DIFFERENTIABLE FUNCTIONS AND THE GENERATORS ON A HILBERT-LIE GROUP

Erdal Coşkun

Abstract
A convolution semigroup plays an important role in the theory of probability measure on Lie groups. The basic problem is that one wants to express a semigroup as a Lévy-Khinchine formula. If \((\mu_t)_{t \in \mathbb{R}_+^*}\) is a continuous semigroup of probability measures on a Hilbert-Lie group \(G\), then we define

\[T_{\mu}f := \int f_{a, \mu}(da) \quad (f \in C_u(G), t > 0). \]

It is apparent that \((T_{\mu_t})_{t \in \mathbb{R}_+^*}\) is a continuous operator semigroup on the space \(C_u(G)\) with the infinitesimal generator \(N\). The generating functional \(A\) of this semigroup is defined by \(Af := \lim_{t \to 0} \frac{1}{t} (T_{\mu_t}f(e) - f(e))\). We have the problem of constructing a subspace \(C_{(2)}(G)\) of \(C_u(G)\) such that the generating functional \(A\) on \(C_{(2)}(G)\) exists. This result will be used later to show that the Lévy-Khinchine formula holds for Hilbert-Lie groups.

Key words: Continuous convolution semigroup, operator semigroup, Hilbert-Lie group, Lévy measure, infinitesimal generator, generating functional

Introduction
Let \((\mu_t)_{t \in \mathbb{R}_+^*}\) be a continuous convolution semigroup of probability measures on a Hilbert-Lie group \(G\) and \(C_u(G)\) the Banach space of all bounded left uniformly continuous real-valued functions on \(G\). Then there is associated a strongly continuous semigroup \((T_{\mu_t})_{t \in \mathbb{R}_+^*}\) of contraction operators on \(C_u(G)\) with the infinitesimal generator \((N, D(N))\).

The generating functional \((A, D(A))\) of the convolution semigroup \((\mu_t)_{t \in \mathbb{R}_+^*}\) is defined by

\[Af := \lim_{t \to 0} \frac{1}{t} (T_{\mu_t}f(e) - f(e)) \]

for all \(f\) in its domain \(D(A)\). For finite dimensional Lie groups, infinite dimensional Hilbert spaces and Banach spaces of cotype 2, we have
COŞKUN

\[C_2(G) \subset D(A) \]

(cf. [4], [6] and [8] resp.). In this paper we shall prove that the above result is also true for a class of infinite dimensional Hilbert-Lie groups. At several points we shall use ideas and techniques used in [4]. We first obtain the Taylor expansion for the functions \(f \in C_2(G) \). In Lemma 2.1 we prove that, for every neighborhood of \(e \) in any Hilbert-Lie group \(G \), the supremum \(\sup_{t > 0} \frac{1}{t} \mu_t(U^c) \) is finite. Using this result and Banach-Steinhaus Theorem, we prove Theorem 2.9.

1. Preliminaries

\(\mathbb{N} \) and \(\mathbb{R} \) denote the sets of positive integers and real numbers, respectively. Moreover let \(\mathbb{R}_+ := \{ r : r \geq 0 \}, \mathbb{R}_+^* := \{ r : r > 0 \} \).

Let \(A \) be a set and \(B \) a subset of \(A \). Then by \(1_B \) we denote the indicator function of \(B \). Let \(I \) be a nonvoid set. \(\delta_{ij} \) is the Kronecker delta \((i,j \in I)\).

By \(G \) we denote a topological Hausdorff group with identity \(e \). \(G \) is called Polish group, if \(G \) is a topological group with a countable basis of its topology and with a complete left invariant metric \(d \) which induces the topology.

For every function \(f : G \rightarrow \mathbb{R} \) and \(a \in G \) the functions \(f^*, R_a f = f_a \) and \(L_a f = a f \) are defined by \(f^*(b) = f(b^{-1}) \), \(f_a(b) = f(ba) \) and \(a f(b) = f(ab) \) for all \(b \in G \), respectively. Moreover let \(\text{supp}(f) = \{ a \in G : f(a) \neq 0 \} \) denote the support of \(f \).

