SOME COMMUTATIVITY PROPERTIES FOR RINGS WITH UNITY

Hamza A.S. Abujabal

Abstract

In this paper, we prove the commutativity of a ring R with unity satisfying one of the following ring properties:

(P1) For each x, y in R, \(1 - h(yx^r))\{x, yx^r - f(yx^r)\}(1 - g(yx^r)) = 0\) for some \(f(X) \in X^2\mathbb{Z}[X]\) and \(g(X), h(X) \in X\mathbb{Z}[X]\).

(P2) Given x, y in R, \(1 - h(yx^r))\{x, yx^r - f(x^r)y\}(1 - g(yx^r)) = 0\) and \(1 - \tilde{h}(xy^r))\{y, y^x - \tilde{f}(xy^r)\}(1 - \tilde{g}(xy^r)) = 0\) for some \(f(X), \tilde{f}(X) \in X^2\mathbb{Z}[X]\) and \(g(X), \tilde{g}(X), h(X), \tilde{h}(X) \in X\mathbb{Z}[X]\).

(P3) For each $x, y \in R$, \(|x, yx^r - x^4f(y)x^t| = 0\) for some \(f(X) \in X^2\mathbb{Z}[X]\).

Introduction

Throughout this paper R will represent a ring with unity 1, $N(R)$ the set of nilpotent elements in R, $N'(R)$ the subset of $N(R)$ consisting of all elements $a \in R$ with $a^2 = 0$ and $U(R)$ the group of units in R. For $x, y \in R$, the commutator $xy - yx$ will be denoted by $[x, y]$. Let \mathbb{Z} be the ring of integers and let r, s and t be non-negative integers.

In this paper we consider the following properties:

(P1) For each $x, y \in R$, \(1 - h(yx^r))\{x, yx^r - f(yx^r)\}(1 - g(yx^r)) = 0\) for some \(f(X) \in X^2\mathbb{Z}[X]\) and \(g(X), h(X) \in X\mathbb{Z}[X]\).

(P2) Given x, y in R, \(1 - h(yx^r))\{x, yx^r - f(x^r)y\}(1 - g(yx^r)) = 0\) and \(1 - \tilde{h}(xy^r))\{y, y^x - \tilde{f}(xy^r)\}(1 - \tilde{g}(xy^r)) = 0\) for some \(f(X), \tilde{f}(X) \in X^2\mathbb{Z}[X]\) and \(g(X), \tilde{g}(X), h(X), \tilde{h}(X) \in X\mathbb{Z}[X]\).

(P3) For each $x, y \in R$, \(|x, yx^r - x^4f(y)x^t| = 0\) for some \(f(X) \in X^2\mathbb{Z}[X]\).
Main Results

The main results of this paper are stated as follows:

Theorem 1. Let R be a ring with unity 1. If R satisfies (P_1), then R is commutative.

Theorem 2. Let R be a ring with unity 1. If R satisfies (P_2), then R is commutative.

Theorem 3. Let R be a ring with unity 1. If R satisfies (P_3), then R is commutative.

As is easily seen from the proof of [5, Korollar (1)], if R is a non-commutative ring, then there exists a factor subring of R which is of type (a), (b), (c), (d) or (e):

(a) \(\begin{pmatrix} GF(p) & GF(p) \\ 0 & GF(p) \end{pmatrix} \), p a prime.

(b) \(M_{\sigma}(F) = \left\{ \begin{pmatrix} \alpha & \beta \\ 0 & \sigma(\alpha) \end{pmatrix} \mid \alpha, \beta \in F \right\} \), where F is a finite field with a non-trivial automorphism σ.

(c) A non-commutative division ring.

(d) A domain $S = (1) + T, T$ is a simple radical subring of S.

(e) $S = (1) + T, T$ is a non-commutative subring of S such that $T[T, T] = [T, T]T = 0$.

The following result plays an essential role in our subsequent study:

Meta Theorem. Let P be a ring property which is inherited by factor subrings. If no rings of type (a), (b), (c), (d), or (e) satisfy P, then every ring with 1 and satisfying P is commutative.

Proof of Theorem 1. In view of Meta Theorem, it suffices to show that R cannot be of type (a), (b), (c), (d) or (e). For each $f(X) \in X^2Z[X]$ and $g(X), h(X) \in XZ[X]$, we set

\[x = e_{11} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \quad \text{and} \quad y = e_{21} = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \]

in the hypothesis to get

\[\{1 - h(e_{21}e_{11}^r)\}[e_{11}, e_{21}e_{11}^r - f(e_{21}e_{11}^r)]\{1 - g(e_{21}e_{11}^r)\} = e_{21} \neq 0. \]

This is a contradiction.

