AN APPLICATION OF LINEAR TOPOLOGICAL INVARIANTS

Bora Arslan & Mezharet Kocatepe

Abstract

We consider a possible isomorphism of cartesian product of two Dragilev spaces of infinite type, and by making use of Zahariuta invariants and some structural properties, we show that if there is such an isomorphism, then any factor on the left is nearly isomorphic to the corresponding factor on the right.

Key Words and Phrases: Linear topological invariants, Dragilev space, Dragilev function, rapidly increasing function.

1. Introduction

Linear topologic invariants (such as approximative and diametral dimensions) as a tool of isomorphic classification of non-normed linear topological spaces appeared in investigations of Petczynski [19], Kolmogorov [11], Bessaga, Petczynski, Rolewicz [3], Mitiagin [13] and Zahariuta [24], [26], [27]. They were also initiated by Gelfand [7].

The counting functions $M_0(t, \tau)$ and $m_0(t)$ of Mitiagin first appeared in [16], [17], [18] for the power series spaces $E_0(a)$.

In [24], [30], [31], [32], by developing Mitiagin’s techniques Zahariuta introduced invariants with two or more inequalities, and in [33], [34] and [35] by making use of some geometrical considerations Zahariuta introduced invariants which we call Zahariuta invariants.

V.P. Zahariuta has proved some isomorphic classification theorems in [25] by using Riesz theory. In [23], M. Yurdakul and V.P. Zahariuta have considered the cartesian products of Montel power series spaces of finite and infinite type and proved that if $E_0(a) \times E_\infty(b)$, $E_0(\bar{a}) \times E_\infty(\bar{b})$ are isomorphic, then $E_0(a)$ is near isomorphic to $E_0(\bar{a})$ and $E_\infty(b)$ is near isomorphic to $E_\infty(\bar{b})$ by using linear topological invariants. This result is slightly weaker than the result obtained in [25]. But it shows the power of linear topological invariants. In this work we try to show that in case of the cartesian product of two Dragilev spaces of infinite type similar (and again weaker) result holds.

A.M.S. Subject classification number: 46A45

343
We made use of properties of Dragilev spaces introduced by Ahonen (for their different types) in [1]. Also we consider the relations \(f < g \) and \(f \approx g \). For each possible isomorphism, there are several possibilities of relations of the defining functions of \(L_f(a, \alpha) \) spaces. But we eliminate many of them by using the compactness theorem of Zahariuta in [25] (Theorem 4).

In order to deal with the remaining cases, we considered the synthetic neighbourhoods as defined in [10] and saw that the properties in [1] can be regarded as the property \(\mathcal{D}_\varphi \) (for some special functions \(\varphi \)) which was considered by Vogt [22] and Tidten [21] as well as Zahariuta and Goncharov [8], [29]. This gave us the freedom of using some interpolation methods as well.

2. Preliminaries

Definition 1 Let \(X \) and \(Y \) be locally convex spaces (lcs’s). A linear operator \(T : X \to Y \) is called a near-isomorphism (see [25]), if the following conditions are satisfied:

a) \(T(X) \) is closed in \(Y \) and \(T \) is an open map from \(X \) onto \(T(X) \),

b) \(\alpha(T) = \dim \text{Ker} T < \infty \),

c) \(\beta(T) = \text{codim} T(X) = \dim Y / T(X) < \infty \) (see [20]).

The lcs’s \(X \) and \(Y \) are said to be nearly isomorphic if there exists a near isomorphism \(T \) from \(X \) into \(Y \).

If the locally convex spaces \(X \) and \(Y \) are isomorphic, we write \(X \simeq Y \) and if they are nearly isomorphic we write \(X \simeq Y \). \(\mathbb{N} \) denotes the set of all positive integers.

Let \(A = (a_{i,p})_{i \in I, p \in \mathbb{N}} \) be a matrix of real numbers such that \(0 \leq a_{i,p} \leq a_{i,p+1} \) for each \(p \) and for each index \(i \) in the countable set \(I \). The Köthe space \(K(A) \), defined by the matrix \(A \) is the locally convex spaces of all families \(x = (x_i) \) of scalars such that \(\|x\|_p := \sum_{i \in I} |x_i|^{a_{i,p}} < \infty \), \(p \in \mathbb{N} \), with the topology generated by the system of seminorms \(\{\|x\|_p : p \in \mathbb{N}\} \). It is known that every Fréchet space with an absolute basis is isomorphic to some Köthe space. Let \(I = \mathbb{N} \), if \(A \) satisfies the inequality \(\frac{a_{i+1,p+1}}{a_{i,p+1}} \leq \frac{a_{i,p}}{a_{i+1,p}} \) for each \(i \in \mathbb{N} \) and for each \(p \in \mathbb{N} \), then \(A \) and \(K(A) \) are called regular [6]. The cartesian product \(K(A) \times K(B) \) of the Köthe spaces \(K(A) \) and \(K(B) \) where \(A = (a_{ip}) \), \(B = (b_{ip}), i, p \in \mathbb{N} \) is naturally isomorphic to the space \(K(C) \) where \(C = (c_{ip}) \),

\[
\begin{align*}
c_{ip} &= \begin{cases} a_{kp} & \text{if } i = 2k - 1 \\ b_{kp} & \text{if } i = 2k \end{cases}
\end{align*}
\]

