ON THE DIFFERENTIAL PRIME RADICAL OF A
DIFFERENTIAL RING

D. Khadjiev & F. Çalışalp

Abstract

In this paper we have obtained the following results for a differential ring (associative or nonassociative):

1. For a differential ring (\(D \)-ring) we introduce definitions of a \(D \)-prime \(D \)-ideal, \(D \)-semiprime \(D \)-ideal and a strongly \(D \)-nilpotent element. We define the \(D \)-prime radical as the intersection of all \(D \)-prime \(D \)-ideals. For any \(D \)-ring the \(D \)-prime radical, the intersection of all \(D \)-semiprime \(D \)-semiprime \(D \)-ideals and the set of all strongly \(D \)-nilpotent elements are equal.

2. For a \(D \)-ring we introduce a definition of an s-nilpotent \(D \)-ideal. If a \(D \)-ring satisfies the ascending chain condition for \(D \)-ideals then its \(D \)-prime radical is s-nilpotent.

3. Let \(Q \) be a field of rational numbers. If \(\delta \) is a differentiation of a \(Q \)-algebra \(R \) with 1 then \(\delta(Pr.rad(R)) \subseteq Pr.rad(R) \).

4. Let \(K \) be a differential ring. Then every radical \(D \)-ideal of \(K \) is an intersection of \(D \)-prime \(D \)-ideals.

1. The differential prime radical

This paper is a continuation of our papers [1-3]. Further, we use notions and notations of books [4-6].

* Supported by a grant from the TÜBİTAK-NATO CP-B Program.
Definition ([7], p.556). A differential ring (D-ring) is a system (K, \mathcal{D}), where K is a ring (associative or nonassociative) and \mathcal{D} is a set of differentiations of K. A \mathcal{D}-subgroup H is an additive subgroup of the ring K such that $dh \in H$ for all $h \in H, d \in \mathcal{D}$.

Let K be a \mathcal{D}-ring. Denote by $\text{Ad}(K)$ the set of all \mathcal{D}-subgroups of K. $\text{Ad}(K)$ is a complete lattice with respect to the inclusion relation. Introduce a multiplication operation on it by the following manner ([5], p.12): For $A, B \in \text{Ad}(K)$, $A \cdot B$ consists of all finite sums $\sum_{i=1}^{n} a_i b_i$, where $a_i \in A, b_i \in B$.

Definition ([7], p.556). A differential ideal (D-ideal) of K is an ideal H of K such that $dh \in H$ for all $h \in H, d \in \mathcal{D}$.

Denote by $\text{Id}(K)$ the set of all \mathcal{D}-ideals of K. $\text{Id}(K)$ is a complete lattice with respect to the inclusion relation. If K is associative then $A \cdot B \in \text{Id}(K)$ for all $A, B \in \text{Id}(K)$.

But there is nonassociative \mathcal{D}-ring K and $A, B \in \text{Id}(K)$ such that $A \cdot B \notin \text{Id}(K)$.

Therefore for any \mathcal{D}-ring we define a multiplication operation of \mathcal{D}-ideals in the following manner. For $A, B \in \text{Id}(K)$ denote by $A \cdot B$ the intersection of all \mathcal{D}-ideals of K containing the set $\{x \in K : x = a \cdot b, a \in A, b \in B\}$.

Proposition 1.1. For any \mathcal{D}-ring K the lattice $\text{Id}(K)$ with above multiplication operation is a complete l-groupoid.

