ON COINCIDENCE POINTS OF DENSIFYING MAPPINGS

M. S. Khan & Z. Q. Liu

Abstract

A coincidence point theorem for a new class of densifying mappings is obtained. Our result generalizes many previously known theorems and can be regarded as an extension of Jungck’s fixed point theorem for densifying mappings.

Key words and phrases: complete metric space, common fixed points, densifying mappings, commuting mappings.

1. Introduction

Using the fact that a fixed point of any mapping can be regarded as a common fixed point of the mapping and the identity mapping, Jungck [3] obtained a generalization of the celebrated Banach Contraction Principle by replacing the identity mapping by a continuous mapping. In the past few years, Jungck Contraction Principle has been extensively studied by many mathematicians for single-valued as well as for multi-valued mappings in metric, 2-metric, Banach, uniform and probabilistic metric spaces.

In this note, we intend to prove a generalization of Jungck’s fixed point theorem for a class of densifying mappings, a notion introduced and studied by Furi and Vignoli [2]. It is well-known that a contraction mapping, completely continuous mappings and a number of others are densifying. Also, the results due to Furi and Vignoli [2] are more general than a number of known results. Recently, Liu [5] obtained some interesting results on fixed points for densifying mappings.

We remark that we are not aware of any research paper dealing with the ideas presented here.

*AMS (MOS) subject classification (1980): Primary 54H25
2. Preliminaries

Let \((X, d)\) denote a metric space, and \(f\) be a mapping of \(X\) into itself.

Definition 2.1. (Kuratowski [4]). Let \(A\) be a bounded subset of \(X\). Then \(\alpha(A)\), the measure of non-compactness of \(A\), is the infimum of all \(\epsilon > 0\) such that \(A\) admits a finite covering consisting of subsets with diameters less than \(\epsilon\).

Then following properties of \(\alpha\) are well-known:

(i) \(0 \leq \alpha(A) \leq \delta(A)\), where \(\delta(A)\) stands for the diameter of \(A\).

(ii) \(\alpha(A \cup B) = \max\{\alpha(A), \alpha(B)\}\) for bounded subset \(A\) and \(B\) of \(X\),

(iii) \(A \subseteq B \Rightarrow \alpha(A) \leq \alpha(B)\).

(iv) \(\alpha(A) = 0 \iff A\) is pre-compact (i.e. totally bounded).

(v) \(\alpha(A) = \alpha(\bar{A})\).

Definition 2.2. (Furi and Vignoli [2]). A continuous mapping \(f\) on a metric space \(X\) into itself is said to be densifying, if for every bounded subset \(A\) of \(X\) with \(\alpha(A) > 0\), we have \(\alpha(f(A)) < \alpha(A)\).

Definition 2.3. (Sastry and Naidu [9]). A self-mapping \(f\) on a metric space \(X\) is said to be nearly-densifying if \(\alpha(f(A)) < \alpha(A)\) for every \(f\)-invariant and bounded subset \(A\) of \(X\) with \(\alpha(A) > 0\).

Definition 2.4. (Sastry and Naidu [9]). Let \(f, g\) and \(s\) be the three self-mappings on a metric space \(X\), and \(S\) be the subsemigroup generated by \(f, g\) and \(s\) in the semigroup of all self-mappings on \(X\) with composition operation. Then for any \(x \in X\), the orbit \(\theta(x)\) at \(x\) is defined by

\[\theta(x) = \{y \in X : y = x \text{ or } y = hx \text{ for some } h \in S\}\].

3. Results

Throughout this section, \(X\) stands for a complete metric space. Also for some \(x_0 \in X\), the orbit \(\theta(x_0)\) is assumed to be bounded.

Let \(F_1, F_2 : X \times X \to [0, \infty)\) be such that either \(F_1\) or \(F_2\) is lower semi-continuous, and further \(F_1(x, x) = F_2(x, x) = 0\) for all \(x \in X\).

