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GENERALIZED INVERSE ESTIMATOR AND

COMPARISON WITH LEAST SQUARES ESTIMATOR

S. Sakallıoğlu & F. Akdeniz

Abstract

Trenkler [13] described an iteration estimator. This estimator is defined as
follows: for 0 < γ < 1/λi max

β̂m,γ = γ

m∑
i=0

(1− γX ′X)iX ′y,

where λi are eigenvalues of X ′X . In this paper a new estimator (generalized
inverse estimator) is introduced based on the results of Tewarson [11]. A sufficient
condition for the difference of mean square error matrices of least squares estimator
and generalized inverse estimator to be positive definite (p.d.) is derived.

1. Introduction

Consider the linear regression model

y = Xβ + e, (1)

where y is an n×1 vector of observations on the dependent variable, X is an n×p matrix
and of full column rank, β is a p × 1 parameter vector, E(e) = 0, and V ar(e) = σ2I ,
and both β and σ2 are unknown. The least squares estimator for β is

β̂ = (X′X)−1X′y. (2)

The two key properties of β̂ are that it is unbiased: E(β̂) = β , and that it has minimum
variance among all linear unbiased estimators. The mean square error of β̂ is

mse(β̂) = σ2

p∑
i=1

1
λi
, (3)

where λi ’s are the eigenvalues of X′X and λ1 ≥ λ2 ≥ · · · ≥ λp > 0. If the smallest
eigenvalue of X′X is very much smaller than 1, then a seriously ill-conditioned (or
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multicollinearity) problem arises. Thus, for ill-conditioned data, the least squares solution
yields coefficients whose absolute values are too large and whose signs may actually
reverse with negligible changes in the data. That is, in the case of multicollinearity the
least squares estimator β̂ can be poor in terms of various mean squared error criterion.
Consequently a great deal of work has been done to construct alternatives to the least
squares estimator when multicollinearity is present. To reduce effects of multicollinearity
we define some biased estimators in the model (1).
Ridge Estimator: [4] (k > 0)

β̂k = (X′X + kI)−1X′y. (4)

Shrunken Estimator: [7] (0 < s < 1)

β̂s = sβ̂. (5)

Principal Components Regression Estimator: [6]

β̂r = A+
r +X′y, (6)

where A+
r is the Moore-Penrose generalized inverse of X′X having prescribed rank r .

For an extensive discussion of the theory of Moore-Penrose generalized inverses, we refer
to the books by Albert [1], Ben Israel and Greville [2], and Rao and Mitra [9].
Iteration Estimator: i) [10, 13, 14, 15], (0 < γ < 1/λmax, m = 0, 1, . . .)

β̂m,γ = γ

m∑
i=0

(I − γX′X)iX′y. (7)

This estimator is shown to have similar properties as ridge, shrunken, and principal
component estimator. The estimator β̂m,γ is based on the convergence of the sequence

Xm,γ = γ

m∑
i=0

(I − γX′X)iX′

(with limit X+ = (X′X)−1X′) when m→∞ . The sequence Xm,γ also converges when
X′X is singular. The matrix Xm,γ can be found by iterative procedure

X0,γ = γX′, Xm+1,γ = (I − γX′X)Xm,γ + γX′.

Thus, we get the sequence of estimators β, β̂(n) , which is defined by Öztürk as follows:
ii) [8], (0 < h < 2/λmax, n = 1, 2, . . .)

β̂(n) = (I − hX′X)β̂(n−1) + hX′y, (8)

where β̂(0) is fixed point in the parameter space Ep .
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In [14], Trenkler compare the iteration estimator with least squares, ridge, shrunken
and principal components estimator with respect to matrix-valued mean square error
criterion.

Although these estimators are biased, some of them are in widespread use since
both bias and total variance can be controlled to a large extent. Bias and total variance
of an estimator β̃ are measured simultaneously by scalar-valued mean square error (mse):

mse(β̃) = E(β̃ − β)′(β̃ − β)
= V (β̃) + (biasβ̃)′(biasβ̃), (9)

where V (β̃) = tr(V ar(β̃)) denotes total variance.
But mse is only one measure of goodness of an estimator. Another is generalized

scalar-valued mean square error (gmse):

mseF (β̃) = E(β̃ − β)′F (β̃ − β), (10)

where F is a nonnegative definite (n.n.d.) symmetric matrix of order p×p . The matrix-
valued mean square error for any estimator β̃ is defined as

MSE(β̃) = E(β̃ − β)(β̃ − β)′

= V ar(β̃) + (biasβ̃)(biasβ̃)′. (11)

For any estimators j = 1, 2 consider

MSE(β̃j ) = E(β̃j − β)(β̃ − β)′. (12)

Theobald [12] proves that mseF (β̃1) > mseF (β̃2) for all positive definite (p.d.) matrices
F if and only if MSE(β̃1) −MSE(β̃2) is p.d.. Thus the superiority of β̃2 over β̃1 with
respect to the mse criteria can be examined by comparing their MSE. If MSE(β̃1) −
MSE(β̃2) ≥ 0 then β̃2 can be considered better than β̃1 in mse.