By \(C_u(G) \) we denote the Banach space of all real-valued bounded left uniformly (or \(d \)-uniformly) continuous functions on \(G \) furnished with the supremum norm \(\| \cdot \| \). A Hilbert-Lie group is a separable analytic manifold modeled on a separable Hilbert space, whose group operations are analytic. It is we known that the Hilbert-Lie groups are Polish (cf. [2]).

For the exponential mapping \(\exp : T_e \rightarrow G \) there exists an inverse mapping log from a neighborhood \(U_e \) of \(e \) onto a neighborhood \(N_e \) of zero in \(T_e \), where \(T_e \) is the tangential space in \(e \in G \) ([5]).

By \(\mathcal{B}(G) \) we denote the \(\sigma \)-field of Borel subsets of \(G \). Moreover, \(\mathcal{V}(e) \) denotes the system of neighborhoods of the identity \(e \) of \(G \) which are in \(\mathcal{B}(G) \).

\(\mathcal{M}(G) \) denotes the vector space of real-valued (signed) measures on \(\mathcal{B}(G) \). As it is well known, \(\mathcal{M}(G) \) is a Banach algebra with respect to convolution \(* \) and the norm \(\| \cdot \| \) of total variation. \(\mathcal{M}_+(G) \) is the set of positive measures in \(\mathcal{M}(G) \) and \(\mathcal{M}^1(G) = \{ \mu \in \mathcal{M}_+(G) : \mu(G) = 1 \} \) is the set of probability measures on \(G \).

Now let \(\gamma_X(t) := \exp(tX) \) for \(X \in H \) and \(t \in \mathbb{R}^* := \mathbb{R} \setminus \{0\} \).

Definition 1.1 Let \(f \in C_u(G), X \in H \) and \(a \in G \).

\(f \) is called left differentiable at \(a \in G \) with respect to \(X \) ("\(Xf(a) \) exists" for short), if

\[
\]
COŞKUN

\[Xf(a) := \lim_{t \to 0} \frac{1}{t} [L_{\gamma x}(t)f(a) - f(a)] \]

exists. \(f \) is called continuously left differentiable, if \(Xf(a) \) exists for all \(a \in G \) and \(X \in H \), and if the mappings \(a \mapsto Xf(a) \), \(X \mapsto Xf(a) \) are continuous.

Derivatives of higher orders are defined inductively. Differentiability from the right is defined in replacing \(L_{\gamma x}(t) \) by \(R_{\gamma x}(t) \).

The following properties of the derivatives are well known for continuously left differentiable functions (cf. [1]).

Remark 1.2 Let \(f, g \in C_u(G), X \in H \) and \(a \in G \).

(i) If \(Xf(a) \) exists, then the mapping \(X \mapsto Xf(a) \) is linear.

(ii) If \(Xf(a) \) and \(Xg(a) \) exists, then also \(X(f \cdot g)(a) \) exists and \(X(f \cdot g)(a) = Xf(a) \cdot g(a) + f(a) \cdot Xg(a) \).

Now let \(f \in C_u(G) \) be twice continuously left differentiable function. Then the mapping

\[Df(a) : X \mapsto Xf(a) \quad (D^2f(a) : (X, Y) \mapsto XYf(a)) \]

is continuous and linear (resp. symmetric, continuous and bilinear) functional on \(H \) (resp. \(H \times H \)) for all \(a \in G \). There hold

\[< Df(a), X >= Xf(a) \text{ and } < D^2f(a)(X), Y >= XYf(a) \]

for all \(a \in G \) and \(X, Y \in H \).

We define by \(C_2(G) \) the space of all twice continuously left differentiable functions \(f \in C_u(G) \) such that the mapping \(a \mapsto D^2f(a) \) is \(d \)-uniformly continuous and \(\|Df\| := \sup_{a \in G} \|Df(a)\| < \infty, \quad \|D^2f\| := \sup_{a \in G} \|D^2f(a)\| < \infty \). It is easy to see that the space \(C_2(G) \) is a Banach space with respect to the norm

\[\|f\|_2 := \|f\| + \|Df\| + \|D^2f\|, \quad f \in C_2(G) \]

and

\[R_aC_2(G) \subset C_2(G) \]

is satisfied for all \(a \in G \). However \(C_2(G) \) is not dense in \(C_u(G) \) (cf. [6]). By \(a_i(a) := \log(a), X_i > (i \in \mathbb{N}) \) we define maps \(a_i \) from the canonical neighborhood \(U_c \) in \(\mathbb{R} \). Now we call the system \((a_i)_{i \in \mathbb{N}} \) of maps from \(U_c \) in \(\mathbb{R} \) a system of canonical coordinates of \(G \) with respect to the orthonormal basis \((X_i)_{i \in \mathbb{N}} \), if for all \(a \in U_c \) the property \(a = \exp(\sum_{i=1}^{\infty} a_i(a)X_i) \) is satisfied.
Lemma 1.3 Let $f \in C_2(G)$. Then