Proof. Let $A, B_t \in \text{Id}(K), t \in T$. The inequality

$$A \cdot (\vee_{t \in T} B_t) \geq \vee_{t \in T} (A \cdot B_t)$$

is obvious. We now prove the inverse inequality. The \mathcal{D}-ideal $A \cdot (\vee_{t \in T} B_t)$ is the smallest \mathcal{D}-ideal containing all elements $a \cdot (b_1 + b_2 + \ldots + b_k)$, where $a \in A$, $b_i \in B_t$. From the equality $a \cdot (b_1 + b_2 + \ldots + b_k) = ab_1 + \ldots + ab_k$ we obtain that $a \cdot (b_1 + b_2 + \ldots + b_k) \in \vee_{t \in T}(A \cdot B_t)$. Therefore

$$A \cdot (\vee_{t \in T} B_t) \leq \vee_{t \in T} (A \cdot B_t).$$

A proof of the equality
\((\forall t \in T B_t) \cdot A = \forall t \in T (B_t \cdot A)\)

is similar. \(\Box\)

Definition A \(D\)-ideal \(P\) of \(K\) is \(D\)-prime if \(P \neq K\) and \(A \cdot B \subseteq P\), \(A, B \in Id(K)\), implies that \(A \subseteq P\) or \(B \subseteq P\).

For \(A \in Id(K)\), \(A \neq K\), denote by \(R(A)\) the intersection of all \(D\)-semiprime \(D\)-ideals of \(K\) containing \(A\). Put \(r^*(A) = K\) if there are none.

For \(A \in Id(K)\), denote by \(< A >\) the groupoid generated by \(A\). An element of the groupoid \(< A >\) will be denoted by \(f(A)\).

Definition A \(D\)-ideal \(H\) of \(K\) is \(D\)-semiprime if \(H \neq K\) and \(f(A) \subseteq H\), \(A \in Id(K)\), \(f(A) \in < A >\), implies that \(A \subseteq H\).

For \(A \in Id(K)\), \(A \neq K\), denote by \(r^w(A)\) the intersection of all \(D\)-semiprime \(D\)-ideals of \(K\) containing \(A\). Put \(r^w(A) = K\) if there are none. It is clear \(r^*(A) \subseteq r^w(A) \subseteq R(A)\) for all \(A \in Id(K)\).

For \(A \in Id(K)\) the \(D\)-ideal \(R(A)\) will be called \(D\)-radical of \(A\).

Definition A \(D\)-ideal \(M\) of \(K\) is \(D\)-maximal if \(M \neq K\) and \(M \subseteq B \subseteq K\), \(B \in Id(K)\), implies that \(M = B\) or \(B = K\).

Proposition 1.2 Let \(K\) be a \(D\)-ring satisfying the ascending chain condition for \(D\)-ideal. Then every \(D\)-ideal of \(K\) is contained in some \(D\)-maximal \(D\)-ideal. In particular, there is a \(D\)-maximal \(D\)-ideal of \(K\).

A proof is standard.

Proposition 1.3. Let \(K\) be a \(D\)-ring such that \(K^2 = K\). Then any \(D\)-maximal \(D\)-ideal \(K\) is \(D\)-prime.

Proof. Let \(M\) be \(D\)-maximal \(D\)-ideal of \(K\). Suppore that \(A \cdot B \subseteq M\), \(A, B \in Id(K)\). If \(A \nsubseteq M\), then \(A \vee M = K\). Therefore
\[K \cdot K = (A \cup M) \cdot (B \cup M) = A \cdot B \cup A \cdot M \cup M \cdot B \cup M \cdot M \subseteq M \subseteq K. \]

We obtain \(M = K \). This is a contradiction. \(\square \)

Remark The condition of Proposition 1.3 fulfills for \(\mathcal{D} \)-rings with 1.

Proposition 1.4 Let \(K \) be a \(\mathcal{D} \)-ring satisfying the ascending chain condition for \(\mathcal{D} \)-ideals. Then the following conditions are equivalent:

1. \(K^2 = K \);
2. Every \(\mathcal{D} \)-maximal \(\mathcal{D} \)-ideal of \(K \) is \(\mathcal{D} \)-prime.

Proof. (1) \(\Rightarrow \) (2) follows from Proposition 1.3.

