EXTENSIONS OF CARISTI- KIRK’S THEOREM

M.O. Diallo, M. Oudadess

Abstract

We give some extensions and/or improvements, to uniform spaces and to multi-valued mappings, of Caristi-Kirk’s theorem.

Key words and phrases: Uniform spaces, multi-valued mappings, fixed point theorem, maximal element, weak p-contraction mappings.

1. Introduction

It was observed that certain fixed point theorems can be deduced from the following result:

Let \((E, \leq)\) be an ordered set which admits a maximal element.

Let \(f : E \to E\) be a mapping such that \(x \leq f(x)\) for every \(x\) in \(E\).

Then \(f\) has a fixed point.

This result served as a basis for certain theorems about the existence of maximal elements ([1], [2], [3], [6]), and hence fixed point theorems. Considered spaces are often metric spaces endowed with an order defined via the distance ([2], [3], [4], [5]).

Ekeland’s variational principle, which concerns the existence of maximal elements ([2], [6]) and its generalizations allowed simple proof of Caristi-Kirk’s theorem ([2],[3],[8]).

Recently, V. Conserva ([5]) gave a slight improvement of this theorem in metric spaces.

In this paper we give some extensions and/or improvements to uniform spaces and to multi-valued mappings, of Caristi- Kirk’s theorem.

Let us notice that proofs we give here go along the lines of those given in the case of metric or topological vector spaces ([2], [3], [4], [5]).

In the following, for a uniform space \(E\), we consider a family \((d_i)_{i \in I}\) of semi-metrics which defines its uniform structure and such that \(\sup_{i \in I} d_i(x, y) < +\infty\), for all \(x, y\) in \(E\).

Let \(E\) be a uniform space and \(p : E \to \mathbb{R}_+\) a positive real functional on \(E\). Define a partial order on \(E\) as follows:

\(x \leq y\) if and only if \(d_i(x, y) \leq p(x) - p(y)\), for all \(i \in I\)

For an \(x\) in \(E\) we put \(S(x) = \{y \in E / x \leq y\}\).
Let \(A \) be a subset of \(E \), \(\operatorname{diam} (A) = \sup_{i \in I} \left(\sup_{x \in A} d_i(x, y) \right) \) will be called diameter of \(A \).

We denote by \(2^E \), the set of all nonempty subsets of \(E \).

I-Single Valued Mappings

We will begin with the following result:

Theorem I-1. Let \(E \) be a uniform space and \(p : E \to \mathbb{R}_+ \) a real functional which is lower semi-continuous (l.s.c.). Let \(f : E \to E \) be an arbitrary self-mapping of \(E \).

(I-1): there exists an \(x \) in \(E \) such that, for all \(i \in I \),
\[
d_i(y, f(y)) \leq p(y) - p(f(y)), \text{ for all } y \in S(x).
\]

(I-2): any Cauchy sequence in \(S(x) \) converges in \(E \).

Then \(f \) has a fixed point which is maximal in \((E, \leq) \).

Proof. Construct a sequence \((x_n)_n\) in \(E \) inductively as follows: \(x_1 = x \); when \(x_1, x_2, \ldots, x_n \) have been chosen, let \(a_n := \inf p(S(x_n)) \) and take \(x_{n+1} \) in \(S(x_n) \) such that \(p(x_{n+1}) \leq a_n + 1/n \).

Then \(x_n \leq x_{n+1} \) and for any \(y \) in \(S(x_n) \) we have \(a_n - 1 \leq a_n \leq p(y) \leq p(x_n) \leq a_n + 1/n - 1 \).

In particular, for \(n \leq m \) we have \(0 \leq p(x_n) - p(x_m) \leq 1/n - 1 \).

This shows that \((x_n)_n\) is a Cauchy sequence and that, for all \(i \in I, d_i(x_n, x_m) \) converges to zero when \(n \) tends to infinity. Hence \(\operatorname{diam} (S(x_n)) \) converges to zero for all \(n \).

By hypothesis \((x_n)_n\) converges to an \(x_0 \) in \(E \). On the other hand, by the construction of \((x_n)_n\), we have, for all \(i \in I, d_i(x_n, x_{n+k}) \leq p(x_n) - p(x_{n+k}) \), for all \(k \geq 0 \).