(i) $(\sum_{i=1}^{\infty} a_i(a)X_i)f = \sum_{i=1}^{\infty} a_i(a)X_i f$ for all $a \in U_e$.

(ii) $(\sum_{i=1}^{\infty} a_i(a)X_i)((\sum_{j=1}^{\infty} a_j(c)X_i)f) = \sum_{i=1,j=1}^{\infty} a_i(a)a_j(c)X_iX_j f$ for all $a, c \in U_e$.

Proof. (i) For any $a \in U_e$ there exists an $X \in H$ with $X = \log(a)$. Then we have $X = \sum_{i=1}^{\infty} <X_i,X_i>X_i = \sum_{i=1}^{\infty} a_i(a)X_i$. Thus

\[
Xf(e) = \frac{d}{dt}|_{t=0}f(\gamma_X(t)) = <Df(e),X>
= \sum_{i=1}^{\infty} a_i(a) <Df(e),X_i> = \sum_{i=1}^{\infty} a_i(a)X_i f(e).
\]

Now let $b \in G$ be an arbitrary point. Then $R_b f \in C_2(G)$, whence the assertion. The proof of (ii) can be carried out similarly.

In the following we give the Taylor expansion for the functions $f \in C_2(G)$.

Proposition 1.4 Let $f \in C_2(G)$. Then the Taylor-expansion of the second order for f at $e \in G$ is given by

\[
f(a) = f(e) + \sum_{i=1}^{\infty} a_i(a)X_i f(e) + \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} a_i(a)a_j(a)X_iX_j f(\bar{a})
\]

for all $a \in U_e$, where \bar{a} is a point of U_e.

Proof. Let $f \in C_2(G)$ and $X \in H$. Then the function $\xi : t \mapsto f(\gamma_X(t))$ is twice differentiable on \mathbb{R} and therefore admits a Taylor-expansion valid up to the second order:

\[
\xi(t) = \xi(0) + \xi'(0) \cdot t + \frac{1}{2} \xi''(\bar{t}) \cdot t^2
\]

for some $\bar{t} \in [-|t|,|t|]$. Since $\xi'(0) = Xf(e)$ and $\xi''(\bar{t}) = XXf(\gamma_X(\bar{t}))$, it follows from Lemma 1.3 that

\[
f(\gamma_X(t)) = f(e) + \sum_{i=1}^{\infty} <tX_i,X_i>X_i f(e)
+ \frac{1}{2} \sum_{i=1}^{\infty} \sum_{j=1}^{\infty} <tX_i,X_i><tX_i,X_i>X_iX_j f(\gamma_X(\bar{t}))
\]

for some $\bar{t} \in [-|t|,|t|]$. This yields the assertion.

248
Remark 1.5 The Taylor-expansion of \(f \in C_2(G) \) can be written in a closed form, i.e.

\[
f(a) = f(e) + \langle Df(e), \log(a) \rangle + \frac{1}{2} \langle D^2f(\bar{a})(\log(\bar{a})), \log(a) \rangle
\]

for all \(a \in U_e \) and for some \(\bar{a} \) in the canonical neighborhood \(U_e \).

2. Convolution Semigroups of Probability Measures and the Generators

For any probability measure \(\mu \) on \(G \), we define the operator \(T_\mu \) on \(C_u(G) \) by

\[
T_\mu f := \int f_a \mu(da) \quad \text{(Bochner-Integral)}.
\]

It is easy to see that \(T_\mu C_u(G) \subset C_u(G) \) and \(T_{\mu * \nu} = T_\mu \circ T_\nu \).

A convolution semigroup is a family \((\mu_t)_{t \in \mathbb{R}_+^*} \) in \(\mathcal{M}_1(G) \) such that \(\mu_0 = \varepsilon_e \) and \(\mu_s * \mu_t = \mu_{s+t} \) for all \(s, t \in \mathbb{R}_+^* \).

