coronary vasoconstriction induced by alpha-2 adrenergic stimulation. Stimulation of presynaptic alpha-2 adrenergic receptors inhibits the release of endogenous catecholamine, which is beneficial because of the greater levels of endogenous catecholamines during CPR (5). There are three subtypes of alpha-2 receptors. Central vasodilator effects are mediated by 2A and 2C, peripheral vasoconstrictor effects are mediated by 2B(5).

It has been reported that a selective alpha-2 adrenergic agonist alpha-methyl norepinephrine without central negative inotropic and chronotropic effects is as effective in restorating spontaneous circulation after untreated VF for CPR and demonstrates less postresuscitation myocardial injury in animal studies (9).
despite its high circulating levels. On the other hand in shock states, its vasopressor action is greatly enhanced. Vasopressin acts via specific renal (V-2), and vascular (V-1) receptors. It produces vasoconstriction in non vital circulations like skin, skeletal muscle, and small bowel, thereby diverting the blood to the brain, heart, and kidneys. The vasopressin analogue desmopressin is mainly a V-2 agonist but has 0.4% of the pressor activity of arginine vasopressin. Plasma half life of vasopressin is 24 min and two thirds of it is metabolized by the kidneys (5).

According to the current CPR guidelines, use of vasopressin as an alternative to adrenaline for shock refractory ventricular fibrillation is recommended as a Class IIb (Table 1, 2) (10). Use of vasopressin in patients with asystole or pulseless electrical activity (PEA) or in infants and children is recommended as Class indeterminate (5). It is not established whether a second dose of vasopressin is required or not (1).

Since vasopressin is one of the most important endogenously released stress hormones during shock, vasopressin and its analogs may also be useful to treat septic and catecholamine-resistant shock and reduce bleeding and mortality associated with esophageal variceal hemorrhage (11,12).

It has been reported that vasopressin and adrenaline were equally effective in CPR in the rat asphyxia model in the short period (13). In addition to this study, it has been shown that the triple drug therapy combination of adrenaline, vasopressin and nitroglycerine significantly improved both left ventricular, and cerebral perfusion during CPR compared with adrenaline alone (14). In another study repeated administration of combination of vasopressin and adrenaline ensured long term survival with full neurologic recovery in the prolonged CPR model of pigs (15). It has been reported that spontaneous circulation immediately returned following a single dose (40 IU) of vasopressin in refractory cardiocirculatory arrest to 2 mg iv adrenaline in a 19 year old female with prolonged hypothermia after near drowning (16). This case report showed that vasopressin could be beneficial in restoring spontaneous circulation even during hypothermic CPR prior to rewarming, in contrast to the CPR guidelines of European Resuscitation Council not to administer vasopressors to support coronary perfusion pressure during hypothermic CPR (17).

Angiotensine II (AT-II)

Angiotensin II is approximately 40 times more potent than norepinephrine. It increases peripheral vascular resistance via direct and indirect vasoconstrictor effects on precapillary arterioles and postcapillary venules. Vasoconstriction is induced by activation of AT-1 receptors on vascular smooth muscle cells. AT-II causes release of endogenous catecholamines from the adrenal medulla leads to peripheral vasoconstriction. Intravenous injection of angiotensin II during CPR further increases already increased serum concentrations of endogenous adrenaline and noradrenaline (5).

Endothelin-1

Endothelin-1 carries potent nonadrenergically mediated vasoconstrictor properties by increasing calcium concentration within vascular smooth muscle cells via a nonadrenergic pathway. It is hemodynamically more advantageous than adrenaline because of lacking beta adrenergic effects. The peripheral effects of endothelin improve coronary perfusion pressure and cerebral blood flow. Endothelin-1 levels are either normal or elevated in human survivors of cardiac arrest during CPR. Long half life of endothelin could result in a worsened postresuscitation outcome. Therefore, the vasoconstrictor effect of endothelin-1 should be further investigated in setting of cardiac arrest (5).

Antiarrythmic agents

The use of antiarrythmic drugs has been recommended to aid electrical defibrillation, to prevent the reoccurrence of ventricular fibrillation and to terminate serious electrical arrhythmias (6). Antiarrythmic drugs should increase the likelihood of successful defibrillation by suppressing a variety of potentially malignant arrhythmias (5).

Amiodarone

Amiodarone should be considered as a Class IIb, following adrenaline, to treat shock refractory VF/VT as early as after three shocks are provided (3). Amiodarone improves survival to hospital admission but not to hospital discharge because of the side effects such as hypotension and bradycardia (5).
Amiodarone does prevent ventricular arrhythmias and animal studies demonstrated that it could reduce the defibrillation threshold (6). In an experimental model of persistant VF, animals receiving amiodarone alone had significantly lower resuscitation generated aortic (systolic and diastolic), right atrial systolic and coronary perfusion pressures than did either adrenaline alone or the combination of amiodarone and adrenaline. This study suggested that for optimal hemodynamic support during ongoing CPR adrenaline or other vasoconstrictive agents should be given in combination with, or precede, the administration of amiodarone (18).

Amiodarone has many different hemodynamic effects. It blocks potassium channels leading to prolongation in the duration of the action potential. It also causes block in sodium and calcium channels and alpha and beta adrenergic receptors. As a result of its direct effect on smooth muscle, and its ability to block calcium channels and alpha adrenergic receptors, amiodarone dilates coronary arteries. It also dilates peripheral arteries leading to vasodilatation and reduction in afterload and systemic blood pressure. Hypotension complicates its use particularly in the setting of a rapid infusion. Therefore, amiodarone is effective in treating most ventricular and supraventricular tachyarrhythmias (5).