Hence, allowing \(k \) tend to infinity we have \(d_i(x_n, x_0) \leq p(x_n) - p(x_0) \), for all \(n \) and for all \(i \in I \). This means that \(x_n \leq x_0 \) for all \(n \). Therefore \(x_0 \in S(x) \) and
\[
d_i(x_0, f(x_0)) \leq p(x_0) - p(f(x_0)), \text{ for all } i \in I \text{ i.e. } x_0 \leq f(x_0)
\]

Let now \((y_n)_n\) be a sequence such that \(x_n \leq y_n \) for all \(n \). Then \(\lim_n y_n = x_0 \), for \(\operatorname{diam} (S(x_n)) \) converges to zero for all \(n \).

Finally, suppose that \(y \) in \(E \) is such that \(x_0 \leq y \). Then we also have \(x_n \leq y \) for all \(n \) and it follows that \(y = x_0 \) (take \(y_n := y \) for all \(n \) in the preceding sequence), i.e. \(x_0 \) is maximal and then \(f(x_0) = x_0 \).

We have the following corollary:

Corollary I-2. Let \(E \) be a sequentially complete uniform space and \(p : E \to \mathbb{R}_+ \) a l.s.c. real functional. Let \(f \) be an arbitrary self-mapping of \(E \). Suppose that there exists an \(x \) in \(E \) such that \(d_i(y, f(y)) \leq p(y) - p(f(y)) \), for all \(y \) in \(S(x) \) and for all \(i \in I \).
Then \(f \) has a fixed point which is a maximal element in \((E, \leq)\).

As a consequence of this result we have

Corollary I-3. (Caristi-Kirk’s theorem). Let \((E, d)\) be a complete metric space and \(p : E \to \mathbb{R}_+\) a l.s.c. real functional. Let \(f\) be a self-mapping of \(E\) such that \(p(x, f(x)) \leq p(x) - p(f(x))\), for all \(x\) in \(E\). Then \(f\) has a fixed point.

Analyzing the proof of Theorem I-1, we can state the following

Theorem I-4. Let \(E\) be a uniform space and \(p : E \to \mathbb{R}_+\) a l.s.c. real functional. Let \(f\) be an arbitrary self-mapping of \(E\). Suppose that:

(I-3): there exists an \(x\) in \(E\) such that, for all \(i \in I\),
\[
d_i(y, f(y)) \leq p(y) - p(f(y)), \text{ for every } y \text{ in } S(x)
\]

(I-4): any nondecreasing sequence in \(S(x)\) is relatively compact.

Then \(f\) has at least one fixed point which is maximal in \((E, \leq)\).

Proof. Let \((x_n)_n\) be a sequence defined as follows: \(x_1 = x\); when \(x_1, x_2, \ldots, x_n\) have been chosen let \(a_n := \inf p(S(x_n))\) and take \(x_{n+1}\) in \(S(x_n)\) such that \(p(x_{n+1}) \leq a_n + 1/n\).

The sequence \((x_n)_n\) is increasing. One shows that, for all \(i \in I\),
\[
d_i(x_n, x_m) \leq p(x_n) - p(x_m) \leq 1/n - 1, \text{ for } n \leq m.
\]

Hence \((x_n)_n\) is a Cauchy sequence; moreover \(\text{diam } (S(x_n))\) converges to zero for all \(n\).

By hypothesis, \((x_n)_n\) is relatively compact. Therefore there exists a subsequence \((x_{n_k})_k\) of \((x_n)_n\) which converges to an \(x_0\) in \(E\). Since \((x_n)_n\) is a Cauchy sequence, it also converges to \(x_0\). By the same argument as in the proof of Theorem I-1 we get that \(x_0 \in S(x)\) and that \(x_0\) is maximal. Thus by hypothesis, for all \(i \in I\),
\[
d_i(x_0, f(x_0)) \leq p(x_0) - p(f(x_0)), \text{ i.e. } x_0 \leq f(x_0).
\]
Thus \(f(x_0) = x_0\).

\[\square\]

Remark I-5. Instead of condition (I-4) in Theorem I-4, if we suppose that \(S(x)\) is complete for each \(x\) in \(E\), the conclusion of the theorem still holds.

If we suppose likewise that \(E\) is sequentially complete, the condition (I-4) is no more needed. Corollary I-2 can again be obtained as a consequence.

II-Multi-Valued Mappings

Now we give an extension of Theorem I-1 to the case of certain multi-valued mapping, namely those which in some way are \(p\)-contractive. Thus we improve some of the results of M-H. Shih ([8]) which are of Caristi-Kirk type.

