Erratum to “Study on quasi-Γ-hyperideals in Γ-semihypergroups”

Niovi KEHAYOPULU∗
Nikomidias 18, 16122 Kesariani, Greece

Received: 06.03.2020 • Accepted/Published Online: 06.04.2020 • Final Version: 08.05.2020

Abstract: We wrote this note to show that the definition of Γ-hypersemigroups in [2] should be corrected, and that it is not enough to replace the hyperoperation \circ of the hypersemigroup by Γ to pass from a hypersemigroup to a Γ-hypersemigroup. Care should be taken about the definitions of (m, n)-quasi-Γ-hyperideal, the m-left Γ-hyperideal and the n-right Γ-hyperideal as well.

Key words: Γ-semihypergroup, (m, n)-quasi-Γ-hyperideal

According to Definition 1.1 of the paper, “if H and Γ are two nonempty sets, any mapping $H \times \Gamma \times H \rightarrow \mathcal{P}(H)$ is called a Γ-hypermultiplication in H and denoted by $(\cdot)_{\Gamma}$. The result of this hypermultiplication for $a, b \in H$ and $\alpha \in \Gamma$ is denoted by $a_{\alpha}b$. A Γ-semihypergroup S is an ordered pair $(H, (\cdot)_{\Gamma})$ where H and Γ are nonempty sets and $(\cdot)_{\Gamma}$ is a Γ-hypermultiplication on H which satisfies the following property: For all $(a, b, c, \alpha, \beta) \in H^3 \times \Gamma^2$, $(a_{\alpha}b_{\beta}c = a_{\alpha}(b_{\beta}c))$. If every $\gamma \in \Gamma$ is an operation, then H is a Γ-semigroup. Let A and B are two nonempty subsets of H. Then, we define $A_{\Gamma}B = \bigcup_{\gamma \in \Gamma} A_{\gamma}B = \bigcup \{a_{\gamma}b \ | \ a \in A, b \in B \text{ and } \gamma \in \Gamma\}.”

So $a_{\alpha}b$ is defined as a nonempty subset of S (as it was expected to be). That being so, the expression of the form $(a_{\alpha}b_{\beta}c$ should be corrected, there is no sense in the way is stated. According to this definition, “if every $\gamma \in \Gamma$ is an operation”, but we have to clarify here what “γ” is an operation means. Is it an operation between elements or an operation between sets? The $A_{\Gamma}B$ in (\ast) shows that γ is an operation between sets while $a_{\gamma}b$ in (\ast) shows that it is an operation between elements. As a result, the definition of Γ-semihypergroup is wrong and a correct definition of Γ-hypersemigroups is needed.

A Γ-hypersemigroup H is called “regular” [2] if for every $x \in H$ there exists $y \in H$ such that $x = x_{\alpha}y_{\beta}x$ without any explanation what the $x_{\alpha}y_{\beta}x$ means. What is the $x_{\alpha}y_{\beta}x$? What is the “Γ” in it? It seems like an operation between elements, but even in that case, what is the $x_{\alpha}y_{\beta}x$? According to [2], the most possibly case concerning the concept of regularity is the following: A Γ-hypersemigroup H is called regular if for every $x \in S$, there exist $y \in H$ and $\alpha, \beta \in \Gamma$ such that $x = x_{\alpha}y_{\beta}x$; but as we already said expression of the form $x_{\alpha}y_{\beta}x$ should be corrected.

∗Correspondence: nkehayop@math.uoa.gr
2010 AMS Mathematics Subject Classification: 20M99, 06F05

This work is licensed under a Creative Commons Attribution 4.0 International License.
For the sake of simplicity, throughout the paper, $\underbrace{H \Gamma H \ldots \Gamma H}_n$ is denoted by H^n. But what the $\underbrace{H \Gamma H \ldots \Gamma H}_n$ means? First of all, do we have the right to write $H \Gamma H \ldots \Gamma H$ without using parentheses? There is nothing about it in the bibliography.

