FIBONACCI SEQUENCES IN FINITE NILPOTENT GROUPS

Ramazan Dikici & Geoff C Smith

Abstract
We have proved that, for the 3-step Fibonacci recurrence and any finite p-group of exponent p and nilpotency class 3, the length of a fundamental period of any loop satisfying the recurrence must divide the period of the ordinary 3-step Fibonacci sequence in the field $GF(p)$.

1. Introduction
We shall be interested in the shortest period of the 3-step Fibonacci sequence the entries of which are taken in any finite p-group of exponent p and nilpotency class 3. This problem has already been the subject of investigation. It seems to have first been addressed by Wall [9] and then Vinson [8] for cyclic groups. This theory has been generalized in [4] to cover the 3-step Fibonacci case. Campbell, Doostie and Robertson [2] have attacked the problem of recurrences in the case of non-abelian finite simple groups. Pinch [6] has studied the relationship between the period of a general linear recurrence modulo a rational prime p and the period modulo a power of that prime. He does this via examining the algebraic number theory of certain finite extensions of the p-adic numbers.

Wall distinguishes the special loop $s = (s_i)$ defined by the recurrence $s_{i+2} = s_i + s_{i+1}$ and the initial data $s_0 = 0$ and $s_1 = 1$ in $\mathbb{Z}/p^n\mathbb{Z}$. Let $k(s, p^n)$ denote the fundamental period of s.

Theorem 1.1: (D.D. Wall [9]) The number $k(s, p^n)$ divides $k(s, p)p^{n-1}$, and the two quantities are equal provided $k(s, p) \neq k(s, p^2)$.

Wall goes on to conjecture that for all primes p, we always have $k(s, p) \neq k(s, p^2)$. He announced that he had verified this result for all primes $p < 10^4$. We know by [1] that this is indeed the case for all primes $p < 10^8$. This work has also been a recent one in this area and proves that short loops must be geometric for the 3-step Fibonacci recurrences in H, the additive group of the finite field $GF(p^n)$.

133
Let $s = (s_i)$ denote the ordinary 3-step Fibonacci sequence in $GF(p)$ defined by the recurrence $s_{i+3} = s_i + s_{i+1} + s_{i+2}$ and the initial data $s_0 = 0$, $s_1 = 0$ and $s_2 = 1$. This is a bi-infinite periodic sequence or loop indexed by the integers. The shortest period of this sequence is called the fundamental period and it will be denoted by k. We sometimes refer to this quantity as Wall’s number [9].

2. The Main Theorem

We consider a 3-step Fibonacci sequence $r = (r_i)$ in a finite p-group G, given some initial data r_0, r_1 and r_2. Such a sequence or loop must be periodic and we denote the shortest period of this sequence sometimes called the fundamental period by $k(r, G)$. From now on k denotes the fundamental period of the standard 3-step Fibonacci sequence $0, 0, 1, 1, 2\ldots$ taken modulo a distinguished prime p.

Theorem 2.1: Let $p > 3$ be a prime number, then if G is a non-trivial finite p-group of exponent p and nilpotency class 3 then $k(r, G) = k$. Of course if G is the trivial group then $k(r, G) = 1$.

3. Some Lemmas Concerning 3-Step Fibonacci Sequence

Although the proofs of all the following lemmas are not intricate they are omitted here and can be found in [4]. The notation $\sum_{i<i,j}$ indicates that we are dealing with a double sum, taken over all i and j subject to the constraint that $0 \leq i < j \leq k - 1$.

Lemma 3.1: For all integers α and β we have
\[
\sum_{i<j} s_{j+\alpha}s_{i+\beta} = 0.
\]

Lemma 3.2: For all integers α, β and c we have
\[
\sum_{i<j} s_{j-i+\beta}s_{i-c}s_{i+\beta} = 0.
\]

Lemma 3.3: For all integers α, β and γ we have
\[
\sum_{j=0}^{k-1} s_{j+\alpha}s_{j+\beta}s_{j-\gamma}s_j = 0.
\]

Lemma 3.4: For all integers α, β, c, d, and e we have
\[
\sum_{i<j} s_{j+\alpha}s_{j+\beta}s_{j-i-d}s_{i+e}s_{i+c} = 0.
\]
4. The Proof

We do our preliminary investigations, not with the relatively free group on three generators, but with a carefully selected group \(H \) which we now describe. \(H \) has two generators \(x \) and \(y \). A presentation of \(H \) is

\[
H = \langle h_1, h_2, h_3, h_4 : (h_2, h_1) = h_3, (h_3, h_1) = h_4, \explaw = p \rangle
\]

where pairs of generators with unspecified commutator are implicitly deemed to commute. Thus \(H \) is a copy of \(C_p^3 \) extended by a cyclic group of order \(p \).