(1) \(\Rightarrow \) (2): Assume that \(K^2 \neq K \). By Proposition 1.2 there exists a \(\mathcal{D} \)-maximal \(M \) of \(K \) such that \(K^2 \subseteq M \). It is contradiction since \(M \) is \(\mathcal{D} \)-prime. \(\square \)

For an element \(a \in K \) denote by \([a] \) the smallest \(\mathcal{D} \)-ideal containing \(a \).

Every sequence \(\{x_0, x_1, \ldots, x_n, \ldots\} \), where \(x_0, x_{n+1} \in [x_n]^2 \), will be called a \(\mathcal{D} \)-sequence of the element \(a \).

Definition An element \(a \in K \) is strongly \(\mathcal{D} \)-nilpotent if every its \(\mathcal{D} \)-sequence is ultimately zero.

Remark This definition is a generalization of differential rings of the similar definition in ([5], p.55; [1], p.574).

Denote by \(n(0) \) the set of all strongly \(\mathcal{D} \)-nilpotent elements of \(K \), where \(0 \) is zero ideal of \(K \).

Theorem 1.5 For any \(\mathcal{D} \)-ring \(K \) the equalities \(n(0) = r^*(0) = r^w(0) = R(0) \) hold.

Proof. First we prove that \(n(0) \subseteq r^*(0) \). If there are no \(\mathcal{D}_s \)-semiprime \(\mathcal{D} \)-ideals then \(r^*(0) = K \). Hence \(n(0) \subseteq r^*(0) \). Assume that there is a \(\mathcal{D}_s \)-semiprime \(\mathcal{D} \)-ideal. Let
$a \in n(0)$ and S be a D_s-semiprime D-ideal. Prove that $a \in S$. Assume that $a \not\in S$. Then $[x_0] \not\subseteq S$, where $x_0 = a$. There exists $x_1 \in [x_0]^2$ such that $x_1 \not\in S$. Continuing in this manner we obtain a D-sequence $\{x_0, x_1, \ldots, x_n, \ldots\}$ of the element a such that $x_n \not\in S$ for all n. But it is a contradiction since every D-sequence of the element a is ultimately zero.

Thus $a \in S$ and $a \in r^*(0)$ since S is any D_s-semiprime D-ideal. Hence $n(0) \subseteq r^*(0) \subseteq r^w(0) \subseteq R(0)$.

Prove that $R(0) \subseteq n(0)$. If $n(0) = K$ then $n(0) = r^*(0) = r^w(0) = R(0) = K$.

Let $n(0) \not= K$. Let $b \in K$ such that $b \not\in n(0)$. Then there exists a D-sequence $X = \{x_0, x_1, \ldots, x_n, \ldots\}$ of the element b such that $X \cap 0 = \emptyset$, where 0 is the zero ideal of K.

Denote by \sum the set of D-ideals M of K such that $X \cap M = \emptyset$. Then \sum is not empty since $0 \in \sum$. We can apply Zorn’s lemma to the set \sum; so there exists a maximal element P of \sum. Show that P is D-prime.

First, P is proper since $b \in P$. Let $B, C \in Id(K)$, $B \not\subseteq P$, $C \not\subseteq P$. Then $P \cap B \not= P$ and $P \cap C \not= P$. By the maximality of P in \sum we have $P \cap B \not\subseteq \sum$ and $P \cap C \not\subseteq \sum$. Hence there exist $x_m \in X$, $x_q \in X$ such that $x_m \in P \cap B$, $x_q \in P \cap C$. Then

$$[x_m] \subseteq P \cap M, \quad [x_q] \subseteq P \cap C.$$

Hence

$$x_{m+1} \in [x_m]^2 \subseteq P \cap B, \quad x_{q+1} \in [x_q]^2 \subseteq P \cap C.$$

Continuing in this manner we find that

$$x_{m+t} \in P \cap B, \quad x_{q+t} \in P \cap C$$

for all t. Put $n = \max(m, q)$. Then

$$x_n \in P \cap B, \quad x_n \in P \cap C.$$

359
Hence

\[x_{n+1} \in [x_n]^2 \subseteq (P \lor B)(P \lor C) \subseteq P \lor B \cdot C, \]

by Proposition 1.1. But \(x_{n+1} \notin P \). Hence \(B \cdot C \notin P \). Therefore \(P \) is \(D \)-prime. Thus there exists a \(D \)-prime \(D \)-ideal \(P \) such that \(b \notin P \). Then \(n(0) = r^s(0) = r^w(0) = R(0) \).

