INTEGRAL CLOSURE OF AN IDEAL RELATIVE TO A MODULE AND Δ-CLOSURE

Yuçel Tiraş

Abstract

The aim in this paper is to give the relation between the Δ-closure of an ideal I in a commutative Noetherian ring R, (see [3]), and the integral closure of the ideal I relative to a Noetherian R-module (see (1.1). Definition) and to give the closure cancellation law.

1. Introduction

The important ideas of reduction and integral closure of an ideal in a commutative Noetherian ring R (with identity) were introduced by Northcott and Rees [2]; a brief and direct approach to their theory is given in [4, (1.1)] and it is appropriate for me to begin by briefly summarizing some of the main aspects.

Let a be an ideal of R. We say that a is a reduction of the ideal b of R if $a \subseteq b$ and there exists $s \in N$ such that $ab^s = b^{s+1}$ (We use N to denote the set of positive integers.). An element x of R is said to be integrally dependent on a if there exists $n \in N$ and elements $c_1, ..., c_n \in R$ with $c_i = a^i$ for $i = 1, ..., n$ such that

$$x^n + c_1x^{n-1} + \cdots + c_{n-1}x + c_n = 0.$$

In fact, this is the case if and only if a is a reduction of $a + Rx$; moreover,

$$\bar{a} = \{y \in R : y \text{ is integrally dependent on } a\}$$

is an ideal of R, called the integral closure of a, and is the largest ideal of R which has a as a reduction in the sense that a is a reduction of \bar{a} and any ideal of R which has a as a reduction must be contained in \bar{a}.

In [6], Sharp, Tiraş and Yassi introduced concepts of reduction and integral closure of an ideal I of a commutative ring R (with identity) relative to a Noetherian R-module

1991 Mathematics Subject Classification: 13A99-13B22 13B21-13E05

381
M, and they showed that these concepts have properties which reflect those of the classical concepts outlined in the last paragraph. Again, it is appropriate for me to provide a brief review.

Definition 1.1. We say that I is a reduction of the ideal J of R relative to M if $I \subseteq J$ and there exists $s \in \mathbb{N}$ such that $I \cdot J^s \cdot M = J^{s+1}M$. An element x of R is said to be integrally dependent on I relative to M if there exists $n \in \mathbb{N}$ such that

$$x^n \cdot M \subseteq \left(\sum_{i=1}^{n} x^{n-i}I^i \right) \cdot M.$$

In fact, this is the case if and only if I is a reduction of $I + Rx$ relative to M [6, (1.5) (iv)]; moreover, $I^- = \{ y \in R : y \text{ is integrally dependent on } I \text{ relative to } M \}$ is an ideal of R, called the integral closure of I relative to M, and is the largest ideal of R which has I as a reduction relative to M. In this paper, I shall indicate the dependence of I^- on the Noetherian R-module M by means of the extended notation $I^{(M)}$.

The current paper is concerned with the integral closure of an ideal I of a commutative Noetherian ring R relative to M and the Δ-closure of the ideal I. Specifically, for a multiplicatively closed set Δ of non-zero ideals of a commutative Noetherian ring R, I define the Δ-closure I_Δ of an ideal I of R and prove that, if Δ is the multiplicatively closed set defined in theorem (2.4) below, then show $I_\Delta = I^{-(M)}$ and also the closure cancellation law:

If $(JK)^{-(M)} = (JK)^{-(M)}$ and $K \in \Delta$ then $I^{-(M)} = J^{-(M)}$

2. The Closure-Cancellation Law

Throughout R will be a Noetherian ring and M will be an non-zero finitely generated R-module. I begin with a definition which will be very useful for my aims.

Definition 2.1. Let I be an ideal in R and Δ a multiplicatively closed set of non-zero ideals of R. The ascending chain condition guarantees that the set $\{(IKM : KM) : K \in \Delta \}$ has maximal elements, and since for K and J in Δ $(IJKM : KJM)$ contains both $(IJM : JM)$ and $(IKM : KM)$, we see that the set under consideration in fact contains a unique maximal element. Let I_Δ, Δ-closure of I, denote that unique maximal element.

The following theorem gives some useful properties of the Δ-closure of any ideal of R.

