Neuroendocrine differentiation can be found in benign or malignant lesions of various organ systems. In 1947, Vogler indicated the existence of neuroendocrine cells in mammary tissue (1). Recent studies have reported the incidence of neuroendocrine differentiation in breast carcinomas as being between 3% and 21% (2). The existence of neuroendocrine differentiation was also shown in male breast carcinomas (3). Neuroendocrine differentiation detected in breast carcinomas shows morphological similarities to carcinomas of the gastrointestinal system, lung, and other non-endocrine organs with endocrine differentiation and carcinoid tumours. In order to verify the existence of these cells, in addition to morphological examination, histochemical and immunohistochemical staining is used. The presence of argyrophilic and electron-dense granules is usually sufficient (4,5). For immunohistochemical staining, Neuron Specific Enolase (NSE) and Chromogranin A are frequently used (6-9). Rarely, hormone production of the tumor is also present, the most common hormones being: ACTH, leucocerephalin, gastrin, pancreatic polypeptide, bombesin, serotonin, HCG, prolactin, vasointestinal polypeptide (VIP), and luteinizing hormone releasing factor (5,10,11,12).

In this study, two cases of breast carcinoma showing neuroendocrine differentiation and ectopic hormone production are presented together with their histochemical and immunostaining properties.

Case Reports

Case 1 (Case A): A sixty-seven-year-old patient was admitted to a medical center complaining of a mass in her right breast. After a biopsy, “invasive lobular carcinoma” was diagnosed and her mastectomized tissue was sent to the pathology department for consultation and the determination of prognostic factors. An examination of her organ systems did not reveal any pathological findings.

Macroscopic findings: Tumors were found in two foci on the examination of thin sections of the mastectomized tissue. The tumor tissues were hard in consistency, and gray-white in color. One of them was under the areola, and the other was in the lower medial quadrant. Their diameters were 2.7 and 3cm respectively. Two lymph nodes in the central axilla and one node in the midaxilla were found to be involved by macroscopy.

Microscopic findings: Paraffin slides were prepared from the tumor foci, from all quadrants, and the lymph nodes were evaluated by light microscopy. The tumor was made up of tubular and organoid structures consisting of atypical cells with oval and round hyperchromatic nuclei. Grimelius staining revealed argyrophilic granules in the tumor cells. Immunohistochemically, chromogranin A, NSE and S-100 were found to be positive (Fig.2). Since it has been reported that estrogen, progesteron, ACTH, HCG and prolactin can also be positive in these tumors, related stains were applied immunohistochemically. The
results for these stains and other immunohistochemical stains used as determining prognostic factors are given in Table 1. This patient had two metastatic lymph nodes dissected from the central axilla.

Case 2 (Case B): A sixty-seven year-old patient (C.T.) was admitted to the outpatient clinics of the General Surgery Department of our medical school after she noticed a mass in her right breast. The mass, which was localized in the upper lateral quadrant of the right breast, was excised. The patient had been treated for essential hypertension for 30 years. There were no other pathological findings in her organ systems.

Macroscopic findings: The dimensions of the material sent to the pathology department were 3x2.5x1.2 cm. It was covered with mature fat tissue. When dissected, a tumoral mass of gray-white color, hard in consistency, with irregular borders, and 1.5 cm in diameter was found. All of the tissue was examined.

Macroscopic findings: It was noted that the structures of mammary tissue observed in mature fat tissue disappeared in large areas and transformed into tumor tissue. The tumor was made up of organoid structures consisting of atypical cells with oval, round, and hyperchromatic nuclei, and narrow cytoplasm, showing rare mitosis. In order to check for the existence of argyrophilic granules, Grimelius stain was applied histochemically and it was found to be positive in wide areas or most areas. The results of S-100, NSE, chromogranin A and ACTH, prolactin, HCG estrogen, and progesteron and other immunohistochemical staining applied are shown in Table 2 (Figures 3 and 4).