\((\mu_t)_{t \in \mathbb{R}_+^*} \) is called continuous if \(\lim_{t \to 0} \mu_t = \varepsilon_e \) (weakly). It is well known that the convolution semigroup \((\mu_t)_{t \in \mathbb{R}_+^*} \) is continuous iff the corresponding operator semigroup \((T_\mu_t)_{t \in \mathbb{R}_+^*} \) is (strongly) continuous. The Hille-Yosida theorem establishes a bijection between (strongly) continuous operator semigroups \((T_\mu_t)_{t \in \mathbb{R}_+^*} \) and their infinitesimal generators. \(N \) is defined on its domain \(D(N) \) which is dense in \(C_u(G) \). It is clear that \(N \) commutes with the left translations, i.e.

\[
L_a D(N) \subset D(N) \quad \text{and} \quad L_a \circ N = N \circ L_a \quad \text{for all} \quad a \in G.
\]

A continuous convolution semigroup \((\mu_t)_{t \in \mathbb{R}_+^*} \) in \(\mathcal{M}_1(G) \) admits a Lévy measure \(\eta \), i.e. \(\eta \) is a \(\sigma \)-finite positive measure on \(\mathcal{B}(G) \) such that \(\eta(\{e\}) = 0 \) and such that

\[
\lim_{t \to 0} \frac{1}{t} \int f d\mu_t = \int f d\eta,
\]

for all \(f \in C_u(G) \) with \(e \not\in \text{supp}(f) \) (cf. [7]).

Lemma 2.1 Let \((\mu_t)_{t \in \mathbb{R}_+^*} \) be a continuous convolution semigroup in \(\mathcal{M}_1(G) \). Then for every \(U \in \mathcal{V}(e) \)

\[
\sup_{t \in \mathbb{R}_+^*} \frac{1}{t} \mu_t(U^c) < \infty.
\]

Proof. Let \(U \) and \(V \) be two neighborhoods of \(e \in G \) with \(V \subset U \). Since \(G \) is a normal group, there exists a function \(f \in C_u(G) \) such that
Then we have \(\frac{1}{t} \mu_t(U_c) \leq \frac{1}{t} \int f d\mu_t \) for all \(t \in \mathbb{R}^*_+ \). \(f \in C_u(G) \) with \(e \not\in \text{supp}(f) \) implies that

\[
\lim_{t \to 0} \frac{1}{t} \int f d\mu_t = \int f d\eta < \infty.
\]

Hence the assertion. \(\square \)

Let \(H \) be a separable Hilbert space with a complete orthonormal system \((X_i)_{i \in \mathbb{N}} \) and \(G \) a Hilbert-Lie group on \(H \). Moreover, let

\[H_n := \langle \{x_1, x_2, \ldots, x_n\} \rangle \]

be the space of all linear combinations of \(X_1, X_2, \ldots, X_n \) and \(H_n^\perp \) the orthogonal complement of \(H_n \) in \(H \) (for all \(n \in \mathbb{N} \)). Then \(H/H_n^\perp \) and \(H_n \) are isomorphic. Clearly

\[G_n := \text{Exp}(H_n^\perp) \]

is a closed subgroup of \(G \) for all \(n \in \mathbb{N} \). The quotient spaces \(G/G_n \) are finite-dimensional Hilbert-Lie groups. Now let \(p_n \) be the canonical projection from \(G \) onto \(G/G_n \) and \(\{b^n_i : i = 1, 2, \ldots, n\} \) a system of canonical coordinates with respect to \(\{X_1, X_2, \ldots, X_n\} \).

We now define the functions \(d^n_i := b^n_i \circ p_n \in C_2(G) \); then \(X_j d^n_i \) exist and

\[
X_j d^n_i = X_j (b^n_i \circ p_n) = X_j b^n_i \circ p_n = 0
\]

hold for all \(j > n \) and \(i = 1, 2, \ldots, n \).