Theorem 2.2. Let I and J be ideals of R. Then

a) $I \subseteq I_\Delta$

b) If $I \subseteq J$ then $I_\Delta \subseteq J_\Delta$
c) $\Delta \subseteq (I)_{\Delta}$

Proof. (a) and (b) are very clear so I omit their proof. For (c), let $x \cdot y \in \Delta$ with $x \in \Delta$ and $y \in \Delta$. Then there exist ideals K_1 and K_2 in Δ such that $x \in IK_1 : K_1 M$ and $y \in JK_2 : K_2 M$. Therefore $xyK_1 K_2 M \subseteq IJK_1 K_2 M$, so $xy \in (IK_1 K_2 : K_1 K_2 M) \subseteq (IJ)_{\Delta}$, so it follows that (c) holds.

Next I give the first result, which I promised in the introductory section, in two steps.

Theorem 2.3. Let Δ be a multiplicatively closed set of ideals of R such that each ideal in Δ contains an element of R which is a non-zerodivisor on M. Let I_{Δ} be as in (2.1). Then $I_{\Delta} \subseteq I^{-(M)}$.

Proof. Let $I_{\Delta} = (IKM : KM)$ for a suitable $K \in \Delta$ and let $x \in I_{\Delta}$. Suppose that KM is generated by a_1, \ldots, a_n. Then for $x \in I_{\Delta}$ and $1 \leq i \leq n$, we have

$$x \cdot a_i = \sum_{j=i}^{n} b_{ij} a_j \text{ with } b_{ij} \in I.$$

Now by [5, (13.15)] and since $K \in \Delta$, a standard determinant argument shows that

$$x^n + c_1 x^{n-1} + \cdots + c_{n-1} x + c_n \in (O : R M),$$

where $c_i \in I^i$. This means \bar{x} is integrally dependent on \bar{I} where "\-" refers to the natural ring homomorphism $R \to R/\cdot O : M$. Thus $\bar{x} \in (\bar{I})^\cdot$, the classical integral closure of $\bar{I} = \frac{I + O : R M}{O : R M}$ in \bar{R}. Now the result follows from [6, (1.6)].

Theorem 2.4. Let $\Delta = \{J : J$ is an ideal of R which contains a non-zerodivisor on $M\}$. Assume that $I \in \Delta$. Let I_{Δ} be as in (2.3).

Then

$$I_{\Delta} = I^{-(M)}.$$

Proof. Let $x \in I^{-(M)}$. Then by [6, (1.5) (iv)], I is a reduction of $I + Rx$ relative to M. Then there exists $n \in N$ such that $I(I + Rx)^n = (I + Rx)^{n+1} M$.

Suppose $I_{\Delta} = (IKM : KM)$ for a suitable $K \in \Delta$. Then

$$x \cdot (I + Rx)^n \cdot M \subseteq I \cdot (I + Rx)^n \cdot M$$

Since $(I + Rx)^n \in \Delta$ and by the maximality of I_{Δ}, we get $x \in I_{\Delta}$. Now the result follows from (2.3).
Theorem 2.5. Let Δ and I be as in (2.4). Then
\[I_\Delta = I_\Delta K M : K M \text{ for all } K \in \Delta. \]

Proof. By the definition of I_Δ and (2.4), it is readily seen that $I_\Delta K M : K M \subseteq (I_\Delta)_\Delta = (I^{-(M)})^{-}(M)$. Thus $I_\Delta K M : K M \subseteq I_\Delta$ by [6, (1.5) (ix)]. This completes the proof since the reverse is always true.

The following proposition gives another description of I_Δ and it will be used in the proof of the closure cancellation law (2.8). \qed

Proposition 2.6. Let Δ and I be as in (2.4).
Then
\[I_\Delta = I_\Delta K M : K M = (IK)_\Delta M : K M \text{ for all } K \in \Delta. \]

Proof. $I_\Delta = I_\Delta K M : K M \subseteq (IK)_\Delta M : K M$ by (2.5) and (2.2) (c). Let $x \in (IK)_\Delta M : K M$. Then $x K M \subseteq (IK)_\Delta M$. By the definition $(IK)_\Delta = IK JM : JM$ for a suitable $J \in \Delta$. Thus we get $x \in I_\Delta$. This completes the proof. \qed

Remark 2.7. Let Δ and I be as in (2.4). Also let “−” refer to the natural ring homomorphism $R \to R/O : R M$.

Let $\Delta' = \{ J = J + O : R M : O : R M : J \in \Delta \}$. Then it is easy to see that $I_\Delta = (I_\Delta)'$.