2. A New Estimator: (Generalized Inverse Estimator)

For

δi =
q∑
j=1

cjλ
j
i > 0 (i = 1, 2, . . . , p)

and 0 < h < 2/δmax consider a new iteration estimator of β . This estimator can be
written as (n = 1, 2, . . .)

β̂(n) = (I − hGX)β̂(n−1) + hGy, (13)

where λi are eigen values of X′X, β̂(0) = hGy , and

G = [c1Ip + c2X
′X + c3(X′X)2 + · · ·+ cq(X′X)q−1]X′,

∣∣1− c1λi − c2λ2
i − · · · − cqλ

q
i

∣∣ =
∣∣∣∣∣∣1−

q∑
j=1

cjλ
j
i

∣∣∣∣∣∣ < 1. (14)

79
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The matrix G and condition (14) are the same as in Tewarson’s Theorem 1 in [11].
The model (1) can be reduced to a canonical form by using X = UΩV ′ , the

singular value decomposition of X , where U is a (n × n) orthogonal matrix, V is a
(p× p) orthogonal matrix, Ω′ = [Λ1/2, 0] , and Λ1/2 = diag{λ1/2

i }
p
i=1 . Then (1) becomes

y = Zα+ e, (15)

where Z = UΩ = XV and α = V ′β . The least squares estimator of α, α̂, is

α̂ = (Z′Z)−1Zy = Λ−1Z′y. (16)

In general,
α̂ = Z+y (17)

where Z+ is the Moore-Penrose generalized inverse of Z .
Thus, the matrix G and generalized inverse estimator of α, α̂(n) become

G = V [c1Ip + c2Λ + c3Λ2 + · · ·+ cqΛ(q−1)]Ω′U ′

and
α̂(n) = V ′β̂(n) = (I − hWΛ)α̂(n−1) + hWΛα̂,

where W = [c1Ip + c2Λ + c3Λ2 + · · ·+ cqΛ(q−1)] .
Then, we obtain

α̂(n) = (I − hWΛ)α̂(n−1) + hWΛα̂
= (I − hWΛ)[(I − hWΛ)α̂(n−2) + hWΛα̂] + hWΛα̂
= (I − hWΛ)2α̂(n−2) + (I − hWΛ)hWΛα̂+ hWΛα̂

...
= (I − hWΛ)nα̂(0) + (I − hWΛ)n−1hWΛα̂+ · · ·+ (I − hWΛ)hWΛα̂+ hWΛα̂

= (I − hWΛ)nα̂(0) +
n−1∑
m=0

(I − hWΛ)mhWΛα̂

= (I − hWΛ)nα̂(0) + {I − (I − hWΛ)n}α̂. (18)

If we take as an initial solution α̂(0) = 0 then we get

α̂(n) = {I − (I − hWΛ)n}α̂. (19)

Thus we have
E(α̂(n)) = α− (I − hWΛ)nα; (20)

bias(α̂(n)) = E(α̂(n)) − α = −(I − hWΛ)nα; (21)
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V ar(α̂(n)) = σ2{I − (I − hWΛ)n}2Λ−1; (22)

mse(α̂(n)) = tr(V ar(α̂(n))) + (bias(α̂(n)))′(bias(α̂(n)))

= σ2
p∑
i=1

{1− (1− hwiiλi)n}2λ−1
i +

p∑
i=1

(1 − hwiiλi)2nα2
i . (23)

3. Mean Square Error Comparisons of α̂ and α̂(n)

In this section our objective is to compare the mean square error matrices. For
this purpose consider the difference between MSE(α̂) and MSE(α̂(n)) as