Definition 2.2 Let \(G \) be a Hilbert-Lie group on \(H \), and \((X_i)_{i \in \mathbb{R}} \) an orthonormal basis in \(H \). For any \(n \in \mathbb{N} \) we define

\[
C_{(2), n}(G) := \{ f \in C_2(G) : \ X_i f = 0 \text{ for all } i > n \text{ and } \ X_i X_j f = 0 \text{ for all } i > n \text{ or } j > n \}.
\]

Remark 2.3 Let \(f \in C_u(G) \) be a left uniformly differentiable function with respect to \(X \) which satisfies \(X_i f = 0 \) for all \(i > n \) \((n \in \mathbb{N})\). Let \(\pi_n \) be the orthogonal projection from \(H \) onto \(H_n \). Then we have

\[
X f = \pi_n(X) f \text{ for all } X \in H.
\]
Hence \(f \) is continuously left differentiable and clearly \((C_{(2),n}(G))_{n\in\mathbb{N}} \) is a strictly increasing sequence of Banach subalgebra of Banach algebra \(C_2(G) \).

Further properties of \(C_{(2),n}(G) (n \in \mathbb{N}) \):

(i) \(C_{(2),n}(G) \) are \(\| \cdot \|_2 \)-closed in \(C_2(G) \)

and

(ii) For any probability measure \(\mu \in \mathcal{M}^1(G) \), we have

\[
T_\mu C_{(2),n}(G) \subset C_{(2),n}(G) \text{ for all } n \in \mathbb{N}.
\]

Thus \(C_{(2),n}(G) \cap D(N)^{\| \cdot \|_2} = C_{(2),n}(G) \). Now consider the subspace

\[
C_{(2)}(G) := \bigcup_{n \in \mathbb{N}} C_{(2),n}(G).
\]

\(C_{(2)}(G) \) is obviously an linear subspace of \(C_2(G) \) with \(T_\mu C_{(2)}(G) \subset C_{(2)}(G) \) for probability measures \(\mu \in \mathcal{M}^1(G) \). Especially \(C_{(2)}(G)^{\| \cdot \|_2} \) is a Banach space with \(T_\mu C_{(2)}(G)^{\| \cdot \|_2} \subset \overline{C_{(2)}(G)^{\| \cdot \|_2}} \).

Definition 2.4 For \(n \in \mathbb{N} \) let \(\{b_i^n : i = 1, 2, \ldots, n\} \) be a system of extended canonical coordinates with respect to \(\{X_1, X_2, \ldots, X_n\} \). Then we say that the Hilbert-Lie group \(G \) has the property \((K)\), if

\[
b_i^n \in C_{(2)}(G) \text{ for all } i = 1, 2, \ldots, n, \ n \geq n_0
\]

and for any \(n_0 \in \mathbb{N} \).

Every commutative Hilbert-Lie group and every finite dimensional Lie group have clearly the property \((K)\). In the finite dimensional case we have \(n_0 = \dim(G) \). Since \(C_{(2),n}(G) \subset C_{(2),n+1}(G) \), a system \(\{b_i^n, b_{n+1}^{n+1} : i = 1, 2, \ldots, n\} \subset C_{(2),n+1}(G) \) of canonical coordinates exists with respect to \(\{X_1, X_2, \ldots, X_{n+1}\} \). We also have the following Proposition:

Proposition 2.5 Let \(G \) be a Hilbert-Lie group with the property \((K)\). Then a system \((d_n)_{n \in \mathbb{N}} \) of functions in \(C_{(2)}(G) \) exists with

\[
d_i = b_i^{n_0} \text{ for all } i = 1, 2, \ldots, n_0
\]

and

\[
d_n = b_n^n \text{ for all } n > n_0.
\]

This system \((d_n)_{n \in \mathbb{N}} \) is called a system of local canonical coordinates with respect to \((X_i)_{i \in \mathbb{N}} \).

251
Now let G be a Hilbert-Lie group with the property (K). We define for any $n \in \mathbb{N}$ the functions
\[
\Phi_n(a) := \sum_{i=1}^{n} d_i(a)^2, \quad a \in G,
\]
where $(d_i)_{i=1,2,\ldots,n}$ is a system of local canonical coordinates with respect to $\{X_1, X_2, \ldots, X_n\}$. Then $\Phi_n \in C(2)_n(G)$ and $\Phi_n(a) > 0$ for all $a \in G \setminus \{\Phi_n = 0\}$. Therefore
\[
X_i\Phi_n(e) = 0, \quad X_i X_j \Phi_n(e) = 2\delta_{ij}, \quad i, j = 1, 2, \ldots, n
\]
(cf. [3], Lemma 4.1.9 and 4.1.10).