The following is our main result.
Theorem 3.1. Let \(f, g \) and \(s \) be three continuous and nearly densifying self-mappings on \(X \) such that \(s \) commutes with \(f \) and \(g \). Suppose that

(i) \(F_1(fx, gy) < \max\{F_2(sz, sy), F_2(sz, fx), F_2(sy, gy), \{\min\{F_2(sz, gy), F_1(fx, sy)\}\} \}

\[
\frac{F_2(sz, gy)F_1(sy, gy)}{F_1(fx, gy)}, \quad \frac{F_2(sz, fx)F_1(sy, gy)}{F_1(fx, gy)}, \quad \frac{F_2(sz, gy)}{F_1(fx, gy)}, \quad \frac{[F_1(sy, gy)]^2}{F_1(fx, gy)}, \quad \frac{F_2(sz, fx)}{F_2(sz, sy)}, \quad \frac{F_2(sz, sy)}{F_2(sz, sy)}.
\]

for \(sx \neq sy \) and \(fx \neq gy \), and also

(ii) \(F_2(gx, fy) < \max\{F_1(sz, sy), F_1(sz, gx), F_2(sy, fy), \{\min\{F_2(sz, sy), F_1(gx, fy)\}\} \}

\[
\frac{F_1(sz, sy)F_2(sy, fy)}{F_2(gx, fy)}, \quad \frac{F_1(sz, gx)F_2(sy, fy)}{F_2(gx, fy)}, \quad \frac{F_1(gx, sy)F_2(sx, fy)}{F_2(gx, fy)}, \quad \frac{[F_2(sy, fy)]^2}{F_2(gx, fy)}, \quad \frac{F_1(sz, sy)}{F_1(sz, sy)}, \quad \frac{F_1(sz, sy)}{F_1(sz, sy)}.
\]

for \(sx \neq sy \) and \(gx \neq fy \). Then \(f \) and \(s \) or \(g \) and \(s \) has a coincidence point.

Proof. Let \(x_0 \in X \) such that \(\theta(x_0) \) is bounded. Put \(A = \theta(x_0) \). Then

\[A = \{x_0\} \cup f(A) \cup g(A) \cup s(A). \]

So

\[\alpha(A) = \max\{\alpha(f(A)), \alpha(g(A)), \alpha(s(A))\}. \]

As \(f, g \) and \(s \) are nearly densifying mappings, one easily observes that \(\alpha(A) = 0 \) and thus \(A \) is compact since \(X \) is complete. Let

\[B = \bigcap_{n=1}^{\infty} S^n(\bar{A}). \]

Then as proved in Theorem 2 of Shih and Yeh [10], we can show that \(B \) is a non-empty compact subset \(\bar{A} \) and \(s(B) = B \). So \(s^2(B) = B \). Further, it is clear that \(f(B) \subset B \) and \(g(B) \subset B \). Now assume that \(F_1 \) is lower semi-continuous. Define \(\phi : B \to [0, \infty) \) by putting \(\phi(x) = F_1(sz, gx) \). Then \(\phi \) is a lower semi-continuous function on a compact set \(B \) and hence attains its minimum value \(p \in B \). Clearly, \(p \in s^2(B) \). So there is a \(w \in B \)
such that \(p = s^2(w) \). Suppose that neither \(f \) and \(s \) nor \(g \) and \(s \) have a coincidence point. Then

\[
\phi(fg(w)) = F_1(sfg(w), gfg(w)) \\
= F_1(fsg(w), gfg(w)) \\
< \max \{ F_2(s^2(g(w)), sfg(w)), F_2(s^2(g(w)), fsg(w)), F_1(sfg(w), gfg(w)), \\
\min \{ F_2(s^2(g(w)), fsg(w)), F_1(sfg(w), sfg(w)) \}, \\
F_2(s^2(g(w)), sfg(w))F_1(sfg(w), fsg(w))F_1(fsg(w), fsg(w))F_1(sfg(w), gfg(w)) \\
F_2(s^2(g(w)), gfg(w))F_1(fsg(w), sfg(w)) \}^2, \\
F_2(s^2(g(w)), sfg(w))F_1(fsg(w), gfg(w))F_2(s^2(g(w)), fsg(w))F_1(fsg(w), gfg(w)) \}
\]

