CODES ON SUPERELLIPTIC CURVES*

F. Özbudak & Glukhov

Abstract
The purpose of this paper is to apply superelliptic curves with a lot of rational points to construct rather good geometric Goppa codes.

1. Introduction
Let \(F_p \subset F_q \) be a Galois extension of prime field \(F_p \). A. Weil [9] proved that if \(f(x, y) \in F_q[x, y] \) is an absolutely irreducible polynomial and if \(N_q \) denotes the number of \(F_q \)-rational points of the curve defined by the equation \(f(x, y) = 0 \), then

\[
|N_q - (q + 1)| \leq 2gq^{1/2},
\]

where \(g \) is genus of the curve. As a corollary we have that, if \(m \) is the number of distinct roots of \(f \) in its splitting field over \(F_q \), \(\chi \) is a non-trivial multiplicative character of exponent \(s \) and \(f \) is not an \(s \)-th power of a polynomial, then

\[
|\sum_{x \in F_q} \chi(f(x))| \leq (m - 1)q^{1/2}.
\]

S.A. Stepenov [2] proved the existence of a square-free polynomial \(f(x) \in F_p[x] \) of degree \(\geq 2(\frac{(N+1)\log 2}{\log p} + 1) \) for which

\[
\sum_{i=1}^{N} \left(\frac{f(x)}{p} \right) = N,
\]

where \(\{1, \ldots, N\} \subset F_p \) and \((\cdot) \) is the Legendre symbol and \((p, 2) = 1 \). Later, F. Özbudak [8] extended this to arbitrary non-trivial characters of arbitrary finite fields by following

*The first author is now with the Department of Mathematics, Middle East Technical University, e-mail: ozbudak@mat.metu.edu.tr
Stepanov’s approach. This gives a constructable proof of the fact that Weil’s estimate is almost attainable for any F_q.

In [3], Stepanov introduced some special sums $S_\nu(f) = \sum_{x \in F_q} \chi(f(x))$ with a non-trivial quadratic character χ by explicitly representing the polynomial $f(x)$, whose, absolute values are very close to Weil’s upper bound. M. Glukhov [6], [7] generalized Stepanov’s approach to the case of arbitrary multiplicative characters over arbitrary finite field F_q.

Recall the basic ideas of the Goppa construction (see for example [1] or [5]) of linear $[n, k, d]_q$ codes associated to a smooth projective curve X of genus $g = g(X)$ defined over a finite field F_q. Let $\{x_1, \ldots, x_n\}$ be a set of F_q-rational points of X and set

$$D_0 = x_1 + \cdots + x_n.$$

Let D be a F_q-rational divisor on X whose support is disjoint from D_0. Consider the following vector space of rational functions on X:

$$L(D) = \{ f \in F_q(X)^* \mid (f) + D \geq 0 \} \cup \{0\}.$$

The linear $[n, k, d]$ code $C = C(D_0, D)$ associated to the pair (D_0, D) is the image of the linear evaluation map

$$Ev : L(D) \to F_q^n, f \mapsto (f(x_1), \ldots, f(x_n)).$$

Such a q-ary linear code is called a geometric Goppa code. If $\deg D < n$ then Ev is an embedding, hence by Riemann-Roch theorem.

$$k \geq \deg D - g + 1.$$

Moreover we have

$$d \geq n, \deg D.$$

In this paper we apply the Goppa construction to the curve given over F_q by

$$y^s = f(x),$$

where $s \mid (q - 1)$ and the polynomial $f(x)$ is obtained by Stepanov’s approach to attain

$$\sum_{x \in F_q} \chi(f(x)) = q.$$

224
where χ is a non-trivial multiplicative character of exponent s. Moreover, we apply the Goppa construction also to the polynomials $f(x)$ given in Glukhov’s paper [6], [7] explicitly after some modification.