Remark 2.6

(a) For $f \in C(2)_n(G), n \in \mathbb{N}$ and $i, j = 1, 2, \ldots, n$ we denote the numbers $X_i f(e)$ and $X_i X_j f(e)$ by A_if and $A_ij f$, resp. Obviously $f \mapsto A_if$ and $f \mapsto A_ij f$ are continuous linear functionals on $C(2)_n(G)$ for $i, j = 1, 2, \ldots, n$.

(b) Let E be a locally convex vector space and E_1 a dense subspace of E. Moreover, let F be a subspace of E of finite codimension, $y \in E$ and $M := y + F$. Then $M_1 := M \cap E_1$ is dense in M ([3], Lemma 4.1.11).

Lemma 2.7

For every $f \in C(2)_n(G)$ and every $\varepsilon > 0$ there exists a $g := g_\varepsilon \in C(2)_n(G) \cap D(N)$ such that $\|f - g\|_2 < \varepsilon$, $f(e) = g(e), X_i f(e) = X_i g(e)$ and $X_i X_j e = X_i X_j g(e)$ for $i, j = 1, 2, \ldots, n$.

Proof. Let K_n be a map from $C(2)_n(G)$ to $\ell^2(n^2)$ with
\[
f \mapsto K_n(f) := (X_i X_j f(e))_{i,j=1,2,\ldots,n} = (A_ij f)_{i,j=1,2,\ldots,n}, \quad n \in \mathbb{N}.
\]
Then K_n is linear and continuous, where $\ell^2(n)$ is a finite-dimensional subspace of the Hilbert space ℓ^2.

Similarly, let L_n be a continuous linear map from $C(2)_n(G)$ to $\ell^2(n+1)$ with
\[
f \mapsto L_n(f) := (f(e), X_1 f(e), \ldots, X_n f(e)) = (f(e), A_1 f, \ldots, A_n f).
\]
Moreover, let
\[
F := \text{Kern}(L_n) \cap \text{Kern}(K_n),
\]
then F is a closed subspace of $C(2)_n(G)$ of finite codimension. From Remark 2.6 b)
\[
[f + F] \cap [C(2)_n(G) \cap D(N)] = f + F
\]
the assertions follow. \qed
COŞKUN

Proposition 2.8 Let G be a Hilbert-Lie group with the property (K), $(\mu_t)_{t \in \mathbb{R}^*_+}$ a convolution semigroup in $\mathcal{M}^1(G)$ and $\Phi_n(n \in \mathbb{N})$ be as above. Then the suprema

$$\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} \int \Phi_n d\mu_t$$

are finite for every $n \in \mathbb{N}$.

Proof. Application of Lemma 2.7 to the function $\Phi_n \in C_{(2),n}(G)$ yields the existence of a function $\Psi_n \in C_{(2),n}(G) \cap D(N)$ with the property

$$\|\Phi_n - \Psi_n\|_2 < \varepsilon, \Psi_n(e) = \Phi_n(e) = 0, \quad X_i \Psi_n(e) = X_i \Phi_n(e) = 0$$

and $X_i X_j \Psi_n(e) = X_i X_j \Phi_n(e) = 2 \delta_{ij}, i, j = 1, 2, \ldots, n$.

Taylor expansion of $\Psi_n \in C_{(2),n}(G) \cap D(N)$ in a neighborhood W_1 of e with $W_1 \subset U_\varepsilon$ gives

$$\Psi_n(a) = \frac{1}{2} \sum_{i=1}^n \sum_{j=1}^n d_i(a) d_j(a) X_i X_j \Psi_n(\bar{a}),$$

for all $a \in W_1$ and for some $\bar{a} \in W_1$. Since $\|\Phi_n - \Psi_n\|_2 < \varepsilon$ and $X_i X_j \Psi_n(e) = 2 \delta_{ij}, i, j = 1, 2, \ldots, n$ there exists a neighborhood W_2 of e with the properties

$$-\varepsilon \leq X_i X_j \Psi_n(a) \leq \varepsilon \quad \text{for all } i, j = 1, 2, \ldots, n, \quad i \neq j,$$

$$2 - \varepsilon \leq X_i X_j \Psi_n(a) \leq 2 + \varepsilon \quad \text{for all } i = 1, 2, \ldots, n,$$

whenever $a \in W_2$. Putting $\delta_n := \delta_n(e) := \frac{1}{2} (2 - \varepsilon - \varepsilon(n - 1))$ and $W := W_1 \cap W_2$, we obtain

$$\Psi_n(a) \geq \delta_n \cdot \sum_{i=1}^n d_i(a)^2 \quad \text{for all } a \in W.$$