We slightly soften a definition of M-H. Shih ([8]).
Definition II-1. Let A be a subset of E. A multi-valued mapping $f : E \to 2^E$ is said to be a weak p-contraction on A, if there exists a real functional $p : E \to \mathbb{R}_+$ such that for each x in A and $y \in f(x)$, $d_i(x, y) \leq p(x) - p(y)$, for all $i \in I$.

f is said to be a p-contraction on A, if for each x in A and all y in $f(x)$, $d_i(x, y) \leq p(x) - p(y)$, for all $i \in I$.

f is said to be a weak p-contraction (respectively a p-contraction) in the sense of Shih, if $A = E$, E being a metric space.

We have the following result:

Theorem II-2. Let E be a uniform space and $f : E \to 2^E$ a closed multi-valued mapping. Suppose that:

(II-1): there exists an x in E such that f is a weak p-contraction on $S(x)$;

(II-2): any Cauchy sequence in $S(x)$ converges in E.

Then f has a fixed point.

Proof. Endow E with the partial order corresponding to p and construct a sequence $(x_n)_n$ as follows: $x_1 = x$ and for $n > 1$, take x_{n+1} in $f(x_n)$ such that $x_n \leq x_{n+1}$ (this is possible for f is a weak p-contraction on $S(x)$). One shows that $(x_n)_n$ is a Cauchy sequence. Therefore by hypothesis, there exists $x^* \in f(x^*)$, i.e. x^* is a fixed point of f.

Moreover, we have, for all $i \in I$,

$$d_i(x_n, x_{n+k}) \leq p(x_n) - p(x_{n+k}), \text{ for } k \geq 0.$$

Tending k to infinity we obtain

$$d_i(x_n, x^*) \leq p(x_n), \text{ for all } i \in I, n = 0, 1, 2 \cdots$$

As a consequence we get the following: \(\square\)

Corollary II-3. Let E be a sequentially complete uniform space and $f : E \to 2^*$ a closed multi-valued mapping. Suppose that f is a weak p-contraction. Then f has a fixed point.

Corollary II-4 (M.-H. Shih ([8])). Let (E, d) be a complete metric space and $f : E \to 2^E$ a closed multi-valued mapping. Suppose that f is a weak p-contraction. Then f has a fixed point.

We will need the following statement, in uniform spaces, of Ekeland's variational principle. A. Brondsted ([3]) stated it differently (in uniform spaces). Here we give a statement directly applicable to our case.
Theorem II-5. Let E be a sequentially complete uniform space and $p : E \to \mathbb{R}$ a l.s.c. real functional which is bounded below. Then there exists an x in E such that:

$$(II - 3): \forall \ y \neq x, \exists \ i_o \in I : p(y) > p(x) - d_{i_o}(x, y).$$

Now we can state the following

Theorem II-6 Let E be a uniform space and $f : E \to 2^E$ a multi-valued mapping. Suppose that:

$$(II-4):$$ there exists an x in E such that f is a weak p-contraction on $S(x)$ with p being I.s.c. and $S(x)$ complete. Then f has a fixed point.

Proof. By Theorem II-5, there exists $v \in S(x)$ such that for every $w \neq v$, there exists $i_o \in I$ such that $p(w) - p(v) > -d_{i_o}(w, v)$. We assert that $v \in f(v)$. Indeed, if not, then $p(w) - p(v) > d_{i_o}(w, v)$, for each w in $f(v)$. Whence a contradiction to the p-contractness of f on $S(x)$. \hfill \Box

Corollary II-7. Let E be a sequentially complete uniform space and $f : E \to 2^E$ a multi-valued mapping. Suppose that f is a weak p-contraction with p being I.s.c. Then f has a fixed point.

From the previous corollary we deduce the following result:

Corollary II-8 (M-H. Shih ([8]). Let (E, d) be a complete metric space and $f : E \to 2^E$ a multi-valued mapping. Suppose that f is a weak p-contraction with p being I.s.c. Then f has a fixed point.

Remark II-9. Replacing weak p-contractness by p-contractness we get special cases of the results above and in particular some results of M-H. Shih ([8]).

Acknowledgments

The first author is grateful to Islamic Educational, Scientific and Cultural Organization (I.S.E.S.C.O.) for the scholarship extended during the academic years of 1991-92 and 1992-93. Thanks are due to the staff of the scientific Department of ISESCO in Rabat (Morocco).
DIALLO, OUDADESS

References

CARISTI- KIRK THEOREMİNİN BİR GENELLEŞTİRİLMESİ

Özet

Bu makalede Caristi- Kirk teoreminin düzgün uzaylara ve çok-değerli temsillere genişletilmeleri verilmiştir.

M.O. DIALLO, M. OUDADESS
Ecole Normale Supérieure-TAKADDOUM
B.P. 5118, Rabat, MAROC.

Received 23.3.1994