The \(D \)-ideal \(R(0) \) will be called differential prime radical of \(K \) and will be denoted by \(DPr\text{-}rad(K) \).

Definition \(D \)-ideal \(H \) of \(K \) is \(D \)-radical if \(H = R(H) \).

For \(A \in \text{Id}(K) \) denote by \(n(A) \) the set of all elements \(x \in K \) that every \(D \)-sequence of \(x \) meets \(A \).

Corollary 1 For any \(A \in \text{Id}(K) \) the following equalities hold:

\[n(A) = r^s(A) = r^w(A) = R(A). \]

In particular, every \(D \)-semiprime \(D \)-ideal is \(D \)-radical.

Proof. Applying theorem 1.5 to the quotient \(D \)-ring \(K/A \), we obtain \(n(A) = r^s(A) = r^w(A) = R(A) = DPr\text{-}rad(K/A) \).

Corollary 2. For a \(D \)-ring \(K \) the following conditions are equivalent:

1. Every \(D \)-ideal of \(K \) is \(D \)-radical;
2. \(A \cdot B = A \cap B \) for all \(A, B \in \text{Id}(K) \);
3. \([a]^2 = [a] \) for all \(a \in K \).

Proof. We use the following lemma:
Lemma Let K be a D-ring. Then

$$R(A \cdot B) = R(A \cap B) = R(A) \cap R(B)$$

for any $A, B \in \text{Id}(K)$. The proof of this lemma follows from proposition 1.6 in [8],

(1) \Rightarrow (2) If every D-ideal of K is D-radical then using the lemma we obtain

$$A \cdot B = R(A \cdot B) = R(A) \cap R(B) = A \cap B.$$

(2) \Rightarrow (3) Let $A \cdot B = A \cap B$ for any $A, B \in \text{Id}(K)$. Then $A^2 = A$ for any $A \in \text{Id}(K)$.

(3) \Rightarrow (1) : Prove that every D-ideal of K is D_s-semiprime. Let A be a D-ideal of K. Then $A = \bigvee_{a \in A}[a]$. Using proposition 1.1 we have

$$A^2 = (\bigvee_{a \in A}[a])^2 = (\bigvee_{a \in A}[a]^2) \vee (\bigvee_{a,b \in A}[a] \cdot [b]) = (\bigvee_{a \in A}[a]) \vee (\bigvee_{a,b \in A}[a] \cdot [b]) = \bigvee_{a \in A}[a] = A,$$

since $[a] \cdot [b] \subseteq [a] \cap [b]$ for any $a, b \in A$. Thus $A^2 = A$ for any $A \in \text{Id}(K)$. Let $B^2 \subseteq A$, $B \in \text{Id}(K)$. Then $B = B^2 \subseteq A$. Therefore every D-ideal A is D_s-semiprime. By Corollary 1 A is D-radical.

Remark This corollary is a generalization of the similar theorem in ([7], ch.4, §5).

Let $A \in \text{Id}(K)$. Put $A^{(0)} = A$, $A^{(n+1)} = (A^{(n)})^2$.

Corollary 3 For a D-ring K the following conditions are equivalent:

1. $\mathcal{D} {\text{Pr-rad}}(K) = 0$
2. If $A^{(n)} = 0$, $A \in \text{Id}(K)$, for some n then $A = 0$;
3. If $A^2 = 0$, $A \in \text{Id}(K)$, then $A = 0$.