S = MSE(α̂) −MSE(α̂(n)) = σ2Λ−1 − σ2{I −B}2Λ−1 − Bαα′B
= σ2{2B −B2}Λ−1 −Bαα′B
= T −Bαα′B, (24)

where B = (I − hWΛ)n and T = σ2{2B − B2}Λ−1 . For

0 < δi =
q∑
j=1

cjλ
j
i < 1,

and 0 < h < 1/δmax , the i-th diagonal element of B, bii , is 0 < bii = [1 − hδi]n < 1,
then the i-th diagonal element of T, tii , is

tii = (σ2/λi)(2 − bii)bii > 0, (25)

where λi > 0 because X′X is a positive definite matrix. Since T is a diagonal matrix
and all diagonal elements are positive, T is a positive definite matrix. Thus, using
Farebrother’s theorem in [5]: Let A be p.d. matrix, let c be a nonzero vector and let d
be a positive scalar. Then dA− cc′ is p.d. iff c′A−1c is less than d . From this we obtain
that S > 0 if and only if α′B′T−1Bα < 1 and then

α′B′T−1Bα =
p∑
i=1

[(λibii)/(2− bii)]α2
i < σ2, (26)

or

α′diag

(
λibii

2− bii

)
α < σ2. (27)

Since as

n→ ∞ lim
(
λibii

2− bii

)
= 0 for i = 1, 2, . . . , p,

there exists an integer n0 such that MSE(α̂)−MSE(α̂(n)) is p.d. for all n > n0 .
Now, we may state the following theorem.
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Theorem 3.1. A sufficient condition for the generalized inverse estimator, α̂(n) , to
have smaller mse than the least squares estimator, α̂ , is

n > max

 ln
(

2σ2

σ2+λiα2
i

)
ln(1− hwiiλi)

 (i = 1, 2, . . . , p). (28)

where wii is the i-th diagonal element of W , and αi is the i-th element of α .

Consequently under the conditions (27) or (28) the new iteration estimator β̂(n)
(or α̂(n) ) is superior to β̂ (or α̂).

Note that if we take c1 > 0, c2 = c3 = · · · = cq = 0 the matrix G and condition
(14) become G = c1X

′, |1 − c1λi| < 1, respectively, and we obtain 0 < c1 < 2/λmax .
So we have seen that the generalized inverse estimator β̂(n) is reduced to β̂m,γ , which is
called a iteration estimator and is defined by Trenkler in [13].

4. Numerical Example

In this section, we used a particular model with a data set often used in ex-
amination of multicollinearity problems. The data (Hald (1952)) are from Daniel and
Wood (1971, pp.100) [3]. For this data, we get the following results: the eigen val-
ues of X′X are 2.235, 1.576, 0.186, 0.002, the least squares estimate of α is α̂ =
(0.65696,−0.00831, 0.3028, 0.388)′ and mse(α̂) = 1.225, σ̂2 = 0.00196. The condition
number is 1117. So there is multicollinearity. Table 1 gives generalized inverse estimator
α̂(n) of α for various values of c1, c2, n and also the values of mse(α̂(n)). q = 2 and
h = 1 are taken for simplicity of calculations.

The value n0 of n in (28) is computed by using the unbiased estimates of α and
σ2 . From the results in Table 1 we can say that α̂(n) is superior to α̂ for the selected
values of n0 .

Table 1. Values of α̂(n) and mse(α̂(n)) for various values of c1, c2, n .

c1 c2 n0 α̂(n) mse(α̂(n))
0.2 0.1 40 (0.65696, -0.00831, 0.24522, 0.00616)’ 0.15833
0.2 0.1 45 (0.65696, -0.00831, 0.25601, 0.00692)’ 0.15751
0.2 0.0 45 (0.65696, -0.00831, 0.24781, 0.00692)’ 0.15787
0.1 0.15 70 (0.65696, -0.00831, 0.24663, 0.00539)’ 0.15879
0.1 0.0 105 (0.65696, -0.00831, 0.24141, 0.00654)’ 0.15831
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5. Conclusions

Computationally, use of the generalized inverse estimator appears to be very at-
tractive since no matrix inversion is required. So it can be reasonable to use the gen-
eralized inverse estimator. Furthermore, when multicollinearity exists the total variance
(tr(V ar(α̂)) of the least squares estimator increases but

V (α̂(n)) = tr(V ar(α̂(n))) = σ2

p∑
i=1

{1− (1− hwiiλi)n}2λ−1
i

tends to a finite limit when λp approaches zero. Therefore, when multicollinearity exists
the generalized inverse estimator, α̂(n) , is remarkably robust
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SAKALLIOĞLU & AKDENİZ
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S. SAKALLIOĞLU& F. AKDENİZ
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