Two sequences \((a_i), (b_i) \) of positive numbers are said to be weakly equivalent if there is a constant \(\Delta > 0 \) such that \(\frac{a_i}{\Delta} \leq b_i \leq \Delta a_i \), \(i \in \mathbb{N} \). In that case we write \(a_i \sim b_i \).

Let \(f \) be an increasing odd function on \((-\infty, +\infty)\) which is logarithmically convex on \([0, +\infty)\) (i.e.) \(\phi(w) = \ln f \exp w \) is convex on \((-\infty, +\infty)\) (such a function is called
a Dragilev function), \(r_k \leq r_{k+1}, \lim r_k = r, -\infty < r \leq +\infty, a = (a_n), a_n \leq a_{n+1}, \lim a_n = \infty. \)

Put \(A := \{a_n^k = \exp(f(r_k a_n)), k = 1, 2, 3, \ldots\}. \) Then the corresponding Köthe space \(\lambda(A) \) is called an \(L_f(a, r) \) space or a Dragilev space (defined by Dragilev in [6]), i.e.

\[
L_f(a, r) = \{(x_n) : \|x_n\|_k = \sum_n |x_n|e^{f(r_k a_n)} < \infty, k = 1, 2, 3, \ldots\}.
\]

Definition 2 We say that an increasing function \(\phi \) defined on \([0, +\infty)\) increases rapidly if, for every \(a > 1 \),

\[
\lim_{t \to \infty} \frac{\phi(at)}{\phi(t)} = \infty,
\]

and it increases slowly if for every \(a > 1 \),

\[
\lim_{t \to \infty} \frac{\phi(at)}{\phi(t)} = \tau_\phi(a) < \infty.
\]

It is well known that (see [6]), if \(f \) is an increasing logarithmically convex function, then \(f \) is either rapidly increasing or slowly increasing in which case \(\lim_{a \to \infty} \tau_f(a) = \infty. \) Moreover \(L_f(a, r) \) is isomorphic to a power series space if and only if \(f \) is slowly increasing. So we shall assume that \(f \) is rapidly increasing. In this case, there are four classes of Dragilev spaces corresponding to \(r = \infty, 1, 0, -1. \) If \(\phi \) is a rapidly increasing function, then for each \(A > 0, \)

\[
\lim_{t \to \infty} \frac{\phi^{-1}(At)}{\phi^{-1}(t)} = 1.
\]

Lemma 1 (Dragilev) An increasing, logarithmically convex function is either rapidly increasing or slowly increasing.

Lemma 2 Let \(h \) be a slowly increasing function. Then

\[
\lim_{a \to \infty} \tau_h(a) = \infty.
\]

We shall use the relations "\(\prec \)" and "\(\approx \)" between \(f_1, f_2, \) where \(f_1 \) and \(f_2 \) are functions satisfying the conditions of Definition 2 and \(-\infty < r \leq \infty. \) We shall write \(f_1 \prec f_2, \) if \(f_1^{-1} f_2 \) is rapidly increasing, and \(f_1 \approx f_2, \) if both \(f_1^{-1} f_2 \) and \(f_2^{-1} f_1 \) are slowly increasing. We shall say that \(f_1, f_2 \) are comparable if \(f_1 \prec f_2 \) or \(f_1 \approx f_2 \) or \(f_2 \prec f_1. \)
Theorem 1 Let \(f, \ g \) be rapidly increasing, logarithmically convex Dragilev functions, and \(f^{-1} g \) be logarithmically convex and slowly increasing function. Let \(r = \infty \) or 0. Then

\[
L_f(a, r) \simeq L_g(b, r) \text{ if and only if } f^{-1} g(b_i) \approx a_i.
\]

Proof It is given in [4] and [5] that if a nuclear Fréchet space \(X \) (with the system of seminorms \(\| \cdot \|_p \)) has two regular bases \((x_i), (y_i) \), then there exists a sequence of scalars \((\lambda_i) \) such that

\[
\sum t_i x_i \text{ converges } \iff \sum \lambda_i y_i \text{ converges},
\]

or equivalently \(\forall p \exists q = q(p) \exists C > 0 \) such that

\[
\|x_i\|_p \leq C \|\lambda_i\| \|y_i\|_q \text{ and } \|\lambda_i\| \|y_i\|_p \leq C \|x_i\|_q.
\]