Let \(G \) be the 3-generator relatively free exponent \(p \) class 3 group on \(g_1, g_2 \) and \(g_3 \). Thus \(G \) has order \(p^{14} \) and a power commutator presentation of \(G \) is given by

\[
\begin{align*}
(g_2, g_1) &= g_4 \\
(g_3, g_1) &= g_5 \\
(g_3, g_2) &= g_6 \\
(g_4, g_1) &= g_7 \\
(g_4, g_2) &= g_8 \\
(g_4, g_3) &= g_9 \\
(g_5, g_1) &= g_{10} \\
(g_5, g_2) &= g_{11} \\
(g_5, g_3) &= g_{12} \\
(g_6, g_1) &= g_{13} \\
(g_6, g_2) &= g_{14}
\end{align*}
\]

Once again we have the convention that pairs of generators with unspecified commutator are implicitly deemed to commute.

In \(GF(p) \)-vector notation, we put \(g_i = (\delta_{ij}) \in G \), where \(\delta_{ij} \) in the Kronecker symbol and \(j \) ranges from 1 to 14.

The group \(G \) is relatively free and so admits an automorphism \(\phi \), which we call the 3-step Fibonacci automorphism, defined by \(g_1 \phi = g_2, g_2 \phi = g_3 \) and \(g_3 \phi = g_1 g_2 g_3 \).

We define two maps \(\pi_1 : G \rightarrow H \) via

\[
g_1 \pi_1 = 1, \ g_2 \pi_1 = h_1 \text{ and } g_3 \pi_1 = h_2
\]

and

\[
g_1 \pi_2 = h_1, \ g_2 \pi_2 = h_2 \text{ and } g_3 \pi_2 = 1.
\]

Let \(g_i = (\delta_{ij}) \in G \), where \(\delta_{ij} \) in the Kronecker symbol and \(j \) ranges from 1 to 14.

\[
\begin{align*}
\Ker \pi_1 &= K_1 = (*, 0, 0, *, *, 0, *, *, *, 0, *, 0, *, 0); \\
\Ker \pi_2 &= K_2 = (0, 0, *, 0, *, 0, *, *, *, 0, *, 0, *, 0).
\end{align*}
\]

135
Let $M = \text{Ker} \pi_1 \cap \text{Ker} \pi_2$, so that

$$M = (0, 0, 0, 0, *, 0, 0, *, *, *, 0, *),$$

in the sense that each * can independently be any element of $GF(p)$. Now M is an elementary abelian group of order p^7, and is therefore a $GF(p)$-space of dimension 7. A basis of M is $(g_5, g_8, g_9, g_{10}, g_{11}, g_{12}, g_{14})$.

Computer aided calculations [3] yield that

$$M \cap M\phi = (g_5g_{11}, g_9, g_{10}g_{11}g_{12}, g_{14}),$$

$$M \cap M\phi \cap M\phi^2 = (g_9g_{14}^{-2}, g_{10}g_{11}, g_{12})$$

and

$$M \cap M\phi \cap M\phi^2 \cap M\phi^3 = 1.$$

Thus we have a monomorphism

$$\pi : G \longrightarrow G/K_1 \times G/K_2 \times G/K_1\phi \times G/K_2\phi \times G/K_1\phi^2 \times G/K_2\phi^2 \times G/K_1\phi^3 \times G/K_2\phi^3,$$

where the codomain is isomorphic to $\times_{i=1}^8 H$. The automorphism ϕ^{-1} and its powers induce isomorphisms $G/K_i\phi^i \longrightarrow G/K_i$ which can be composed co-ordinatewise with π to form a group monomorphism

$$\tilde{\pi} : G \longrightarrow x_{j=1}^4 (G/K_1 \times G/K_2)$$

defined by

$$x \longrightarrow (K_1x, K_2x, K_1(x\phi^{-1}), K_2(x\phi^{-1}), K_1(x\phi^{-2}), K_2(x\phi^{-2})K_1(x\phi^{-3}), K_2(x\phi^{-3})).$$

Now let us examine the image of the loop, $r = (r_i)$ beginning $r_0 = g_1, r_1 = g_2, r_2 = g_3$ under π. We have

$$\tilde{\pi} : r_i \longrightarrow (r_i\pi_1, r_i\pi_2, r_{i-1}\pi_1, r_{i-1}\pi_2, r_{i-2}\pi_1, r_{i-2}\pi_2, r_{i-3}\pi_1, r_{i-3}\pi_2).$$

The sequences in the odd positions are just rotations of $(r_i\pi_1)$ and the sequences in the even positions are rotations of $(r_i\pi_2)$. Thus, if we can show that $(r_i\pi_1)$ and $(r_i\pi_2)$ both have Wall Number k, it will follow that r has Wall Number k and will be done.