From (2.6) we can easily get that
\[(I_\Delta)_{\Delta'} = (I_\Delta)_{\Delta'} K M : (IK)_{\Delta'} M : K M \text{ for all } K \in \Delta'. \]

Now I am in the position to give the main theorem which I promised earlier:

Theorem 2.8. (Closure-cancellation law). Let Δ and I be as in (2.4). Also let $J \in \Delta$. If $(IK)^{-}(M) = (JK)^{-}(M)$, $K \in \Delta$, then $I^{-}(M) = J^{-}(M)$.

Proof. Let “−” and Δ' be as in (2.7).
Suppose that $(IK)^{-}(M) = (JK)^{-}(M)$.
Let $x \in I^{-}(M)$. Then by [6, (1.6)], $\bar{x} \in T^{-}(M) = \left(I + O : R M \right)^{-}$, the integral closure of the ideal \bar{I} ind \bar{R}. Then, as is mentioned in the introductory section, \bar{T} is a reduction of $(\bar{I} + \bar{R} \bar{x})$. Thus there exists $s \in N$ such that $\bar{T} \cdot (\bar{I} + \bar{R} \bar{x})^s = (\bar{I} + \bar{R} \bar{x})^{s+1}$.
Therefore we get
\[\vec{x}(\vec{I} + \vec{R} \vec{x})^* \subseteq \vec{I}(\vec{I} + \vec{R} \vec{x})^*. \]

Hence
\[\vec{x} K(\vec{I} + \vec{R} \vec{x})^* M \subseteq \vec{I} K(\vec{I} + \vec{R} \vec{x})^* M \text{ for all } \vec{K} \in \Delta'. \]

Thus
\[\vec{x} \in (\vec{I} \vec{K}(\vec{I} + \vec{R} \vec{x})^* M : \vec{K}(\vec{I} + \vec{R} \vec{x})^* M). \]

Since \((IK)^{-(M)} = (JK)^{-(M)}, (IK)_\Delta = (JK)_\Delta\) by (2.4) and (2.7). Then
\[\vec{x} \in ((\vec{I} \vec{K})_\Delta(\vec{I} + \vec{R} \vec{x})^* M : \vec{K}(\vec{I} + \vec{R} \vec{x})^* M) \text{ by (2.2) (a). Thus} \]
\[\vec{x} \in ((JK)_\Delta(\vec{I} + \vec{R} \vec{x})^* M : \vec{K}(\vec{I} + \vec{R} \vec{x})^* M). \]

Now by (2.7) we get \(x \in J_\Delta = J^{-(M)}\).
Therefore it follows by symmetry that \(I^{-(M)} = J^{-(M)}\) as desired.

As the stronger converse is true as will be shown in the following theorem. \(\square\)

Theorem 2.9. Let \(\Delta, I\) and \(J\) be as in (2.8). Then the following are equivalent:

a) \(ILM = JLM\) for some \(L \in \Delta\)

b) \((IK)^{-(M)} = (JK)^{-(M)}\) for all \(K \in \Delta\)

c) \(I^{-(M)} = J^{-(M)}\)

Proof. a) \(\rightarrow\) b) This is easy by (2.2) (b), (2.4) and [6, (1.5) (ix)].

b) \(\rightarrow\) c) This is clear by (2.8).

c) \(\rightarrow\) a) \(I^{-(M)} = I_\Delta = IF_1 M : F_1 M = J_\Delta = J^{-(M)} = JF_2 M : F_2 M\) for suitable \(F_1, F_2 \in \Delta\). Let \(L = F_1 F_2\). Then \(F_1 F_2 \in \Delta\) and \(ILM = (ILM : LM)LM = (JLM : LM)LM = JLM\). This completes the proof. \(\square\)

Acknowledgements

In an extremely grateful to Prof. R. Y. Sharp, The University of Sheffield-England, for his valuable advice and suggestions on this work.
References

Bir İdealın Bir Modüle Göre İntegral Kapanışı ve Δ-Kapanışı

Özet

Bu makalede temel amaç Noetherian bir halka üzerindeki bir I idealinin [3]'de tanımlanan Δ-kapanışı ile I idealinin bir Noetherian M modülüne göre (1.1) Tanımlı verilen integral kapanışı arasındaki ilişki ve ayrıca kapanış sadeleştirme kuralını vermektir.

Yücel TIRAŞ
Hacettepe University
Department of Mathematics
Beytepe Campus
06532 Beytepe, Ankara-TURKEY

Received 14.10.1996