Let \(r = \infty \). When \(L_f(a, \infty) \simeq L_g(b, \infty) \), \(\forall p \exists q = q(p) \exists C > 0 \) such that

(1) \(e^{f(a_{i_1})} \leq C \|\lambda_i\| e^{g(b_{i_1})} \)

(2) \(|\lambda_i| e^{g(b_{i_1})} \leq C e^{f(qa_{i_1})} \)

In (1), let \(p = 1 \). Then

\[e^{f(a_{i_1})} \leq C \|\lambda_i\| e^{g(q(1)b_{i_1})} \implies \frac{1}{C} e^{f(a_{i_1}) - g(q(1)b_{i_1})} \leq |\lambda_i| \]

for \(p = q(1), \) let \(q = q(p + 1) \). Then by (2) we have

\[|\lambda_i| e^{g((p+1)b_{i_1})} \leq C' e^{f(qa_{i_1})}. \]

Hence we obtain

\[e^{f(a_{i_1}) - g(q(1)b_{i_1}) + g((p+1)b_{i_1})} \leq C'C' e^{f(qa_{i_1})}. \]

Therefore we get, there exists \(i_1 \) such that

\[i \geq i_1 \implies g(pb_i) \leq f(qa_i) \implies \frac{f^{-1} g(b_i)}{a_i} \leq \frac{1}{q} f^{-1} g(pb_i) \leq q. \]

Similarly, starting from (2) we get for \(p = q(1) \) and \(q = q(p + 1) \), there exists \(i_2 \) such that

\[i \geq i_2 \implies f(pa_i) \leq g(qb_i) \implies \frac{f^{-1} g(b_i)}{a_i} \geq \frac{1}{p} f^{-1} g(qb_i) = \frac{p}{r^{-1} g(q)}. \]

Conversely, assume

\[\forall i \quad \frac{1}{C} \leq \frac{f^{-1} g(b_i)}{a_i} \leq C. \]

346
We will show that for each \(p \) there is a \(q \) such that for all large \(i \),

\[
(I) : f(pa_i) \leq g(qb_i) \quad \text{and} \quad (II) : g(pb_i) \leq f(qa_i).
\]

For (I), given \(p \), by Lemma 2 we find \(q \), such that for all large \(i \),

\[
\frac{f^{-1}(g(b_i))}{f^{-1}(g(b_i))} \geq pC.
\]

Then

\[
\frac{f^{-1}(g(b_i))}{a_i} = \frac{f^{-1}(g(b_i))}{f^{-1}(g(b_i))} \cdot \frac{f^{-1}(g(b_i))}{a_i} \geq pC \cdot \frac{1}{C} = p \implies f(pa_i) \leq g(qb_i).
\]

For (II), given \(p \), we find \(q \geq \tau_{f^{-1}}(p)C \). Then for all \(i \)

\[
\frac{f^{-1}(g(pb_i))}{a_i} = \frac{f^{-1}(g(pb_i))}{f^{-1}(g(b_i))} \cdot \frac{f^{-1}(g(b_i))}{a_i} \leq \tau_{f^{-1}}(p)C \leq q
\]

which implies the desired inequality.

Let \(a = (a_i) \) be a positive sequence and \(1 \leq \tau < t < \infty \). Then the counting functions \(M_a(t, \tau) \) and \(m_a(t) \) are defined as follows:

\[
M_a(t, \tau) = |\{i : \tau < a_i \leq t\}| \quad \text{and} \quad m_a(t) = |\{i : a_i \leq t\}|
\]

where \(|\cdot| \) denotes the cardinality of the set. If \(a_i \not\to \infty \), then \(M_a(t, \tau) = m_a(t) - m_a(\tau) \).

Let \(b = (b_i) \) be another positive sequence. If there is a constant \(\Delta > 0 \) such that

\[
M_a(t, \tau) \leq M_b(\Delta t, \frac{\tau}{\Delta}) \quad \text{and} \quad M_b(t, \tau) \leq M_a(\Delta t, \frac{\tau}{\Delta}),
\]

then the counting functions \(M_a, M_b \) are said to be equivalent and we write \(M_a \approx M_b \) (see e.g. [14], [15]).

The following technical lemma will be used throughout this work. It was proved in [23]. Since it plays a crucial role in our work, we present its proof here.