Since $\Psi_n \in C_{(2),n}(G) \cap D(N)$, we obtain $\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} \int_W \Psi_n d\mu_t < \infty$ from Lemma 2.1. Thus $\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} \int_W \Phi_n d\mu_t < \infty$, and since Φ_n is bounded, the assertion follows from Lemma 2.1. \qed

Now let G be a Hilbert-Lie group with the property (K) and $(d_i)_{i \in \mathbb{N}}$ a system of local canonical coordinates with respect to $(X_i)_{i \in \mathbb{N}}$. By Lemma 2.7 there exist functions $z_i \in C_{(2),n}(G) \cap D(N), (n \in \mathbb{N})$ with the property

$$z_i(e) = d_i(e) = 0, \quad X_j z_i(e) = X_j d_i(e) = \delta_{ij}, \quad i, j = 1, 2, \ldots, n.$$
Theorem 2.9 Let \(G \) be a Hilbert-Lie group with the property \((K)\) and \((\mu_t)_{t \in \mathbb{R}^*_+}\) a convolution semigroup in \(\mathcal{M}^1(G) \). Then the generating functional \(A \) of \((\mu_t)_{t \in \mathbb{R}^*_+}\) on \(C_{(2)}(G) \) exists, i.e.

\[
C_{(2)}(G) \subset D(A).
\]

Proof. Let \(f \in C_{(2),n}(G) \) \((n \in \mathbb{N})\) and set

\[
g(a) := f(a) - f(e) - \sum_{i=1}^{n} z_i(a) \cdot X_i f(e) \quad \text{for all } a \in G,
\]

where the functions \(z_i, i = 1, 2, \ldots, n \) are as above. Then \(g \in C_{(2),n}(G) \) with \(g(e) = 0, X_j g(e) = X_j f(e) - \sum_{i=1}^{n} X_j z_i(e) \cdot X_i f(e) = X_j f(e) - \sum_{i=1}^{n} \delta_{ij} \cdot X_i f(e) = 0. \) The Taylor expansion of \(g \) in a neighborhood \(W \subset U_n \) gives

\[
g(a) = \frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} d_i(a) d_j(a) X_i X_j g(a), \quad a \in W.
\]

Thus there is a constant \(k_1 \in \mathbb{R}^*_+ \) such that

\[
|g(a)| \leq k_1 \cdot \|g\|_2 \cdot \Phi_n(a) \quad \text{for all } a \in W.
\]

It follows from Proposition 2.8 that

\[
\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} \int_{W} g d\mu_t \leq k_1 \cdot \|g\|_2 \cdot \sup_{t \in \mathbb{R}^*_+} \int \Phi_n d\mu_t < \infty. \quad (1)
\]

Clearly, \(\frac{1}{t} \int_{W^c} g d\mu_t \leq \|g\|_2 \cdot \frac{1}{t} \mu_t(W^c) \), and \(\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} \int_{W^c} g d\mu_t \) \(< \infty \). Hence, there exists a constant \(k_2 \in \mathbb{R}^*_+ \) independent of \(t \) such that

\[
\frac{1}{t} \int_{W^c} g d\mu_t \leq k_2 \cdot \|g\|_2 \quad \text{for all } t \in \mathbb{R}^*_+. \quad (2)
\]

Adding the inequalities (1) and (2) we get

\[
\frac{1}{t} [T_{\mu_t} f(e) - f(e)] - \sum_{i=1}^{n} X_i f(e) \cdot T_{\mu_t} z_i(e) \leq k_3 \cdot \|f\|_2, \quad \text{for all } t \in \mathbb{R}^*_+.
\]

where \(k_3 \) is a constant (independent of \(t \)). Since \(z_i \in D(N) \) and \(z_i(e) = 0 \), we have \(\sup_{t \in \mathbb{R}^*_+} \frac{1}{t} T_{\mu_t} z_i(e) \leq \infty \) for all \(i = 1, 2, \ldots, n \).