According to Definition 2.2 in [2], a nonempty subset Q of a Γ-semihypergroup H is called (m, n)-quasi-Γ-hyperideal of H is $H^m \Gamma Q \cap Q \Gamma H^n \subseteq Q$. This is true for $m = n = 1$, but what about arbitrary m, n? Considering that this definition is a generalization of the concept of the (m, n)-quasi-ideals of semigroups introduced by Lajos (see, for example [4]), an (m, n)-quasi-Γ-hyperideal should be defined as $Q^m \Gamma H \cap H \Gamma Q^n \subseteq Q$. The definition of the m-left Γ-hyperideal L is defined as $H^m \Gamma L \subseteq L$; the correct is $L^m \Gamma H \subseteq L$. The n-right Γ-hyperideal of H is defined as $R \Gamma H^n \subseteq R$; the correct is $R^n \Gamma H \subseteq R$. But we have to keep in mind that, for an arbitrary nonempty subset A of S, the A^n is the set $\underbrace{((A \Gamma A) \Gamma A) \Gamma A \ldots \Gamma A}_n$. We are not in a semigroup or a Γ-semigroup where this is simple. It might be mentioned here that an element q of a poe-groupoid S is called an (m, n)-quasi-ideal element of S if $q^m e \land eq^n$ exists in S and $q^m e \land eq^n \leq q$ [3] and it is called $(0, n)$ (resp. $(m, 0)$)-ideal element of S if $ea^n \leq a$ (resp. $a^me \leq a$) [3]. Every $(m, 0)$-ideal element is a $(m, 0)$-quasi-ideal and every $(0, n)$-ideal element is a $(0, n)$-quasi-ideal element.

In what follows, the aim is to show that is not enough to pass from a semigroup to a hypersemigroup by replacing the multiplication “·” of the semigroup by the hyperoperation “◦” and to pass from a hypersemigroup to a Γ-hypersemigroup replacing the “◦” by “Γ”.

The paper in [2] is the paper in [1] with the only difference that the hypeoperation ◦ in [1] has been replaced by Γ in [2].

In fact,

Lemma 2.1 in [2] is the Lemma 2.10 in [1];
Proposition 2.1 in [2] is the Proposition 2.11 in [1];
Theorem 2.1 in [2] is the Proposition 2.10 in [1];
Theorem 2.2 in [2] is the Theorem 2.14 in [1];
Theorem 2.3 in [2] is the Theorem 2.16 in [1];
Theorem 2.4 in [2] is the Theorem 2.17 in [1];
Theorem 2.5 in [2] is the Theorem 2.18 in [1];
Theorem 2.6 in [2] is the Theorem 2.19 in [1];
Proposition 2.3 in [2] is the Proposition 2.20 in [1];
Theorem 2.7 in [2] is the Theorem 2.21 in [1];
Proposition 2.3 in [2] is the Proposition 2.22 in [1];
Lemma 3.1 in [2] is the Lemma 3.4 in [1];
Theorem 3.1 in [2] is the Theorem 3.5 in [1];
Corollary 3.1 in [2] is the Corollary 3.6 in [1];
Theorem 3.2 in [2] is the Theorem 3.7 in [1];
Theorem 3.3 in [2] is the Theorem 3.11 in [1];
Theorem 3.4 in [2] is the Theorem 3.12 in [1].
The definition of quasi-hyperideals and the definitions of \(m \)-left and \(n \)-right hyperideals of semihypergroups in [1] should be also corrected; in addition, except of Theorem 2.14, Theorem 2.17 (and the Examples), the results of section 2 in [1] duplicates, without citation, the paper “A note on \((m, n)\)-quasi-ideals in semigroup” by Moin A. Ansari, M. Rais Khan, J. P. Kaushik in International Journal of Mathematical Analysis 3 (2009), 1853-1858 (with the usual change), that is a further indication that is not enough to pass from a semigroup to a hypersemigroup just replacing the \(\cdot \) by \(\circ \); but this is out of the scope of the present note.

The definition of \(\Gamma \)-hypersemigroups, the regularity, and related information has been given by the author of the present note in the paper “Lattice ordered semigroups and \(\Gamma \)-hypersemigroups” submitted to Turkish Journal of Mathematics.

References