Lemma 3 Let \(a = (a_i) \) and \(\tilde{a} = (\tilde{a}_i) \) be increasing sequences. Assume

\[
\exists \mathbb{C} \geq 1 \exists \tau_0 > 0 : \tau_0 \leq \tau \leq t \implies M_a(t, \tau) \leq M_{\tilde{a}}(Ct, \frac{\tau}{\tilde{C}}) \quad \text{and} \quad M_{\tilde{a}}(t, \tau) \leq M_a(Ct, \frac{\tau}{\tilde{C}}).
\]

Then there is \(k \in \mathbb{Z} \) such that \(a_{i+k} < a_i \). More precisely, there is an \(i_0 \) such that

\[
i \geq i_0 \implies \frac{1}{\mathbb{C}} \leq \frac{a_{i+k}}{a_i} \leq \mathbb{C}.
\]

Proof Since \((a_i) \) and \((\tilde{a}_i) \) are increasing, the inequalities are equivalent to:

\[
\exists \mathbb{C} \geq 1 \exists \tau_0 : \tau_0 \leq \tau \leq t \implies m_a(t) - m_a(\tau) \leq m_{\tilde{a}}(Ct) - m_{\tilde{a}}(\frac{\tau}{\tilde{C}}) \quad (i)
\]

\[
m_{\tilde{a}}(t) - m_{\tilde{a}}(\tau) \leq m_a(Ct) - m_a(\frac{\tau}{C}) \quad (ii)
\]

347
Putting $\tau = \tau_0$ in (i), we get

$$\forall t \geq \tau_0 : m_\alpha(t) - m_\alpha(Ct) \leq m_\alpha(\tau_0) - m_\alpha(\frac{\tau_0}{C}).$$

So, the integer valued function $m_\alpha(\cdot) - m_\alpha(C\cdot)$ is bounded above. So it attains its maximum k at some $t = t_1 \geq \tau_0$. Thus

$$m_\alpha(t_1) - m_\alpha(Ct_1) = k$$

and

$$\forall t \geq \tau_0 \quad m_\alpha(t) \leq m_\alpha(Ct) + k \quad \text{...(I)}.$$

Putting $\tau = Ct_1$ in (ii), we get

$$\forall t \geq Ct_1 \quad m_\alpha(t) + k \leq m_\alpha(Ct) \quad \text{...(II)}$$

Since the inequalities (I) and (II) are symmetrical in k and $-k$, we may assume $k \geq 0$. (I) can be written as

$$|\{i : a_{i,k} \leq t\}| = m_\alpha(t) - k \leq m_\alpha(Ct) = |\{j : a_j \leq Ct\}|.$$

Now let n be large enough so that $a_{n+k} \geq \tau_0$ and let $t = a_{n+k}$. Then the set on the left hand side has n elements. Thus the set on the right hand side has at least n elements. Since (a_j) is increasing, we have $\tilde{a}_n \leq Ct$, i.e. $\frac{1}{C} \leq \frac{a_{n+k}}{\tilde{a}_n}$.

(II) means $|\{i : a_i \leq t\}| + k \leq |\{j : a_j \leq Ct\}|$. Let n be large enough so that $\tilde{a}_n \geq Ct_1$ and let $t = \tilde{a}_n$. Then left hand side of (II) is $n+k$. So the set on the right hand side has at least $n+k$ elements. Since (a_j) is increasing, we get $a_{n+k} \geq Ct$, i.e. $\frac{a_{n+k}}{\tilde{a}_n} \leq C$.

Let X be a lcs with an absolute basis $e = (e_i)$ and $a = (a_i)$ be a positive sequence of reals. For $1 \leq p \leq \infty$, we denote by $B_p^e(a)$ the weighted l^p-ball in it with respect to the basis e and by $B^e(a)$ the ball $B_1^e(a)$. If (e_i) is the sequence which is zero at each coordinate except the ith where it is 1, we omit e and simply write $B_p(a)$ or $B(a)$. So

$$B_p^e(a) = B_p^e(a_i) = \{x = (\xi_i) \in X : \sum |\xi_i|^p a_i^p \leq 1\}.$$

3. Linear Topological Invariants

In this and the next section, we use Zahariuta invariant β together with some geometrical considerations initiated by Zahariuta in [33], [34], [35].

We will use the following characteristic function for a pair of absolutely convex subsets in X

$$\beta(V,U) = \sup\{\dim L : L \cap U \subset V\}$$

348
where sup is taken over all finite dimensional subspaces L of X. Trivially
\[V_1 \subset V_2 \text{ and } U_2 \subset U_1 \implies \beta(V_1, U_1) \leq \beta(V_2, U_2) \]
and if $T : X \to Y$ is an isomorphism, then $\beta(V, U) = \beta(T(V), T(U))$.