Theorem 1
Let F_q be a finite fields of characteristic p, s an integer $s \geq 2, s|(q - 1)$, and c be the infimum of the set

$$C = \{x : a \text{ non-negative real number} \mid \text{there exists an integer } n \text{ such that} \frac{q^x(q - 2)}{(q - 1)(s - 1)(1 + \frac{1}{x(q-1)})} \geq n \geq \frac{q \log s}{\log q} + x\}.$$

Let r be an integer satisfying

$$s(s-1)\left(\frac{q \log s}{\log q}\right) - 2s < r < sq.$$

Then there exists a linear code $[n, k, d]_q$ with parameters

$$n = sq$$

$$k = r - s(s-1)\left(\frac{q \log s}{\log q} + c\right) + s,$$

$$d \geq sq - r.$$

Corollary 1
Under the same conditions with Theorem 1, there exist a code with relative parameters satisfying

$$R \geq 1 - \delta \frac{s(s-1)\left(\frac{q \log s}{\log q} + c\right) - s}{sq}.$$

By applying the same procedure to polynomials given explicitly by Glukhov [6], we get the following theorem.

Theorem 2
Let F_q be a finite field of characteristic p, F_{q^ν} an extension of F_q of degree ν, s an integer $s \geq 2, s|(q - 1)$. Moreover,
i) if \(p \neq 2, \nu > 1 \) an odd integer and \(r \) an integer satisfying
\[
(s - 1)(1 + q)q^{\frac{s - 1}{2}} - 4s + 2 < r < sq^{\nu},
\]
then there exists a linear code \([n, k, d]_{q^\nu}\) with parameters
\[
\begin{align*}
 n &= sq^{\nu}, \\
 k &= r + 2s - (s - 1)\left(\frac{1 + q}{2}\right)q^{\frac{s - 1}{2}} - 1, \\
 d &\geq sq^{\nu} - r;
\end{align*}
\]

ii) if \(p \neq 2, \nu < 2 \) an even integer and \(r \) an integer satisfying conditions

a) when \(4 \nmid \nu \)
\[
(s - 1)(1 + q^2)q^{\frac{s - 1}{2}} - 4s + 2 < r < sq^{\nu},
\]
then there exists a linear code \([n, k, d]_{q^\nu}\) with parameters
\[
\begin{align*}
 n &= sq^{\nu}, \\
 k &= r + 2s - (s - 1)\left(\frac{1 + q^2}{2}\right)q^{\frac{s - 1}{2}} - 1, \\
 d &\geq sq^{\nu} - r;
\end{align*}
\]

b) when \(4 \mid \nu \)
\[
(s - 1)(1 + q^2)q^{\frac{s - 1}{2}} - 2(s - 1)q - 2s < r < sq^{\nu},
\]
then there exists a linear code \([n, k, d]_{q^\nu}\) with parameters
\[
\begin{align*}
 n &= sq^{\nu}, \\
 k &= r + (s - 1)q + s - (s - 1)\left(\frac{1 + q^2}{2}\right)q^{\frac{s - 1}{2}}, \\
 d &\geq sq^{\nu} - r;
\end{align*}
\]

iii) if \(p = 2, \nu > 1 \) an odd integer and \(r \) an integer satisfying
\[
(s - 1)(1 + q)q^{\frac{s - 1}{2}} - 2(s - 1)q - 2s < r < sq^{\nu},
\]
then there exists a linear code $[n, k, d]_{q^r}$ with parameters