The recommended dose of amiodarone is 300 mg diluted in 20 ml 5% dextrose as an iv bolus via a peripheral vein when there is no central venous route (3). It should be given after the third shock without allowing delay in the delivery of the fourth shock (5). A further dose of 150 mg amiodarone may be required in refractory cases followed by an infusion of 1 mg min⁻¹ for 6 h and then 0.5 mg/min to a maximum of 2 g in 24 h. However, according to European datasheet maximum dose of amiodarone is 1.2 g in 24 h (3).

It has been reported that dogs receiving amiodarone alone had significantly lower resuscitation generated aortic systolic and diastolic and right atrial systolic and coronary perfusion pressures than did either adrenaline alone or the combination of amiodarone and adrenaline in the persistent VF model (18).

Lidocaine

Lidocaine is a second choice after amiodarone and procainamid. It is acceptable for use in pVT after defibrillation, hemodynamically unstable ventricular premature contractions and hemodynamically stable VT (1). Its clinical efficacy in refractory VF led to an indeterminate Class (4). It has been used to treat resistant VF if amidoarone is not available (3). However, studies have shown that lidocaine offers no improvement in survival from VF. It may actually raise the defibrillation threshold and prevent the recurrence of VF after successful defibrillation (6).

The recommended dose is 1-1.5 mg/kg iv bolus and is repeated in the dose of 0.5-0.75 mg/kg not exceeding 3 mg/kg/h. Continuous infusion of 1-4 mg/min is started only if spontaneous circulation returns during CPR (1).

Procainamide

It is an other alternative to amiodarone but the necessity for relatively slow rate of infusion (30 mg min⁻¹ to a total of 17 mg/kg) makes it a less favorable option (3).

Magnesium

The antiarrhythmic action of magnesium is mediated by the activation of membrane sodium-potassium adenosine triphosphatase and blocking of slow calcium channels (4). Magnesium is universally accepted for the therapy of torsades de pointes (15). 1-2 g (4-8 mmol) of magnesium sulphate diluted in 100 ml of 5% dextrose is recommended to be given over 30-60 min followed by an infusion of 0.5 -1 g/h (1). Its use is recommended for shock refractory VF when hypomagnesemia is suspected e.g patients on potassium losing diuretics, because magnesium mirrors the action of extracellular potassium in stabilizing myocardial cell membrane (1,3,4).

Others

Atropine

Atropine enhances automacticity and conduction of both sinoatrial and atrioventricular node. It is most effective in hemodynamically significant bradycardia due to vagal stimulation (1). The recommended dose in PEA associated with bradycardia (<60 beat/min) and asystole is 3 mg iv and 6 mg ET (1, 3). For the treatment of sinus bradycardia, 0.5 mg (approximately 10 µg kg⁻¹) iv should be given and repeated if required up to a total dose of 40 µg kg⁻¹ (1).
Calcium

Despite the fact that extracellular calcium enhances the contractile force of cardiac muscle, there is no evidence to indicate that calcium administration during CPR improves cardiac performance. In fact, ischemia promotes intracellular calcium accumulation, leading to membrane disruption and uncoupling of oxidative phosphorylation (10). Because of the risk of calcium accumulation and subsequent cell injury during periods of tissue ischemia, it is indicated when the patient exhibits acute calcium channel blocker toxicity or if there is evidence of ionized hypocalcemia or hyperkalemia. The recommended dose of calcium gluconate is 0.5 ml kg⁻¹ (maximum 20 ml) of a 10% solution of calcium chloride in a dose of 0.2 ml kg⁻¹ (maximum 10 ml) (1).

Sodium bicarbonate (NaHCO₃)

Bicarbonate therapy should be considered only after the confirmed interventions such as defibrillation, cardiac compression, intubation, ventilation and vasopressor therapy have been ineffective (1). The bicarbonate administration is shown in Table 2. The bicarbonate therapy should be guided by determining the bicarbonate concentration or calculating the base deficit obtained from arterial blood gas analysis (1).

Conclusion

Survival following cardiac arrest mostly depends on the interval between collapse to initiation of CPR and collapse to defibrillation. Although no drug has been reliably proven to increase survival to hospital discharge after cardiac arrest, basic cardiac medication drugs used during ACLS were reviewed. For example, vasopressin has been recommended in case of fibrillatory arrest, the use of lidocaine in refractory ventricular fibrillation remains contentious, whereas amiodarone is recommended after defibrillation and adrenaline. Lidocaine and procainamide are alternatives if amiodarone is not available. Amiodarone may improve short term survival after out-of-hospital ventricular fibrillation cardiac arrest. Magnesium therapy is recommended especially for torsades de pointes and shock resistant ventricular fibrillation associated with hypomagnesemia. Atropine is the drug of choice in PEA associated with bradycardia and asystole. Sodium bicarbonate and calcium indications are restricted. It is still difficult to say whether drugs used during ACLS are really effective unless further prospective randomized human studies are completed.

Corresponding author:
Berrin GÜNAYDIN
Department of Anesthesiology and Reanimation, Faculty of Medicine, Gazi University, Ankara - TURKEY
e-posta: gunaydin@gazi.edu.tr

References