Lemma 4 Let the positive sequences $a = (a_i), b = (b_i)$ be such that $\frac{b_i}{a_i} \to \infty$ and $V = B_p(b), U = B_p(a)$. Then $\beta(V, U) = |\{i : \frac{b_i}{a_i} \leq 1\}|$.

Lemma 5 Let $U = B(a), V = B(b)$ and $c = (c_i), d = (d_i)$ where
\[c_i = \max\{a_i, b_i\}, d_i = \min\{a_i, b_i\}. \]
Then $B(c) \subset U \cap V \subset B(c/2)$ and $B(d) = \overline{V}(U \cup V)$
where \overline{V} denotes the closed absolutely convex hull.

Lemma 6 Consider the balls $B(a^p), a^p = (a_{ip}), p = 1, 2, 3, 4$ in a lcs X. Then
\[
(i) \quad |\{i : \frac{\max\{a_{i3}, a_{i2}\}}{\min\{a_{i2}, a_{i1}\}} \leq 1\}| \\
\quad \leq \beta \left(B^e(a^3) \cap B^e(a^2), \overline{V}(B^e(a^3) \cup B^e(a^2)) \right).
\]
\[
(ii) \quad \beta \left(B^e(a^3) \cap B^e(a^2), \overline{V}(B^e(a^4) \cup B^e(a^1)) \right)
\leq |\{i : \frac{\max\{a_{i3}, a_{i2}\}}{\min\{a_{i4}, a_{i1}\}} \leq 1\}| \leq |\{i : \frac{a_{i3}}{a_{i4}} \leq 2, \frac{a_{i2}}{a_{i1}} \leq 2\}|.
\]

The proofs of the above lemmas can be found in [34], [35].

Remark If the balls $U_p = B^e(a^p), p = 1, 2, 3, V_0 = B^f(b^q), q = 1, 2, 3, 4$ in a lcs X are such that $V_1 \subset U_1, V_2 \subset U_2 \subset V_2, U_3 \subset V_3$ then by lemma 1.4 we have
\[|\{i : \frac{a_{i3}}{a_{i2}} \leq 1, \frac{a_{i2}}{a_{i1}} \leq 1\}| \leq |\{j : \frac{b_{j3}}{b_{j2}} \leq 2, \frac{b_{j2}}{b_{j1}} \leq 2\}|. \]
4. An Application

We shall use the following properties defined by Ahonen [1]

Definition A Köthe space $K(A) A = (a_{ip})$ is said to have the property

\[S^+_1(f), \text{ if } \exists p \forall M > 1 \forall q \exists r : \forall i \in \mathbb{N} \text{ } f^{-1} \log \frac{a_{i,q}}{a_{i,p}} \leq f^{-1} \log \frac{a_{i,r}}{a_{i,q}}. \]

\[Q^+_1(f), \text{ if } \forall p \exists q \forall r \exists M > 1 : \forall i \in \mathbb{N} \text{ } f^{-1} \log \frac{a_{i,r}}{a_{i,q}} \leq M \text{ } f^{-1} \log \frac{a_{i,q}}{a_{i,p}}. \]

The proof of the following lemma is immediate.

Lemma 7 Let $f_1 \approx f_2$. Then

(i) $L_{f_1}(a, \infty)$ does not have $S^+_1(f_2)$,

(ii) $L_{f_2}(a, \infty)$ does not have $Q^+_1(f_1)$.

One of the linear topological invariants that we will consider in this chapter is the property D_C (or DN_C). This property was considered by Vogt [22] and Tidten [21] and also by Goncharov and Zahariuta [8], [29]. Let φ be continuous, increasing function. A Fréchet space $(X, \| \cdot \|)$ is said to have property D_C if

\[\exists p \forall q \exists r \exists C > 0 : \|x\|_q \leq \varphi(s)\|x\|_p + \frac{C}{s}\|x\|_r \forall s > 0, \forall x \in X. \]

Proposition 1 Let $X = K(a_{i,p})$ be a Schwarz Köthe space. Then the following are equivalent.

(i) X has property D_C

(ii) $\exists p \forall q \exists r \exists C > 0 : \frac{a_{i,q}}{a_{i,p}} \leq \varphi\left(\frac{a_{i,r}}{a_{i,q}}\right)$.

Given a function φ as in the definition of property D_C and $u > 0$, we define

\[\Phi(u) = \inf_{s > 0} (\varphi(s) + \frac{u}{s}) \]

Proposition 2 Let $p < q < r, C > 0, K > 0$ and $2a_{i,q} \leq a_{i,q+1}$ for some i. Then

(i) $K\frac{a_{i,q}}{a_{i,p}} \leq \varphi(C\frac{a_{i,r}}{a_{i,q}}) \Rightarrow K\frac{a_{i,q}}{a_{i,p}} \leq \Phi(C\frac{a_{i,r}}{a_{i,p}})$

(ii) $\frac{a_{i,q+1}}{a_{i,p}} \leq \Phi(C\frac{a_{i,r}}{a_{i,q}}) \Rightarrow \frac{a_{i,q}}{a_{i,p}} \leq \varphi(2C\frac{a_{i,r}}{a_{i,q}})$.