Suppose that $R = M_{\sigma}(F)$, and put

\[x = \begin{pmatrix} \alpha & 0 \\ 0 & \sigma(\alpha) \end{pmatrix}, \quad (\sigma(\alpha) \neq \alpha) \quad \text{and} \quad y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} = e_{21}. \]

432
Then for each \(f(X) \in X^2\mathbb{Z}[X] \) and \(g(X), h(X) \in \mathbb{Z}[X] \) we have
\[
\{1 - h(yz^r]\}[[x, yz^r - f(yz^r)]\{1 - g(yz^r)] = \epsilon_{21}(\alpha^r (\alpha - \sigma(\alpha)) \neq 0,
\]
which is a contradiction.

Suppose that \(R \) is a division ring. For any \(x \neq 0 \) and \(y \) in \(R \), there exist \(f(X) \in X^2\mathbb{Z}[X] \) and \(g(X), h(X) \in \mathbb{Z}[X] \) such that
\[
\{1 - h(yz^r]\}[[x, yz^r - f(yz^r)]\{1 - g(yz^r)] = 0.
\]

Thus
\[
\{1 - h(y)\}[[x, y - f(y)]\{1 - g(y)] = 0.
\]

Then either \(y, y - f(y) = 0 \) or \(y - yg(y) = 0 \) or \(y - yh(y) = 0 \). Therefore \(R \) is commutative by [3, Theorem 3].

Let \(u, v \in T \). Then \(u = 1 + v \in U(R) \), and there exist \(f(X) \in X^2\mathbb{Z}[X] \) and \(g(X), h(X) \in \mathbb{Z}[X] \) such that
\[
0 = \{1 - h(wv^ru^r]\}[[u, wv^ru^r - f(wv^ru^r)]\{1 - g(wv^ru^r)]\}
\]

Thus
\[
0 = \{1 - h(w]\}[[u, w - f(w)]\{1 - g(w)]
\]

Then, either \([u, w - f(w)] = 0 \), \(w - wzg(w) = 0 \) or \(w - wgh(w) = 0 \). Hence, \(T \) is commutative by [3, Theorem 3]. But this is a contradiction.

Finally, suppose that \(R \) is of type (e). Let \(v, v \in T \). Then \(u = 1 + v \in U(R) \) and there exist \(f(X) \in X^2\mathbb{Z}[X] \) and \(g(X), h(X) \in \mathbb{Z}[X] \). In the hypothesis, replace \(x \) by \(1 + v \) and \(y \) by \(w \), to get
\[
0 = \{1 - h(w(1 + v)^r]\}[[1 + v), w(1 + v)^r - f(w(1 + v)^r)]\{1 - g(w(1 + v))]\}
\]

Thus
\[
0 = \{1 - h(w(1 + v)^r]\}[[1 + v)\{1 + v)^r][v, w]\{1 - g(w(1 + v))]\}
\]

This implies that \([v, w] = 0 \). Therefore \(T \) is commutative. This is a contradiction.

Proof of Theorem 2. Let \(x, y \in R \) and let \(f(X) \in X^2\mathbb{Z}[X] \) and \(g(X), h(X) \in \mathbb{Z}[X] \) such that
\[
\{1 - h(yx^r]\}[[x, yx^r - f(yx^r)]\{1 - g(yx^r)] = 0.
\]

Let \(z \in R \) such that \(f(x^r) = x^rz \) and \(f(yx^r) = xz^r \). Now we choose \(f(X) \in X^2\mathbb{Z}[X] \) and \(\tilde{g}(X) f(X) \in \mathbb{Z}[X] \) such that
\[
0 = \{1 - \tilde{h}(f(yx^r]\}[[x, f(x^r) y - \tilde{f}(f(yx^r))]\{1 - \tilde{g}(f(yx^r))]\}
\]

and
\[
0 = \{1 - \tilde{h}(xz^r]\}[[x, x^r z - \tilde{f}(xz^r)]\{1 - \tilde{g}(xz^r)]\}
\]

Now, combining (1) and (2) gives
\[
0 = \{1 - \tilde{h}(f(yx^r]\}[[1 - h(yx^r)]\{1 - h(yx^r)]\{1 - g(yx^r)]\{1 - g(yx^r)]\}
\]

433
This implies that
\[0 = \{ 1 - h(yx^r) \} [x, yx^r - f(yx^r)] \{ 1 - g(yx^r) \}. \]

By using the same line of the proof of Theorem 1, we prove the commutativity of \(R \).