Proof. (1) \Rightarrow (2) \Rightarrow (3) is obvious.

Prove that (3) \Rightarrow (1). Condition (3) implies that $r^n(0) = 0$. By theorem 1.5 we see $\text{Pr-rad}(K) = r^n(0) = 0$. □
Khadjiev, Çallialp

Definition A \mathcal{D}-ideal A of K is s-nilpotent if $A^{(n)} = 0$ for some n.

Proposition 1.6 Let K be a \mathcal{D}-ring and $A, B \in \text{Id}(K)$, $A \subseteq B$. If A is s-nilpotent and B/A is s-nilpotent in K/A then B is s-nilpotent in K.

Proof. Since B/A is s-nilpotent the $B^{(n)} \subseteq A$ for some n. Then $B^{(n+m)} = (B^{(n)})^{(m)} = 0$ since A is s-nilpotent. \Box

Theorem 1.7 Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D}-ideals. The $\mathcal{DPr}.rad(K)$ is s-nilpotent.

Proof. Denote by \sum the set of s-nilpotent \mathcal{D}-ideals of K. \sum is not empty since $0 \in \sum$. There exists a maximal element P in \sum. By proposition 1.6 the \mathcal{D}-ring K/P have the following property: if $(A/P)^2 = 0$, $A \in \text{Id}(K)$, $P \subseteq A$, then $A/P = 0$. By corollary 3 of theorem 1.5 we have $\mathcal{DPr}.rad(K/P) = 0$. Thus means that $\mathcal{DPr}.rad(K) \subseteq P$. But $P \subseteq \mathcal{DPr}.rad(K)$ since P is s-nilpotent. Therefore $\mathcal{DPr}.rad(K) = P$. \Box

Corollary Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D}-ideals. Then the followings are equivalent:

1. $K^{(n)} = 0$ for some n.
2. K has not a \mathcal{D}-prime \mathcal{D}-ideal;
3. K has not a \mathcal{D}_s-semiprime \mathcal{D}-ideal.

Denote by $\text{Id}_r(K)$ the set all \mathcal{D}-radical \mathcal{D}-ideals of K. $\text{Id}_r(K)$ is a complete lattice with respect to the inclusion relation. Denote by \lor and \land the lattice operations in $\text{Id}_r(K)$.

Theorem 1.8 Let K be a \mathcal{D}-ring. Then the lattice $\text{Id}_r(K)$ satisfies the infinite \land-distributive condition:

\[A \land (\lor_{\tau \in T} B_{\tau}) = \lor_{\tau \in T} (A \land B_{\tau}) \]

for any $A, B \in \text{Id}_r(K)$. In particular, $\text{Id}_r(K)$ is distributive.

A proof follows from Theorem 1.3 in [8].
Theorem 1.9 Let K be a \mathcal{D}-ring satisfying the ascending chain condition for \mathcal{D}-ideals. Then any \mathcal{D}-radical \mathcal{D}-ideal A is an intersection of finite \mathcal{D}-prime \mathcal{D}-ideals and a such representation of A is unique.

Proof. First prove the following.

Lemma $A \in \text{Id}_r(K)$ is a \mathcal{D}-prime \mathcal{D}-ideal iff A is an \wedge-indecomposable element of the lattice $\text{Id}_r(K)$.

Proof. Let A be a \mathcal{D}-prime \mathcal{D}-ideal of K and $A = A_1 \land A_2$, $A_1, A_2 \in \text{Id}_r(K)$. Then

$$A_1 \land A_2 \subseteq A_1 \cap A_2 \subseteq R(A_1 \land A_2) = A_1 \land A_2 = A.$$

Hence $A_1 \subseteq A$ or $A_2 \subseteq A$ since A is \mathcal{D}-prime. Then $A = A_1$ or $A = A_2$.