Proposition 3 Let $p < r$ and

\[V = \overline{\bigcup_{k \geq 0} \left\{ \frac{1}{\varphi(k)}U_p \cap kU_r \right\}} , \quad V' = B^e(a_{i,p}\Phi(\frac{a_{i,r}}{a_{i,p}})) \]

and $\Phi(u) = \inf_{s > 0} (\varphi(s) + \frac{u}{s})$ as defined before. Then $V' \subset V \subset 3V'$.
The proofs of above propositions can be found in [10].

Note For the space \(L_f(\alpha, \infty) \) if we take
\[
\varphi_f = \exp f \frac{1}{M} f^{-1} \log
\]
we see that with the same quantifiers as in the definitions of \(S_1^+(f) \) (resp. \(Q_1^+(f) \)), the inequality \(\frac{a_k}{a_{k+1}} \leq \varphi_f \left(\frac{a_k}{a_{k+1}} \right) \) (resp. \(\varphi_f \left(\frac{a_k}{a_{k+1}} \right) \leq \frac{a_k}{a_{k+1}} \)) holds.

Theorem 2 Let \(f_1, f_2, f_3, f_4 \) be comparable Dragilev functions and assume that \(L_{f_1}(a, \infty) \times L_{f_2}(b, \infty) \) is isomorphic to \(L_{f_3}(\bar{a}, \infty) \times L_{f_4}(\bar{b}, \infty) \). Then either \(L_{f_1}(a, \infty) \approx L_{f_3}(\bar{a}, \infty) \) and \(L_{f_2}(b, \infty) \approx L_{f_4}(\bar{b}, \infty) \) or \(L_{f_1}(a, \infty) \approx L_{f_4}(\bar{b}, \infty) \) and \(L_{f_2}(b, \infty) \approx L_{f_3}(\bar{a}, \infty) \).

Proof Let \(K(C) = L_{f_1}(a, \infty) \times L_{f_2}(b, \infty) \), \(K(D) = L_{f_3}(\bar{a}, \infty) \times L_{f_4}(\bar{b}, \infty) \) and \(T: K(D) \to K(C) \) be an isomorphism. Here \(C = (c_{ip}) \), \(D = (d_{ip}) \) where
\[
c_{ip} = \begin{cases} e_{f_1(p_\alpha)} & \text{if } i = 2k - 1, \\ e_{f_2(p_\beta)} & \text{if } i = 2k \end{cases},
\]
\[
d_{ip} = \begin{cases} e_{f_3(p_\alpha)} & \text{if } i = 2k - 1, \\ e_{f_4(p_\beta)} & \text{if } i = 2k \end{cases}.
\]

Here, the only possible relations among the functions are the followings,
\[
\begin{align*}
f_4 & \approx f_1 < f_2 \approx f_3, \\
f_3 & \approx f_1 < f_2 \approx f_4, \\
f_3 & \approx f_2 < f_1 \approx f_4, \\
f_4 & \approx f_2 < f_1 \approx f_3, \\
f_1 & \approx f_2 \approx f_3 \approx f_4
\end{align*}
\]
(2)

The other cases can be eliminated by using Theorem 4 in [25], since for example if \(f_1 \approx f_2 < f_3 \approx f_4 \), any isomorphism \(T: L_{f_1}(a, \infty) \times L_{f_2}(b, \infty) \to L_{f_3}(\bar{a}, \infty) \times L_{f_4}(\bar{b}, \infty) \) will be compact. We consider the first case only.

Denoting the neighborhoods of \(K(C) \) and \(K(D) \) by \(U_p \) and \(V_p \) respectively, given \(p_1 \), we find \(p, p_2, q_1, q, q_2, r_1, r, r_2, a_1, s, s_2 \) such that
\[
\begin{align*}
T(V_{p_1}) & \succ U_p \succ T(V_{p_2}), \\
T(V_{q_1}) & \succ U_q \succ T(V_{q_2}), \\
T(V_{r_1}) & \succ U_r \succ T(V_{r_2}), \\
T(V_{a_1}) & \succ U_s \succ T(V_{s_2}).
\end{align*}
\]