In preparation for proving Theorem 1, we first establish the following Lemmas:

Lemma 1. If \(R \) satisfies \((P_3)\) and \(x \) is in \(U(R) \), then for each \(y \in R \), there exists \(h(X) \in X^2Z[X] \) such that \([x, y - h(y)] = 0 \).

Proof. Let \(x \in U(R) \) and \(y \in R \). Then we choose \(f(X) \in X^2Z[X] \) such that
\[[x^{-1}, yx^{-r} - x^{-s} f(y)x^{-t}] = 0. \]
Hence \([x, yx^{-r} - x^{-s} f(y)x^{-t}] = 0 \) and \([x, y] x^{-r} = x^{-s}[x, f(y)] x^{-t} \). Thus
\[x^s[x, y] x^t = [x, f(y)] x^r. \] (3)

Now let \(g(X) \in X^2Z[X] \) such that \([x, f(y) x^{-r} - x^{-s} f(g(y)) x^{-t}] = 0. \) Since \(g(f(X)) \in X^2Z[X] \) and
\[[x, f(y)] x^{-r} = x^s[x, h(y)] x^t. \] (4)

Combining equation (3) and (4) gives \(x^s[x, y] x^t = x^s[x, h(y)] x^t \) and so \([x, y] = [x, h(y)] \). Therefore, \([x, y - h(y)] = 0 \). \(\square \)

Lemma 2. If \(R \) satisfies \((P_3)\) and \(R \) is a division ring, then \(R \) is commutative.

Proof. Let \(R \) be a division ring. By Lemma 1, for each \(x, y \in R \), there exists \(f(X) \in X^2Z[X] \) such that \([x, y - f(y)] = 0. \) Thus \(R \) is commutative by [3, Theorem 3]. \(\square \)

Lemma 3. If \(R \) satisfies \((P_3)\) and \(R = (1) + T \), \(T \) is a radical subring of \(R \), then \(R \) is commutative.

Proof. Let \(v, w \in T. \) Then \(1 - v \) is a unit and by Lemma 1, there exists \(f(X) \in X^2Z[X] \) such that
\[[v, w - f(w)] = [1 - v, w - f(w)] = [v, w - f(w)] = [1 - v, w - f(w)] = 0. \]

Thus \(R \) is commutative by [3, Theorem 3]. \(\square \)

434
Proof of Theorem 3. In view of Lemma 2 and Lemma 3, no rings of type (c) or (d) satisfy \((P_3) \). In \(R = M_2(GF(p)) \), where \(GF(p) \) is the Galois field over a prime \(p \), we see that \([e_{11}, e_{21}e_{11} - e_{11}f(e_{21})e_{11}] = e_{21} \neq 0 \), for every \(f(X) \in X^2 \mathbb{Z}[X] \). Thus we have a contradiction. Hence, no rings of type (a) satisfy \((P_3) \).

Next consider the ring \(M_2(F) \). Let
\[
x = \begin{pmatrix} \alpha & 0 \\ 0 & \sigma(\alpha) \end{pmatrix}, \quad (\sigma(\alpha)) \neq \alpha \quad \text{and} \quad y = e_{21}.
\]
Then
\[
[x, yx^r - x^sf(y)x^t] = [x, y]^t
= (\sigma(\alpha) - \alpha)y\alpha^r
= (\alpha - \sigma(\alpha))\alpha^r y \neq 0
\]
for every \(f(X) \in X^2 \mathbb{Z}[X] \).

Finally, suppose that \(R \) is of type (e). For each \(v, w \in T \), there exists \(f(X) \in X^2 \mathbb{Z}[X] \) such that
\[
[v, w] = [v, w](v + 1)^r - (v + 1)^s[v, f(w)](v + 1)^t = 0.
\]
This is a contradiction.

We have thus seen that no rings (a), (b), (c), (d) or (e) satisfy \((P_3) \). Hence \(R \) is commutative by Meta Theorem.

References

Hanaza A.S. ABUJABAL
Department of Mathematics, Faculty of Science,
King Abdulaziz University, P.O. Box 31464
Jeddah 21497, Saudi Arabia

Received 21.06.1996