$$n = sq^r,$$

$$k = r + (s - 1)q + s - (s - 1)(1 + q^{1 - s})^{-1},$$

$$d \ge sq^r - r;$$

iv) if $p = 2$, $\nu > 2$ an even integer and r an integer satisfying conditions

a) when $4 \nmid \nu$

$$(s - 1)(1 + q^2)^{s^\frac{1}{2} - 1} - 2(s - 1)q - 2s < r < sq^r,$$

then there exists a linear code $[n, k, d]_{q^r}$ with parameters

$$n = sq^r,$$

$$k = r + (s - 1)q^2 + s - (s - 1)(1 + q^2)^{s^\frac{1}{2} - 1},$$

$$d \ge sq^r - r;$$

b) when $4|\nu$

$$(s - 1)(1 + q^2)^{s^\frac{1}{2} - 1} - 2(s - 1)q - 2s < r < sq^r,$$

then there exists a linear code $[n, k, d]_{q^r}$ with parameters

$$n = sq^r,$$

$$k = r + (s - 1)q + s - (s - 1)(1 + q^2)^{s^\frac{1}{2} - 1},$$

$$d \ge sq^r - r;$$

Corollary 2 Under the same conditions with Theorem 2, there exist codes with relative parameters satisfying, respectively,

i)

$$R \ge 1 - \delta - \frac{(s - 1)(1 + 2q^{1 - s}) - 2s + 1}{sq^r},$$
ii. a)
\[R \geq 1 - \delta - \frac{(s - 1)(1 + q^2)^{\frac{q^2}{2} - 1} - 2s + 1}{sq'} \]

ii. b)
\[R \geq 1 - \delta - \frac{(s - 1)(1 + q^2)^{\frac{q^2}{2} - 1} - (s - 1)q - s}{sq'} \]

iii)
\[R \geq 1 - \delta - \frac{(s - 1)(1 + q)^{\frac{q^2}{2} - 1} - (s - 1)q - s}{sq'} \]

iv. a)
\[R \geq 1 - \delta - \frac{(s - 1)(1 + q^2)^{\frac{q^2}{2} - 1} - (s - 1)q^2 - s}{sq'} \]

iv. b)
\[R \geq 1 - \delta - \frac{(s - 1)(1 + q^2)^{\frac{q^2}{2} - 1} - (s - 1)q - s}{sq'} \]

Remark 1 When \(s << q \), we have for Corollary 1
\[R \geq 1 - \delta - J_1(s, q), \]
where \(J_1(s, q) \sim \frac{(s - 1)\log s}{2\log q} \frac{1}{\log q} \) and for Corollary 2
\[R \geq 1 - \delta - J_2(s, q^\nu), \]
where \(J_2(s, q^\nu) \sim \frac{(s - 1)}{2s} \frac{1}{q^{\nu/2}} \). Although \(\frac{1}{q^{\nu/2}} << \frac{1}{\log q} \), Theorem 1 is significant especially when \(q \) is a prime. Indeed good codes are designed over \(F_q, q = p^\nu, \nu > 1 \) since curves with large \(\frac{N_q}{g} \) ratio are obtained using the structure of Galois group of \(F_q \) over some subfield \(F_{q^\nu} \) where \(N_q \) is number of \(F_q \) rational points and \(g \) is the genus of the curve that Goppa construction is applied. Our result is an explicit construction of codes over \(F_{p,p} : \) prime, with good \(\frac{N_q}{g} \) ratio since we have for general finite fields only Serre’s lower bound: there exists \(c > 0 \) such that \(\lim_{g \to \infty} \frac{N_q}{g} < c\log q \) for all \(q \).
Remark 2 The parameters of Theorem 2 are rather good. Moreover, it is possible to calculate directly the minimum distance \(d \) exactly in some cases. For example, we have such codes which are near to Singleton bound:

i: Over \(\mathbb{F}_{27} \supset F_3 \) if \(6 < r < 54 \), then it gives \([54, r - 3, d]_{27}\) code where \(d \geq 54 - r \).
 If \(r \) is even, then \(d = 54 - r \) (see Stichtenoth [10], Remark 2.2.5).

ii.a: Over \(\mathbb{F}_{729} \supset F_3 \) if \(84 < r < 1458 \), then it gives \([1458, r - 42, d]_{729}\) code where \(d \geq 1458 - r \).
 If \(r \) is even, then \(d = 1458 - r \).

ii.b: Over \(\mathbb{F}_{81} \supset F_3 \) if \(20 < r < 162 \), then it gives \([162, r - 10, d]_{81}\) code where \(d \geq 162 - r \).
 If \(r \) is even, then \(d = 162 - r \).