Then for all \(t, \tau > 0 \) we have
\[
\begin{align*}
\beta_1 := & \beta \left(\left(\bigcup_{k>0} \left(\frac{1}{\varphi_{f_1}(k)} U_p \cap u_{U_r} \right) \right) \cap tU_r \right) \cap U_q \cap \varphi(U_q \cup \tau U_s) \leq \\
\beta_2 := & \beta \left(C \left(\left(\bigcup_{k>0} \left(\frac{1}{\varphi_{f_1}(k)} V_{p_1} \cap kV_{r_1} \right) \right) \cap tV_{r_1} \right) \cap V_{q_1} \right) \cap \varphi(V_{q_2} \cup \tau V_{s_2})
\end{align*}
\]

351
where \(\varphi_{f_1} = \exp f_1 \frac{1}{M} f_1^{-1} \log \) with \(M > 1 \) suitably chosen. Then

\[
\beta_1 \geq \beta \left(\left(B^\tau \left(c_{i,p} \Phi_{f_1} \left(\frac{c_{i,r}}{c_{i,q}} \right) \right) \right) \cap tB^\tau(c_{i,r}) \cap B^\tau(c_{i,q}) \cap \bar{\Gamma} (B^\tau(c_{i,q}) \cap \tau B^\tau(c_{i,s})) \right)
\]

\[
\geq \left\{ i : \max \left\{ \frac{c_{i,p}}{c_{i,q}}, \frac{1}{t} c_{i,r} \right\} \leq 1, \frac{c_{i,q}}{\tau c_{i,s}} \leq 1 \right\}
\]

\[
= \left\{ i : \Phi_{f_1} \left(\frac{c_{i,r}}{c_{i,p}} \right) \leq \frac{c_{i,q}}{c_{i,p}}, \frac{c_{i,r}}{c_{i,q}} \leq t, \frac{c_{i,s}}{c_{i,q}} \geq \tau \right\}
\]

\[
\geq \left\{ i : \varphi_{f_1} \left(\frac{c_{i,r+1}}{c_{i,q-1}} \right) \leq \frac{c_{i,q-1}}{c_{i,p}}, \frac{c_{i,r}}{c_{i,q}} \leq t, \frac{c_{i,s}}{c_{i,q}} \geq \tau \right\}
\]

\[
= \left| I_1 \right|
\]

If \(i = 2k \) in \(I_1 \), then \(c_{i,p} = e^{-f_2(p\beta_1)} \), but \(L_{f_2}(p, \infty) \) does not have property \(Q_{i}^+(f_1) \). So we have \(i = 2k - 1 \) and \(c_{i,p} = e^{-f_2(p\beta_4)} \). Then the first inequality holds for all large \(i \) and the last two inequalities give

\[
f_1(ra_k) - f_1(qa_k) \leq \ln t, \quad f_1(sa_k) - f_1(qa_k) \geq \ln \tau
\]

\[
\iff f_1(ra_k) \leq \ln t, \quad f_1((s-1)a_k) \geq \ln \tau
\]

\[
\iff f_1^{-1}(\ln t) \leq ak \frac{f_1^{-1}(\ln t)}{\tau}
\]

and hence \(M_a \left(\frac{f_1^{-1}(\ln t)}{r}, \frac{f_1^{-1}(\ln \tau)}{s-1} \right) \leq \left| I_1 \right| \leq \beta_1 \).

On the other hand,

\[
\beta_2 \leq \beta \left(\left(B^\tau \left(\frac{1}{3d_{i,p1}} \Phi_{f_1} \left(\frac{d_{i,r1}}{d_{i,q1}} \right) \right) \right) \cap tB^\tau(d_{i,r1}) \cap B^\tau(d_{i,q1}) \cap \bar{\Gamma} (B^\tau(d_{i,q1}) \cup \tau B^\tau(d_{i,s2})) \right)
\]

\[
\leq \left\{ i : \max \left\{ \frac{1}{3d_{i,p1}} \Phi_{f_1} \left(\frac{d_{i,r1}}{d_{i,q1}} \right), \frac{1}{t} d_{i,r1} \right\} \leq 1, \frac{1}{2C} d_{i,q1} \leq 1 \right\}
\]

\[
= \varphi_{f_1} \left(\frac{d_{i,r1}}{d_{i,q2}} \right) \leq 6C \left(\frac{d_{i,q2}}{d_{i,p1}} \right), \frac{d_{i,r1}}{d_{i,q2}} \leq 2C, \frac{d_{i,s2}}{d_{i,q1}} \geq \frac{\tau}{2C}
\]

\[
\leq \left\{ i : \varphi_{f_1} \left(\frac{d_{i,r1}}{d_{i,q2}} \right) \leq \frac{d_{i,q2}+1}{d_{i,p1}}, \frac{d_{i,r1}}{d_{i,q1}} \leq 2C, \frac{d_{i,s2}}{d_{i,q1}} \geq \frac{\tau}{2C} \right\}
\]

\[
= \left| I_2 \right|
\]