Both cases were diagnosed as breast carcinomas showing neuroendocrine differentiation according to the results of histochemical and immunohistochemical staining and histopathologic findings obtained by light microscopy. Fifty-micron-thick slices prepared from

<table>
<thead>
<tr>
<th>Table 1.</th>
<th>The results of immunohistochemical stains of A case.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>HCG</td>
</tr>
<tr>
<td>% of the fields</td>
<td>+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 2.</th>
<th>The results of immunohistochemical stains of B case.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ACTH</td>
<td>HCG</td>
</tr>
<tr>
<td>% of the fields</td>
<td>-</td>
</tr>
</tbody>
</table>
paraffin blocks of the specimens were digested with 0.5% pepsin after being treated in xylene and alcohol. The nuclei were washed by PBS and stained with propidium iodide. The DNA content was measured by an ICS-22 flow cytometry instrument. It was found that the cells of Case 1 were in the diploid cycle (Fig.5), whereas 83.8% of the cells of Case 2 were in the diploid cycle and 16.2% were in the aneuploid cycle (Fig.6). The S phases of Case 1 and Case 2 were found to be 6.1% and 13.2% respectively.

We observed that Case A, whose tumor was multifocal and had a diameter of 3 cm, showed positive reactions to p53, Cat-D, and PCNA stains. She had metastases in two lymph nodes. Macroscopically, in Case B, whose tumor was 1.5 cm in diameter, p53 was negative, PCNA was one positive (+) in 5% of the areas; Cat-D, c-erbB2, and UEA-1 lectin were significantly positive. DNA analyses of these patients revealed that the cells of Case A were diploid, while the cells of Case B were 83.8% diploid and 16.2% aneuploid.

Discussion

Breast carcinomas containing neuroendocrine cells used to be known as argyrophilic breast carcinomas or breast carcinoid tumors, but are now classified as “breast carcinomas with neuroendocrine differentiation” (2,13).

The incidence of neuroendocrine differentiation in breast carcinomas is between 3 and 21% (2,4,13,14), and the existence of neuroendocrine cells in ductal and...
lobular carcinomas has also been reported (2,4,5,13,14). One study suggested that there are no neuroendocrine cells in normal breast tissue (5,15); however, in another study, a small number of neuroendocrine cells were determined in normal breast ducts (16).

Breast carcinomas showing neuroendocrine differentiation are histopathologically similar to the carcinoid tumors of the digestive and respiratory tracts. However, they are morphologically and clinically different from the classical carcinoid tumors of other systems (5,17). Grimelius staining is specific and shows argyrophilic granules to prove the existence of neuroendocrine cells in these tumors (14). The immunohistochemical reactivity of NSE is a useful indicator (6). However, in some normal breast tissues, myoepithelial cells show a weak positive reaction with NSE. Therefore, positivity determined with NSE should be supported by other findings (6). Fifty to eighty-six percent of breast carcinomas showing neuroendocrine differentiation exhibit chromogranin A positivity immunohistochemically (12,18).

Histopathological examination of both of our patients made us consider the presence of neuroendocrine differentiation because of the existence of solid and tubular structures of groups of uniform cells with oval and round hyperchromatic nuclei, and narrow cytoplasm, showing rare mitosis. Neuroendocrine granules were observed by means of the histochemical stain of Grimelius. Immunohistochemically applied NSE demonstrated two and three positive staining concentrations in 80% of areas in both patients. Chromogranin A was found to be two positive in 70% of areas in Case A and one positive in 20% of areas in Case B. The prognostic parameters p53, Cat-D, PCNA, c-erbB2 and UEA-1 lectin were applied to both cases. It was reported that Case A had been mastectomized at another hospital and she did not have any lymph node metastases. The synthesis phases in both cases were found to be low: in Case A, S%, 6.1; in Case B, S%, 13.2. In a previous study, it was reported that in NSE positive grade 1 neuroendocrine tumors there was aneuploidy, whereas in the NSE negative group there was diploidy (19).

In rare cases of tumors showing neuroendocrine differentiation, hormone production occurs (8,11). Estrogen, ACTH, epinephrin, gastrin, prolactin, luteinizing hormone and HCG are the hormones which can be determined. Estrogen and progesteron were investigated immunohistochemically. It was found that, in A there was ACTH and prolactin, while in B there was progesteron in addition to estrogen and HCG, which were determined in both cases. In these cases no clinical findings were observed which were in accordance with what has been reported in the literature as a result of hormone production (7). There was no evidence of recurrence postoperatively (24 months for Case A and 29 months for Case B).

These two cases, which exhibited neuroendocrine differentiation in the tumors and ectopic hormone production, were presented together with histochemical and immunohistochemical findings and the results of flow cytometry because of their rarity.

References