iii: Over \(\mathbb{F}_{64} \supset F_4 \) if \(18 < r < 192 \), then it gives \([192, r - 9, d]_{64}\) code where \(d \geq 192 - r \).
 If \(r \equiv 0 \mod 3 \), then \(d = 192 - r \).

iv.a: Over \(\mathbb{F}_{4096} \supset F_4 \) if \(474 < r < 12288 \), then it gives \([12288, r - 237, d]_{4096}\) code where \(d \geq 12288 - r \).
 If \(r \equiv 0 \mod 3 \), then \(d = 12288 - r \).

iv.b: Over \(\mathbb{F}_{256} \supset F_4 \) if \(114 < r < 768 \), then it gives \([768, r - 57, d]_{256}\) code where \(d \geq 768 - r \).
 If \(r \equiv 0 \mod 3 \), then \(d = 768 - r \).

For \(\nu \): even there are Hermitian codes (see for example Stichtenoth [10], section 7.4) which are maximal. Theorem 2 provides codes with parameters near to the parameters of maximal curves in these cases.

2. Proof of Theorem 1

Let \(\chi \) be a multiplicative character of exponent \(s \) of \(F_q \). If \(m \geq \frac{q \log s}{\log q} + c \), then
\[
\frac{1}{m} q^m \frac{s-2}{s} \geq (s-1)s^q + 1.
\]
Note that the number of monic irreducible polynomials of degree \(m \) over \(F_q \) is \(\frac{1}{m} \sum_{d|m} \mu(d) q^m/d = \frac{1}{m} q^m c_m \) (see for example [11] page 93). Here \(1 \geq c_m \geq 1 - \frac{\log m}{q^{(q-1)/q}} \geq \frac{s^q - 1}{s^q} \). Forming \(q \)-tuples for each irreducible monic polynomial as in Stepanov [2] or Özbudak [8], by Dirichlet’s pigeon-hole principle if \(\frac{1}{m} q^m \frac{s^q - 1}{s} \geq (s-1)s^q + 1 \), there exists a square-free polynomial \(f \in F_q[x] \) of degree \(\leq ms \) such that \(\chi(f(a)) = 1 \) for each \(a \in F_q \).

Let \(\deg f = s \left(\frac{\log s}{\log q} \right) + c \).

Since \(s \mid (q - 1) \) there are \(s \) many multiplicative characters of exponent \(s \) over \(F_q \).
Moreover for any χ of exponent s, $\chi(f(a)) = 1$ for all $a \in F_q$. Therefore we have over the curve

$$y^s = f(x)$$

$N_q = sq$ many F_q-rational points (see Schmidt [12] page 79 or Stepanov [4], p. 51).

Using the well-known genus formulas for superelliptic curves (see for example Stichtenoth [10] p. 196), the geometric genus is given by

$$g = \frac{s(s - 1)}{2} \left(\frac{q \log s}{\log q} + c \right) - s + 1.$$

Let D_0 be the divisor on the smooth model X of $y^s = f(x)$, where

$$D_0 = \sum_{i=1}^{n} x_i.$$

By tracing the normalization of a curve one see that the number of rational points of the non-singular model X of the curve $y^s = f(x)$ is not less than the number of rational points of $y^s = f(x)$ (see for example Shafarevich [13], section 5.3). Thus $n = \deg D_0 \geq N_q = sq$. Let x_{∞} be a point of X at infinity, $D = rP_{\infty}$ be the divisor of degree r and $suppD_0 \cap suppD = \emptyset$, where r to be determined. If

$$2g - 2 < r < N_q,$$

by using the Goppa construction,

$$n = N_q, \ k = r + 1 - g, \ d \geq N_q - r.$$

3. Proof of Theorem 2

Let $\chi_{\nu,s}(x) = \chi_s(norm_{\nu}(x))$ where χ_s is a non-trivial multiplicative character of F_q of exponent s, $norm_{\nu} = x, x^q, \ldots, x^{q^{s-1}}$. Therefore $\chi_{\nu,s}$ is a relative multiplicative character of F_q of exponent s. For $f(x) \in F_q[x]$ denote by $S_{\nu}(f)$ the sum $S_{\nu,s}(f) = \sum_{x \in F_q} (f(x)).$