352
As before only \(i = 2k \) is possible in \(I_2 \) in which case the first inequality holds automatically and from the last two inequalities we get

\[
\beta_2 \leq |I_2| \leq M_6 \left(\frac{f_4^{-1}(\ln 2Ct)}{r_1 - 1}, \frac{f_4^{-1}(\ln \frac{t}{2C})}{s_2} \right).
\]

Since \(\beta_1 \leq \beta_2 \), we get

\[
M_\alpha \left(\frac{f_4^{-1}(\ln t)}{r}, \frac{f_4^{-1}(\ln \tau)}{s - 1} \right) \leq M_6 \left(\frac{f_4^{-1}(\ln 2Ct)}{r_1 - 1}, \frac{f_4^{-1}(\ln \frac{\tau}{2C})}{s_2} \right).
\]

Letting \(T = \frac{f_4^{-1}(\ln t)}{r}, \quad S = \frac{f_4^{-1}(\ln \tau)}{s - 1} \), we obtain

\[
M_\alpha(T, S) \leq M_6 \left(\frac{f_4^{-1}(\ln 2C + f_1(rT))}{r_1 - 1}, \frac{s_2}{f_4^{-1}(f_1((s - 1)S) - \ln 2C)} \right)
\]

\[
\leq M_6 \left(\frac{f_4^{-1}(f_1((r + 1)T))}{r_1 - 1}, \frac{f_4^{-1}(f_1((s - 2)S))}{s_2} \right)
\]

\[
\leq M_6 \left(K f_4^{-1} f_1(T), \frac{f_4^{-1} f_1(S)}{K} \right)
\]

if \(K \) is chosen such that

\[
K > \max \left\{ \lim_{x \to \infty} \frac{f_4^{-1} f_1((r + 1)x)}{(r_1 - 1)f_4^{-1} f_1(x)}, \lim_{x \to \infty} \frac{s_2 f_4^{-1} f_1(x)}{f_4^{-1} f_1((s - 2)x)} \right\}.
\]

Next choosing \(L > \lim_{x \to \infty} \frac{f_4^{-1} f_4(Kx)}{f_4^{-1} f_4(x)} \) we get

\[
M_\alpha(T, S) \leq M_{f_4^{-1} f_4(b)}(LT, \frac{S}{L}) \quad \text{for } T > S \geq S_0.
\]

We also have the symmetrical inequality

\[
M_{f_4^{-1} f_4(b)}(T, S) \leq M_\alpha(LT, \frac{S}{L}).
\]

From these two inequalities, we obtain

\[
a_i \asymp f_4^{-1} f_4(\hat{b}_{i + k_1})
\]

for some fixed integer \(k_1 \).
Next we proceed similarly for
\[
\beta \left(tU_s \cap U_q, \Gamma \left(U_p \cap \frac{1}{k} U_p \cap kU_q \right) \right)
\leq \beta \left(tV_s, \cap V_q, \Gamma \left(V_p \cap \frac{1}{k} V_p \cap kV_q \right) \right)
\]
where \(\varphi_f = \exp f_2 \frac{k}{M} f_2^{-1} \). This time we use the property \(S_1^+ \) to eliminate some indices and obtain
\[
M_b \left(\frac{f_1^{-1}(\ln t)}{s}, \frac{f_1^{-1}(\ln \tau)}{r - 1} \right) \leq M_b \left(\frac{f_3^{-1}(\ln 2Ct)}{s_1 - 1}, \frac{f_3^{-1}(\ln \tau)}{r_2} \right)
\]
which gives a constant \(M > 1 \) such that
\[
M_b(T, S) \leq M_f^{-1} f_3(s) \left(MT, \frac{S}{M} \right) \text{ for } T > S \geq S_0.
\]
This inequality together with its symmetrical inequality implies \(b_i \asymp f^1 f_3(\tilde{a}_{i+k_2}) \) for some fixed integer \(k_2 \).

References

[26] V.P. Zahariuta, Generalized Mitiagin invariants and continuum of pairwise nonisomorphic spaces of analytic functions (Russian), Funk. analiz i ego pril. 11 24-30 (1977)

Doğrusal Topolojik Değişmezlerin Bir Uygulaması

Özet

Sonsuz türde iki Dragilev uzayının kartezyen çarpımlarının mümkün olabilen bir izomorfizmini göz önünde almak. Zahariuta invaryantlarını ve bazı yapışal özelliklerini kullanarak eğer bu şekilde bir izomorfizma varsa sol taraftaki çarpımlardan her birinin sağ tarafta karşılığı gelen bir çarpına hemen hemen izomorf olduğu görülür.