\[
= F_2(s^2(g(w)), sfg(w)) \text{ (By (i))} \\
= F_2(gs^2(w), fsg(w)) \\
< \max \{ F_1(s^3(w), s^2(g(w))), F_1(s^3(w), gs^2(w)), F_2(s^2(g(w)), fsg(w)), \\
\min \{ F_1(gs^2(w), s^2(g(w))), F_2(s^3(w), fgs(w)) \}, \\
F_1(s^3(w), s^2(g(w)))F_2(s^2(g(w), fsg(w)))F_1(s^3(w), gs^2(w))F_2(s^2(g(w), fsg(w))) \\
F_2(gs^2(w), fsg(w))F_1(gs^2(w), sfg(w)) \}^2, \\
F_1(s^3(w), s^2(g(w)))F_2(s^2(g(w), fsg(w)))F_1(s^3(w), gs^2(w))F_2(s^2(g(w), fsg(w))) \}
\]

\[
= F_1(s^3(w), s^2(g(w))) \text{ (By (ii))} \\
= F_1(s(s^2(w)), g(s^2(w))) = F_1(s(p), g(p)) = \phi(p),
\]

a contradiction to the choice of \(p \). Hence \(f \) and \(s \) or \(g \) and \(s \) must have a coincidence point. Similarly, when \(F_2 \) is lower semi-continuous, we can prove the existence of a coincidence point of \(f \) and \(s \) or \(g \) and \(s \).

\[\square\]

Theorem 3.2. Let \(f, g, s, F_1 \) and \(F_2 \) be as in the statement of Theorem 3.1. If \(z \) is a
common coincidence point of \(f, g \) and \(s \), then \(sz \) is a unique common fixed point of \(f, g \) and \(s \).

Proof. Given that \(z \) is a common coincidence point of \(f, g \) and \(s \). Then \(fz = gz = sz \).

Using commutativity of \(s \) with \(f \) and \(g \), we see that \(f(sz) = s(fz) = s(sz) = s(gz) = g(sz) \). Now suppose that \(sz \neq sz \). Then

\[
F_1(sz, sz) = F_1(fsz, gz) \\
< \max\{F_2(sz, sz), F_2(sz, fsz), F_1(sz, gz), \min\{F_2(sz, gz), F_1(fsz, sz)\}, \frac{F_2(sz, sz)F_1(sz, gz)}{F_1(fsz, gz)}\} \\
\frac{F_2(sz, gz)F_1(fsz, sz)}{F_1(fsz, gz)} \cdot \frac{[F_1(sz, gz)]^2}{F_1(fsz, gz)}, \\
\frac{F_2(sz, sz)F_1(sz, gz)}{F_2(sz, sz)} \cdot \frac{F_2(sz, sz)}{F_2(sz, sz)} \cdot \frac{[F_2(sz, sz)]^2}{F_2(sz, sz)} \\
= F_2(sz, sz) = F_2(gsz, fz) \\
< \max\{F_1(sz, sz), F_1(sz, gsz), F_2(sz, fz), \min\{F_1(gsz, sz), F_2(sz, gz), \frac{F_1(sz, sz)F_2(sz, gz)}{F_1(gsz, sz)}\}, \frac{F_1(sz, sz)F_2(sz, gz)}{F_1(gsz, sz)}\} \\
\frac{F_1(sz, sz)F_2(sz, fz)}{F_1(sz, sz)} \cdot \frac{[F_2(sz, fz)]^2}{F_2(sz, fz)} \\
\frac{F_1(sz, sz)F_2(sz, fz)}{F_1(sz, sz)} \cdot \frac{F_1(sz, sz)}{F_1(sz, sz)} \cdot \frac{[F_1(sz, sz)]^2}{F_1(sz, sz)} \\
= F_1(sz, sz),
\]

which is a contradiction. Hence \(sz = sz \). Thus \(sz \) is a common fixed point \(f, g \) and \(s \).

The unicity of a common fixed point follows from (i) and (ii). This completes the proof. \(\square \)

Corollary 3.3. Let \(f, g \) and \(s \) be three continuous and nearly densifying self-mappings on \(X \) such that \(s \) commutes with \(f \) and \(g \). Suppose that

(iii) \(\ldots F_1(fx, gy) < \max\{F_2(sx, gys), F_2(sx, fx), F_1(sy, gy)\} \) for \(sx \neq sy \) and \(fx \neq gy \), and also
(iv) \(F_2(gx, fy) < \max\{F_1(sx, sy), F_1(sx, gy), F_2(sy, fy)\} \) for \(sx \neq sy \) and \(gx \neq fy \).