Case(i):

There exists a polynomial $f_1(x) \in F_q[x]$

$$f_1(x) = (x + a\frac{x^{q-1}}{x^{s-1}})^a(x + b\frac{x^s}{x^s})^b,$$
where \(a + b = s, a \neq b \), and \((a, s) = 1\) such that \(S_{\nu,s}(f_1) = q^\nu - 1 \) (Glukhov [7]).

We can write
\[
 f_1(x) = x^a(1 + x^{\frac{s-1}{2}})^a(1 + x^{\frac{s+1}{2}})^b.
\]

Consider \(y^s = f_1(x) \). This curve is birationally isomorphic to
\[
 y^s = f_{1,1}(x) = (1 + x^{\frac{s-1}{2}})^a(1 + x^{\frac{s+1}{2}})^b,
\]
and \(S_{\nu,s}(1,1) = q^\nu \). Moreover, we know
1. \(1 + x^m \) where \((m, q) = 1\) is a square-free polynomial over \(\mathbb{F}_{q^r}\),
2. If \(\nu \) is odd, then \((1 + x^{\frac{s-1}{2}})^a, 1 + x^{\frac{s+1}{2}})^b = 1 \) over \(\mathbb{F}_{q^r}\) for \(p \neq 2 \).

Therefore we can apply Hurwitz genus formula (see for example Stichtenoth ([10], p. 196)); hence we get
\[
 g = (s - 1)(1 + q^\frac{s+1}{2}) - 2(s - 1).
\]

Over the curve \(y^s = f_{1,1}(x) \) there are
\[
 N_{q^r} = \sum_{\exp \chi = s} \sum_{x \in \mathbb{F}_{q^r}} \chi(f_{1,1}(x)) = q^\nu + (s - 1)S_{\nu,s}(f_{1,1}) = sq^\nu
\]
many \(\mathbb{F}_{q^r}\)-rational points (Stepanov [4], p. 51). Therefore we get the desired result as in the proof of Theorem 1.

Case (ii):
We apply the same techniques to
\[
 f_2(x) = x^a(1 + x^{\frac{s-1}{2}})^a(1 + x^{\frac{s+1}{2}})^b
\]
given by Glukhov [7]. Here \(S_{\nu,s}(f_2) = \begin{cases} q^\nu - 1 & \text{if } 4 \not| \nu \\ q^\nu - q & \text{if } 4| \nu \end{cases} \). Moreover, if \(\nu \equiv 2 \mod 4 \),
then \((1 + x^{\frac{s-1}{2}})^a, 1 + x^{\frac{s+1}{2}})^b = 1\); and if \(\nu \equiv 0 \mod 4 \), then \((1 + x^{\frac{s-1}{2}})^a, 1 + x^{\frac{s+1}{2}})^b = 1 + x^{q-1} \) over \(\mathbb{F}_{q^r}\) for \(p \neq 2 \). If \(\nu \equiv 2 \mod 4 \), similarly consider the curve
\[
 y^s = f_{2,2,1}(x) = (1 + x^{\frac{s-1}{2}})^a(1 + x^{\frac{s+1}{2}})^b
\]

Over the curve \(y^s = f_{2,2,1}(x) \) there are
\[
 N_{q^r} = \sum_{\exp \chi = s} \sum_{x \in \mathbb{F}_{q^r}} \chi(f_{2,2,1}(x)) = q^\nu + (s - 1)S_{\nu,s}(f_{2,2,1}) = sq^\nu
\]
whose genus is

\[g = (s - 1) \frac{1 + q^2}{2} q^\frac{s-1}{2} - 2(s - 1), \]

and \(S_{\nu,s}(f_{2,1}) = q^\nu \). If \(\nu \equiv 0 \pmod{4} \) we can write \(f_2(x) \) here as

\[f_2(x) = x^s (1 + x^{q-1})^s \left(\frac{1 + x^{\frac{s-1}{2}}}{1 + x^{q-1}} \right)^a \left(\frac{1 + x^{\frac{s+1}{2}}}{1 + x^{q-1}} \right)^b. \]