Let A be an \wedge-indecomposable element of the lattice $\text{Id}_r(K)$ and $B \cdot C \subseteq A$, $B, C \in \text{Id}_r(K)$. Then $R(B \cdot C) \subseteq A$. By lemma 1.6 in [8] we have $R(B) \land R(C) = R(B \cdot C) \subseteq A$. We obtain

$$A = A \lor (R(B) \land R(C)) = (A \lor R(B)) \land (A \lor R(C))$$

since $\text{Id}_r(K)$ is distributive. Hence $A = A \lor R(B)$ or $A = A \land R(C)$ since A is an \wedge-indecomposable. This means that $B \subseteq R(B) \subseteq A$ or $C \subseteq R(C) \subseteq A$. Thus A is \mathcal{D}-prime. The lemma is proved.

By the lemma and the corollary in ([4], p.183), we obtain the every \mathcal{D}-radical \mathcal{D}-ideal of K is an intersection of finite \mathcal{D}-prime \mathcal{D}-ideals of K and such a representation is unique. □

Remark This theorem is a generalization of the similar statement from the theory of associative rings.

Let $A \in \text{Id}(K)$. Put $N_0(A) = A$. Denote by $N_1(A)$ the supremum of all $B \in \text{Id}(K)$ such that $B^{(n)} \subseteq A$ for some n (n depends from B). Put $N_\alpha(A) = N_1(N_\beta(A))$ for $\alpha = \beta + 1$ and $N_\alpha(A) = \bigvee_{\beta < \alpha} N_\beta(A)$ for α a limit ordinal.

Put $L(K, \mathcal{D}) = N_\alpha(0)$ for any ordinal α of cardinality $\geq |K|$.

363
Theorem 1.10 \(L(K, \mathcal{D}) = \mathcal{D} \text{Pr.rad}(K) \) for \(\mathcal{D} \)-ring \(K \).

Proof. By theorem 1.5 it is enough to prove that \(L(K, \mathcal{D}) = r^+(0) \).

It is clear that \(N_1(0) \subseteq r^+(0) \). By transfinite induction we obtain \(N_\alpha(0) \subseteq r^+(0) \) for any ordinal \(\alpha \). Hence \(L(K, \mathcal{D}) \subseteq r^+(0) \).

Prove that \(L(K, \mathcal{D}) \) is \(\mathcal{D}_s \)-semiprime. Assume that \(B^2 \subseteq L(K, \mathcal{D}) \). Then there exists an ordinal \(\alpha \) such that \(B^2 \subseteq N_\alpha(0) \). Hence \(B \subseteq N_{\alpha+1}(0) \) by definition of \(N_{\alpha+1}(0) \). Therefore \(B \subseteq L(K, \mathcal{D}) \) and \(L(K, \mathcal{D}) \) is \(\mathcal{D}_s \)-semiprime.

By the definition of \(r^+(0) \) we have \(L(K, \mathcal{D}) = r^+(0) \).

2. \(\mathcal{D} \)-algebras over the field of rational numbers

Let \(\mathbb{Q} \) be the field of rational numbers. Put \(\mathcal{D} \text{Pr.rad}(K) = \text{Pr.rad}(K) \) and \(L(K, \mathcal{D}) = L(K) \) if \(\mathcal{D} = \emptyset \).

\(\mathcal{D} \)-sequence of \(a \in K \) will be called \(n \)-sequence of \(a \) if \(\mathcal{D} = \emptyset \).

For \(a \in K \) we denote its \(n \)-sequence \(\{x_0(a) = a, x_1, \ldots, x_m, \ldots\} \) in the form:

\[\{x_0(a) = a, x_1(a), \ldots, x_m(a), \ldots\}. \]

If \(R \) is associative then every element \(x_m(a) \in [x_{m+1}(a)]^2 \subseteq [a]^{2m} \) is a finite sum:

\[x_m(a) = \sum f_1 f_2 \cdots f_s, \]

where \(s = 2^m \) and every \(f_i \) has the form \(f_i = r_1 a r_2 i \). Thus \(x_m(a) \) is a homogeneous polynomial of \(a \) a degree \(2^m \) with coefficients from \(R \).