In H the elements can be regarded as vectors and triple multiplication is determined by the following rules;

136
\[(a_0, b_0, c_0, d_0), (a_1, b_1, c_1, d_1), (a_2, b_2, c_2, d_2) = (a_3, b_3, c_3, d_3)\]

where
\[
a_3 = a_0 + a_1 + a_2, \\
b_3 = b_0 + b_1 + b_2, \\
c_3 = c_0 + c_1 + c_2 + a_1 b_0 + a_2 (b_0 + b_1),
\]

and finally
\[
d_3 = d_0 + d_1 + d_2 + a_1 c_0 + a_2 (c_0 + c_1 + a_1 b_0) +\left(\frac{a_2}{2}\right)(b_0 + b_1) + \left(\frac{a_1}{2}\right) + b_0.
\]

We must consider two types of initial data for loops in \(H\). We have a loop \(v\) of type I with initial data
\[
v_0 = (0, 0, 0, 0) \\
v_1 = (1, 0, 0, 0) \\
v_2 = (0, 1, 0, 0)
\]
and another \(w\) of type II with initial data
\[
w_0 = (1, 0, 0, 0) \\
w_1 = (0, 1, 0, 0) \\
w_2 = (0, 0, 0, 0).
\]

The analysis of the type II loop is entirely similar to that of type I. Thus the type I loop begins
\[
v_0 = (t_0, s_0, 0, 0) \\
v_1 = (t_1, s_1, 0, 0) \\
v_2 = (t_2, s_2, 0, 0).
\]

We focus on the type I loop \((v_i) = (t_i, s_i, c_i, d_i)\), where
\[
(s_0, s_1, s_2) = (0, 0, 1)
\]
and
\[
(t_0, t_1, t_2) = (0, 1, 0).
\]

It can be easily seen that the sequence \(t_i\) can be written in terms of \(s_i\) as \(t_i = s_{i+1} - s_i\). Now, it follows from [5] that \(c_k = c_{k+1} = c_{k+2} = 0\) which corresponds to prove the similar theorem where the nilpotency class of the group reduces to 2. To conclude, we must demonstrate \(d_k = d_{k+1} = d_{k+2} = 0\) and begin with \(d_k = 0\).
We shall need a formula for \(c_\alpha \) in order to work out the formula for \(d_\alpha \). By induction it is

\[
c_\alpha = \sum_{i=0}^{\alpha-1} s_{\alpha-i-1}(s_i t_{i+1} + t_{i+2}(s_i + s_{i+1}))
\]

for \(\alpha \geq 0 \). This enables us, via a similar process, to describe \(d_\alpha \) for \(\alpha \geq 0 \) as

\[
d_\alpha = \sum_{i=0}^{\alpha-1} s_{\alpha-i-1} t_{i+1} c_i + \sum_{i=0}^{\alpha-1} s_{\alpha-i-1}(t_{i+1})^2 s_i + \sum_{i=0}^{\alpha-1} s_{\alpha-i-1} t_{i+2}(c_i + c_{i+1} + t_{i+1}s_i)
\]

\[+ \sum_{i=0}^{\alpha-1} s_{\alpha-i-1}(t_{i+1})^2 (s_i + s_{i+1}).\]

We can break up the expression for \(d_k \) as \(d_k = \Delta_1 + \Delta_2 + \Delta_3 + \Delta_4 \), where

\[
\Delta_1 = \sum s_k s_{k-i-1} t_{i+1} c_i,
\]

\[
\Delta_2 = \sum s_k (2^{t_{i+1}}) s_i,
\]

\[
\Delta_3 = \sum s_k s_{k-i-1} t_{i+2}(c_i + c_{i+1} + t_{i+1}s_i)
\]

and

\[
\Delta_4 = \sum s_k s_{k-i-1}(2^{t_{i+1}})(s_i + s_{i+1}),
\]

and we shall attempt to show that each of these four expressions \(\Delta_i \) actually vanishes. To this end, we break these expressions up still further.