The curve \(y^s = f_2(x) \) is birationally isomorphic to the curve

\[y^s = f_{2,2,2}(x) = \left(\frac{1 + x^{\frac{s-1}{2}}}{1 + x^{q-1}} \right)^a \left(\frac{1 + x^{\frac{s+1}{2}}}{1 + x^{q-1}} \right)^b \]

whose genus is

\[g = (s - 1) \frac{(1 + q^2)}{2} q^\frac{s-1}{2} - (s - 1)(1 + q) \]

and \(S_{\nu,s}(f_{2,2,2}) = q^\nu \)

Case(iii):

We apply the same techniques observing that in this case we have the following additional fact that

If \(p = 2 \), then \((1 + x^k, 1 + x^l) = 1 + x^{(k,l)} \), where \(1 + x^k, 1 + x^l \in F_{q^\nu}[x] \).

We can write \(f_1(x) \) here as

\[f_1(x) = x^s (1 + x^{q-1})^s \left(\frac{1 + x^{\frac{k-1}{2}}}{1 - x^{q-1}} \right)^a \left(\frac{1 + x^{\frac{k+1}{2}}}{1 - x^{q-1}} \right)^b. \]

The curve \(y^s = f_1(x) \) is birationally isomorphic to the curve

\[y^s = f_{1,3}(x) = \left(\frac{1 + x^{\frac{k-1}{2}}}{1 - x^{q-1}} \right)^a \left(\frac{1 + x^{\frac{k+1}{2}}}{1 - x^{q-1}} \right)^b. \]

The genus is

\[g = (s - 1)(1 + q) \frac{q^{\frac{k-1}{2}}}{2} - (s - 1)(1 + q). \]

Moreover, \(S_{\nu,s}(f_1) = q^\nu - q \) (see [7]), and hence \(S_{\nu,s}(f_{1,3}) = q^\nu \).
Case (iv):
We apply the same techniques as in Case (iii). We have

\[(q^{s-1} - 1, q^{s+1} - 1) = \begin{cases} q^2 - 1 & \text{if } 4 \nmid \nu, \\ q - 1 & \text{if } 4 \mid \nu. \end{cases}\]

Thus when \(4 \nmid \nu\), \(y^* = f_2(x)\) is birationally isomorphic to

\[y^* = f_{2,4,1}(x) = \left(\frac{1 + x^q^{s-1} - 1}{1 + x^q - 1}\right)^a \left(\frac{1 + x^q^{s+1} - 1}{1 + x^q - 1}\right)^b\]

and the genus is

\[g = (s - 1)(1 + q^2)\frac{q^{s-1}}{2} - (s - 1)(1 + q^2)\.

Moreover, \(S_{\nu,s}(f_2) = q^\nu - q^2\) (see [7]), and hence \(S_{\nu,s}(f_{2,4,1}) = q^\nu\).

When \(4 \mid \nu\), \(y^* = f_2(x)\) is birationally isomorphic to

\[y^* = f_{2,4,2}(x) = \left(\frac{1 + x^q^{s-1} - 1}{1 + x^q - 1}\right)^a \left(\frac{1 + x^q^{s+1} - 1}{1 + x^q - 1}\right)^b,

whose genus is

\[g = (s - 1)(1 + q^2)\frac{q^{s-1}}{2} - (s - 1)(1 + q),\]

and \(S_{\nu,s}(f_2) = q^\nu - q\) (see [7]), and hence \(S_{\nu,s}(f_{2,4,2}) = q^\nu\).

Acknowledgment

We would like to thanks to S.A. Stepanov for his excellent guidance, comments, and suggestions in this work.

References