Hence we obtain a constant \(k(n) \in \mathbb{R}^*_+ \) depending only on \(n \) such that

254
\[\frac{1}{t} (T_{\mu_t} f(e) - f(e)) \leq k(n) \cdot \|f\|_2 \]

for all \(t \in \mathbb{R}_+^* \) and \(f \in C_{(2),n}(G) \). By the Banach-Steinhaus Theorem the limit

\[\lim_{t \to 0} \frac{1}{t} [T_{\mu_t} f(e) - f(e)] \]

exists for every \(f \in C_{(2)}(G) \).

\[\square \]

Remark 2.10 Let \(G \) be commutative Hilbert-Lie group and \((\mu_t)_{t \in \mathbb{R}_+^*}\) a convolution semigroup in \(\mathcal{M}^1(G) \). As in the proof of Theorem 2.9, we can find a constant \(k(n) \in \mathbb{R}_+^* \) (independent of \(a \in G \) and \(t \in \mathbb{R}_+^* \)) such that

\[\frac{1}{t} [T_{\mu_t} f(a) - f(a)] = \frac{1}{t} [T_{\mu_t} (L_a f)(e) - (L_a f)(e)] \]
\[\leq k(n) \cdot \|L_a f\|_2 = k(n) \cdot \|f\|_2 \]

for all \(f \in C_{(2),n}(G) \) and \(a \in G \). The Banach-Steinhaus Theorem now yields the existence of the limit

\[N f(a) = \lim_{t \to 0} \frac{1}{t} [T_{\mu_t} f(a) - f(a)] \]

uniformly in \(a \in G \). This implies existence of the infinitesimal generator \(N \) on \(C_{(2)}(G) \).

Remark 2.11 Let \(G = H \) be a separable Hilbert space and \(C_u^{(2)}(H) \) the space of all twice Fréchet differentiable functions \(f \in C_u(H) \) such that \(\|f'\| := \sup_{x \in H} \|f'(x)\| < \infty \), \(\|f''\| := \sup_{x \in H} \|f''(x)\| < \infty \) and \(f'' \) is uniformly continuous in \(x \). Then we have \(C_u^{(2)}(H) \subset D(N) \) (cf. [6]) and \(C_2(H) = C_u^{(2)}(H) \).

Acknowledgement

The author would like to thank Prof. E. Siebert for several helpful discussions and comments.

References

Hilbert-Lie Grubu Üzerinde Diferensiyellenebilir Fonksiyonlar ve Generatörler

Özet

Lie gruplarında oalasılık ölçümü teorisinde, konvolüsyon yarŋrupları önemli rol oynamaktadır. Temel problem, yarŋgrubu Lévy-Khinchine formülü olarak ifade etmektir. Hilbert-Lie grubu G üzerinde oalasılık ölçümünün sürekli bir yarŋgrubu $(\mu_t)_{t \in \mathbb{R}^*_+}$ ise,

$$T_{\mu_t}f := \int f_\mu \mu_t(da)(f \in C_u(G), t > 0).$$

ile $C_u(G)$ uzayı üzerinde N infinitesimal generatörüne sahip sürekli operatör yarŋgrubu $(T_{\mu_t})_{t \in \mathbb{R}^*_+}$ tanımlanır. Bu yarŋgrup için doğurucu fonksiyonel $A, Af := \lim_{t \to 0^+} \frac{1}{t}(T_{\mu_t}f(e) - f(e))$ biçiminde tanımlanır. Buna göre problem, A doğurucu fonksiyonelinin tanımlı olmaması $C_u(G)$ nin bir $C_{(2)}(G)$ alt uzayını oluştururmaktdır. Bu sonuç, daha sonra Hilbert-Lie gruplarında Lévy-Khinchine formülüünün elde edilmesinde kullanılabılır.

Erdal COŞKUN

Hacettepe Üniversitesi,
Eğitim Fakültesi, Fen Bilimleri Bölümü,
06532 Beytepe, Ankara-TURKEY
E-mail: coskun@eti.cc.hun.edu.tr

Received 26.2.1995