Now we have

\[
\Delta_1 = \sum s_k s_{k-i-1} t_{i+1} c_i = \sum_{j=0}^{k-1} s_k s_{k-j-1} t_{j+1} c_j
\]

\[= \sum_{j=0}^{k-1} s_k s_{k-j-1} t_{j+1} (\sum_{i=0}^{j-1} s_{j-i-1} t_{i+1} + \sum_{i=0}^{j-1} s_{j-i-1} t_{i+2}(s_i + s_{i+1})),\]

and so \(\Delta = \Delta_{11} \Delta_{12} \Delta_{13} \), where

\[
\Delta_{11} = \sum_{j=0}^{k-1} s_k s_{k-j-1} t_{j+1} s_{j-i-1} t_{i+1},
\]

138
\[\Delta_{12} = \sum_{j=0}^{k-1} \sum_{i=0}^{j-1} s_{k-j-1} t_{j+1} s_{j-i-1} s_{i+1} t_{i+2} \]

and

\[\Delta_{13} = \sum_{j=0}^{k-1} \sum_{i=0}^{j-1} s_{k-j-1} t_{j+1} s_{j-i-1} s_{i+1} t_{i+2}. \]

Moving to \(\Delta_2 \), we find that

\[\Delta_2 = \sum_{j=0}^{k-1} s_{k-j-1} \left(\frac{t_{i+1}}{2} \right) s_{j} = \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+1} (t_{j+1}-1) s_{j}, \]

so that

\[\Delta_2 = \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+1}^2 s_{j} - \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+1} s_{j}. \]

Next we tackle \(\Delta_3 \). We have

\[\Delta_3 = \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} (c_j + c_{j+1} + t_{j+1} s_{j}), \]

so that

\[\Delta_3 = \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} \left(\sum_{i=0}^{j-1} s_{j-i-1} (s_{i+1} t_{i+1} + t_{i+2} (s_i + s_{i+1})) \right) \]

\[+ \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} \left(\sum_{i=0}^{j-1} s_{j-i} (s_{i+1} t_{i+1} + t_{i+2} (s_i + s_{i+1})) \right) \]

\[+ \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} t_{j+1} s_{j}. \]

Thus \(\Delta_3 = \Delta_{31} + \Delta_{32} + \Delta_{33} + \Delta_{34} + \Delta_{35} + \Delta_{36} + \Delta_{37} \), where

\[\Delta_{31} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-i-1} s_{i+1} t_{i+1}. \]
\[\Delta_{32} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-1} s_{i} t_{i+2}, \]
\[\Delta_{33} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-i-1} s_{i+1} t_{i+2}, \]
\[\Delta_{34} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-i-1} s_{i+1} t_{i+1}, \]
\[\Delta_{35} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-i-1} s_{i+2} t_{i+2}, \]
\[\Delta_{36} = \sum_{i<j} s_{k-j-1} t_{j+2} s_{j-i} s_{i+1} t_{i+2}, \]

and

\[\Delta_{37} = \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} s_{j}. \]

Also we see that

\[\Delta_{4} = \sum_{j=0}^{k-1} s_{k-j-1} \left(\frac{t_{j+2}}{2} \right) (s_{j} + s_{j+1}), \]

so that

\[\Delta_{4} = \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} (t_{j+2} - 1)(s_{j} + s_{j+1}); \]

but \(\Delta_{4} = \Delta_{41} - \Delta_{42} \), where

\[\Delta_{41} = \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2}^{2} (s_{j} + s_{j+1}) \]

and

\[\Delta_{42} = \frac{1}{2} \sum_{j=0}^{k-1} s_{k-j-1} t_{j+2} (s_{j} + s_{j+1}). \]

We want to show all sums of type \(\Delta \) actually vanish. In fact, this is simply the upshot of lemmas given in section 2. Thus we have shown \(d_{k} = 0 \) for the type I sequence. It is
Dikici & C Smith

a matter of algebraic manipulation to show that $d_{k+1} = d_{k+2} = 0$. The analysis of the type II sequence is extremely similar to that of the type I sequence.

We acknowledge the computer algebra systems CAYLEY [3] and AXIOM [7], using which many of the results in this area were originally discovered as experimental truths.

References

DİKİÇİ & C SMITH

Sonlu Nilpotent Gruplarda Fibonacci Dizileri

Özet

Gözönüne alınan 3-basamak Fibonacci dizisi ve nilpotent sınıfı 3, exponenti p olan herhangi bir sonlu p-grup için, bu grubun elemanlarıyla oluşturulan herhangi bir döngünün esas periyodunun uzunluğunun GF(p) cisminde adı 3- basamak Fibonacci dizisinin periyodunu böldüğü ispatlandı.

Received 18.10.1994

Ramazan DİKİÇİ & Geoff C SMITH
Atatürk Üniversitesi
Kazım Karabekir Eğitim Fakültesi
Matematik Eğitimi Bölümü
23240 Erzurum-TURKEY