If \(R \) is nonassociative then every element \(x_m(a) \) is a homogeneous nonassociative polynomial of degree \(2^m \) with coefficients from \(R \).

Theorem 2.1 If \(R \) is \(\mathbb{Q} \)-algebra with 1 and \(\delta \) is a differentiation of \(R \), then

\[\delta(\text{Pr.rad}(R)) \subseteq \text{Pr.rad}(R). \]

Proof. Let \(a \in \text{Pr.rad}(R) \). We consider any \(n \)-sequence of the element \(\delta a \):

364
\{x_0(\delta a) = \delta a, x_1(\delta a), \ldots, x_m(\delta a), \ldots\}.

We have

\[\delta^{2m}(x_m(a)) \in q \cdot x_m(\delta a) + [a],\]

where \(q \neq 0\) is an integer. Then \(x_m(\delta a) \in \frac{1}{q}\delta^{2m}(x_m(a)) + [a]\). Since \(a \in \text{Pr.rad}(R)\) then there exist \(m_0\) such that \(x_m(a) = 0\) for all \(m \geq m_0\). Then the following sequence

\[\{y_0(a) = a, y_1(a), \ldots, y_k(a), \ldots\},\]

where \(y_k(a) = x_{m_0+k}(\delta a)\), is an \(n\)-sequence of the element \(a\). Therefore there exists \(k_0\) such that \(y_k(a) = 0\) for all \(k \geq k_0\). This means that any \(n\)-sequence of the form

\[\{x_0(\delta a) = \delta a, x_1(\delta a), \ldots, x_m(\delta a), \ldots\}\]

of element \(\delta a\) is ultimately zero. Thus \(\delta a \in \text{Pr.rad}(R)\).

\[\square\]

Remark This theorem is the Ritt’s theorem if \(R\) is a commutative associative \(\mathbb{Q}\)-algebra ([6], p.12). If \(R\) is an associative \(\mathbb{Q}\)-algebra then there is only the formulation of this theorem and outline of its proof in ([10], p.207).

But this instruction is not correct (the member \(n\) in proposition 2.6.28 in ([10], p.207) depends for \(r_{1i}, r_{2i}\)). By this instruction the theorem may be proved for only Noetherian rings.

Further we investigate connections between radical \(\mathcal{D}\)-ideals and \(\mathcal{D}\)-radical \(\mathcal{D}\)-ideals in \(\mathcal{D}\)-rings.

If \(\mathcal{D} = 0\) then in §1 we obtain results for usual rings.

Corollary Let \(K\) be a differential \(\mathbb{Q}\)-algebra with 1. Then radical of any \(\mathcal{D}\)-ideal of \(K\) is a \(\mathcal{D}\)-ideal of \(K\).

Proof. Let \(H\) be a \(\mathcal{D}\)-ideal of \(K\). Then by Theorem 2.1 \(\text{Pr.rad}(K/H)\) is a \(\mathcal{D}\)-ideal. This means that \(\text{rad}(H)\) is a \(\mathcal{D}\)-ideal of \(K\). \[\square\]
Let K be a ring. For $a \in K$ denote by (a) the intersection of all ideals of K containing a.

For ideals A, B of K denote by $A \ast B$ the intersection of all ideals of K containing the set $\{x \in K : x = a \cdot b, \ a \in A, \ b \in B\}$.

Proposition 2.2 Let K be a ring and B be an ideal of K. Then B is prime iff for every $t_1, t_2 \in K \setminus B$ such that $(t_1) \ast (t_2)$.

A proof is obvious.

Theorem 2.3 Let H be a radical \mathcal{D}-ideal of a \mathcal{D}-ring K. Then H is an intersection of \mathcal{D}-prime \mathcal{D}-ideals.