Then \(f \) and \(s \) or \(g \) and \(s \) have a coincidence point.

Remark Corollary 3.3 extends results due to Ray-Fisher [6], Fisher-Khan [1], Ray-Chatterjee [7] and Singh [11].

Corollary 3.4. Let \(f, g \) and \(s \) be three continuous and nearly densifying self-mappings on \(X \) such that \(s \) commutes with \(f \) and \(g \). Suppose that

\[
F_1(fx, gy) < F_2(sx, sy)
\]

for \(sx \neq sy \) and \(fx \neq gy \), and also

\[
F_2(gx, fy) < F_1(sx, sy)
\]

for \(sx \neq sy \) and \(gx \neq fy \). Then \(f \) and \(s \) or \(g \) and \(s \) have coincidence point.

Remark For \(F_1 = F_2 \) and \(f = g \), Corollary 3.4 can be regarded as an extension of Jungck’s theorem [3] for densifying mappings.

Finally, we state the following result which is motivated by the contraction condition given in Roades [8], and can be proved using techniques of Theorem 3.1.

Theorem 3.5. Let \(f, g \) and \(s \) be three continuous and nearly densifying self-mappings on \(X \) such that \(s \) commutes with \(f \) and \(g \). Suppose that the inequality

\[
F(fx, gy) < \max\{F(sx, sy), F(sx, fy), F(sy, gy), \frac{1}{2}[F(sx, gy) + F(sy, fx)]\}
\]

holds for \(sx \neq sy \) and \(fx \neq gy \), where \(F : X \times X \to [0, \infty) \) is a lower semi-continuous symmetric function satisfying triangle inequality and \(F(x, x) = 0 \) for all \(x \in X \). Then \(f \) and \(s \) or \(g \) and \(s \) have a coincidence point.

The following example reveals that \(f, g \) and \(s \) in Theorem 3.1, 3.5 and Corollaries 3.3, 3.5 do not necessarily have a coincidence point and that if either \(f \) and \(s \) or \(g \) and \(s \) have a coincidence point, then the coincidence point may not be unique.

Remark Let \(X = \{0, 1, 2\} \) with \(F : X \times X \to [0, \infty) \) defined \(F(x, x) = 0 \) for all \(x \in X \), and \(F(1, 0) = F(0, 1) = 1, F(1, 2) = F(2, 1) = 1.1, F(0, 2) = F(2, 0) = 2. \) Define mappings \(f, g \) and \(s \) on \(X \) by
KHAN & LIU

\[f_0 = 0, f_1 = f_2 = 1, \]
\[g_0 = 1, g_1 = g_2 = 0, \]
\[s_0 = 0, s_1 = 1, s_2 = 2. \]

Take \(F_1 = F_2 = F \) in Theorems 3.1 and Corollaries 3.3, 3.4. Then \(f_x \neq g_y \) and \(s_x \neq s_y \) imply \((x, y) = (1, 2)\) or \((2,1)\). so,

\[F(f_x, g_y) = F(1, 0) = 1 < 1.1 = F(s_x, s_y). \]

Similarly,

\[F(g_x, f_y) = F(0, 1) = 1 < 1.1 = F(s_x, s_y) \]

for \(s_x \neq s_y \) and \(g(x) \neq f(y) \).

It is easy to show that the conditions of Theorem 3.1, 3.5 and Corollaries 3.3, 3.4 are satisfied. Clearly, \(f \) and \(s \) have two coincidence points, while \(f, g \) and \(s \) have none.

References

275
Yoğunlaştırın Dönüşümlerin Rasıntı Noktaları Üzerine

Özet

Jungck’ın sabit nokta teoremi, yoğunlaştırın dönüşümlere genelleştirilerek başlkta adı geçen noktaların varlığı kanıtlanmıştır.

M. S. KHAN
Department of Mathematics and Statistics
College of Science, Sultan Qaboos University
P. O. Box 36, Postal Code 123
Muscat, Sultanate of Oman

Z. Q. LIU
Department of Mathematics
Liaoning Normal University
Dalian, Liaoning
116029-CHINA

Received 1.8.1995