Proof. Let $x \notin H$. Then there exists a prime ideal B of K such that $H \subseteq B$ and $x \notin B$.

Denote by \sum the set of \mathcal{D}-ideals A of K such that $H \subseteq A$ and $A \cap (K \setminus B) = \emptyset$. $\sum \neq \emptyset$ since $H \in \sum$. By Zorn’s lemma there exists a maximal element P in \sum. Prove that P is a \mathcal{D}-prime \mathcal{D}-ideal. P is proper since $x \notin P$.

Let $A_1, A_2 \in \text{Id}(K)$ and $A_1 \not\subseteq P$, $A_2 \not\subseteq P$. Then $P \vee A_1 \neq P$, $P \vee A_2 \neq P$. There exist $t_1 \in K \setminus B$, $t_2 \in K \setminus B$ such that $t_1 \in P \vee A_1$, $t_2 \in P \vee A_2$. Then

$$(t_1) \subseteq P \vee A_1, \quad (t_2) \subseteq P \vee A_2.$$

By proposition 1.1 we have

$$(t_1) \ast (t_2) \subseteq (P \vee A_1) \cdot (P \vee A_2) \subseteq P \vee A_1 \cdot A_2.$$

By proposition 2.2 for $t_1, t_2 \in K \setminus B$ there exists $t \in K \setminus B$ such that $t \in (t_1) \ast (t_2)$. Then $t \in P \vee A_1 \cdot A_2$. This means that $A_1 \cdot A_2 \not\subseteq P$. Therefore P is a \mathcal{D}-prime \mathcal{D}-ideal and $H \subseteq P$. Thus for any $x \notin H$ there exists a \mathcal{D}-prime \mathcal{D}-ideal P such that $H \subseteq P$ and $x \notin P$. This means that H is an intersection of all \mathcal{D}-prime \mathcal{D}-ideals containing H. \qed
Theorem 2.4 Let K be a differential Q-algebra with 1. Then $Pr\text{-rad}(K)$ is an intersection of all D-prime D-ideals of K containing $Pr\text{-rad}(K)$ and $DPr\text{-rad}(K) \subseteq Pr\text{-rad}(K)$.

Proof. By theorem 2.1 $Pr\text{-rad}(K)$ is a D-ideal of K. By theorem 2.3 $Pr\text{-rad}(K)$ is an intersection of all D-prime D-ideals of K containing $Pr\text{-rad}(K)$. Hence $DPr\text{-rad}(K) \subseteq Pr\text{-rad}(K)$. \(\square\)

Theorem 2.5 Let K be a differential Q-algebra with 1. Assume that K satisfies the ascending chain condition for ideals. Then $DPr\text{-rad}(K) = Pr\text{-rad}(K)$.

Proof. In this case $Pr\text{-rad}(K)$ is s-nilpotent by theorem 1.7 $D = \emptyset$. Therefore $Pr\text{-rad}(K))^{(n)} = 0$ for some n. Since $Pr\text{-rad}(K)$ is a D-ideal $[Pr\text{-rad}(K)]^{(r)} = (Pr\text{-rad}(K))^{(n)} = 0$. Then by theorem 1.10 $Pr\text{-rad}(K) \subseteq DPr\text{-rad}(K)$. Thus $DPr\text{-rad}(K) = Pr\text{-rad}(K)$. \(\square\)

Corollary Let K be a differential Q-algebra with 1. Assume that K satisfies the ascending chain condition for ideals. Then every D-radical D-ideal of K is radical.

Proof. The statement follows from theorem 2.5. \(\square\)

Remark Theorems 2.3-2.5 are known for commutative differential rings [1].

References

KHADJIÈV, ÇALLIALP

Djavvat KHADJIÈV
Tashkent State University
700095 Tashkent-UZBEKISTAN

Fethi ÇALLIALP
Tech. University of İstanbul
Faculty of Arts and Sciences
Department of Math. İstanbul-TURKEY

Received 02.02.1998