Relative ranks of some partial transformation semigroups

Ebru YİĞİT, Gonca AYIK, Hayrullah AYIK

1 Department of Informatics, Faculty of Engineering, Yalova University, Yalova, Turkey
2 Department of Mathematics, Faculty of Arts and Sciences, Çukurova University, Adana, Turkey

Received: 05.02.2019 • Accepted/Published Online: 16.07.2019 • Final Version: 28.09.2019

Abstract: Let P_n, T_n, I_n, and S_n be the partial transformation semigroup, the (full) transformation semigroup, the symmetric inverse semigroup, and the symmetric group on $X_n = \{1, \ldots, n\}$, respectively. For $1 \leq r \leq n - 1$, let $PK_{n,r}$ be the subsemigroup consisting $\alpha \in P_n$ such that $|\text{im} \alpha| \leq r$ and let $SPK_{n,r} = PK_{n,r} \setminus T_n$. In this paper, we first examine the subsemigroup $I_{n,r} = I_n \cup PK_{n,r}$ and we find the necessary and sufficient conditions for any nonempty subset of $PK_{n,r}$ to be a (minimal) relative generating set of the subsemigroup $I_{n,r}$ modulo I_n. Then we examine the subsemigroups $PI_{n,r} = SI_n \cup PK_{n,r}$ and $SI_{n,r} = SI_n \cup SPK_{n,r}$ for $1 \leq r \leq n - 1$, where $SI_n = I_n \setminus S_n$ and compute their relative rank.

Key words: (Partial) transformation semigroup, symmetric inverse semigroup, symmetric group, (minimal) generating set, relative rank

1. Introduction

The partial transformation semigroup P_X, the (full) transformation semigroup T_X and the symmetric inverse semigroup I_X on a set X have been extensively studied over the last sixty years, both in the finite and in the infinite cases. Among recent contributions are [1–6, 13, 16]. Here we are concerned solely with the case where $X = X_n = \{1, \ldots, n\}$, and we denote the semigroups P_{X_n}, T_{X_n}, and I_{X_n}, by P_n, T_n, and I_n, respectively. Moreover, we denote the subsemigroup $I_n \setminus S_n$ by SI_n where S_n is the symmetric group on X_n.

It is well known that I_n is an inverse semigroup and every finite inverse semigroup S is embeddable in I_n, the analog of Cayley’s theorem for finite groups. Hence, as emphasized in [1], the importance of I_n to inverse semigroup theory is similar to that of the symmetric group S_n to group theory. Moreover, Gomes and Howie remarked in [11] that very little has been written on the symmetric inverse semigroups. Despite the appearance of the books of Lipscomb [18], and Ganyushkin and Mazorchuk [8], as well as a handful of papers (for example, [10]), the study of I_n is still in its infancy compared to that of T_n.

An element α of P_n is called an idempotent if $\alpha^2 = \alpha$. We denote the set of all idempotents in any subset U of any semigroup by $E(U)$. Let S be a semigroup and let A be a nonempty subset of S. Then the subsemigroup generated by A, that is the smallest subsemigroup of S containing A, is denoted by $\langle A \rangle$. If a semigroup S has a finite subset A such that $S = \langle A \rangle$, then S is called a finitely generated semigroup. The rank of a finitely generated semigroup S is defined by $\text{rank}(S) = \min \{ |A| : \langle A \rangle = S \}$. For a fixed subset G of

*Correspondence: agonca@cu.edu.tr

2010 AMS Mathematics Subject Classification: 20M20

This work is licensed under a Creative Commons Attribution 4.0 International License.
a semigroup S, if there exists a subset A of S such that $\langle A \cup G \rangle = S$, then A is called a \textit{relative generating set of S modulo G}. Then the \textit{relative rank} of a finitely generated semigroup S modulo G is defined by

$$\text{rerank}(S : G) = \min\{|A| : \langle A \cup G \rangle = S\}.$$

For $1 \leq r \leq n$, let

$$K_{n,r} = \{\alpha \in T_n : |\text{im}(\alpha)| \leq r\}, \quad T_{n,r} = S_n \cup K_{n,r},$$

$$PK_{n,r} = \{\alpha \in P_n : |\text{im}(\alpha)| \leq r\}, \quad PT_{n,r} = S_n \cup PK_{n,r},$$

$$SPK_{n,r} = PK_{n,r} \setminus T_n = PK_{n,r} \setminus K_{n,r}, \quad A_{n,r} = A_n \cup K_{n,r},$$

$$PA_{n,r} = A_n \cup PK_{n,r}, \quad I_{n,r} = I_n \cup PK_{n,r},$$

$$SI_{n,r} = SI_n \cup SPK_{n,r} \quad \text{and} \quad PI_{n,r} = SI_n \cup PK_{n,r},$$

where A_n denotes the alternating group on X_n.

Howie and McFadden proved in [15] that the rank of $K_{n,r}$ is $S(n,r)$, the Stirling number of the second kind, for $2 \leq r \leq n - 1$. Recall that the Stirling number $S(n,r)$ of the second kind is defined by

$$S(n,1) = S(n,n) = 1 \quad \text{and} \quad S(n,r) = S(n-1,r-1) + r \cdot S(n-1,r)$$

for $2 \leq r \leq n-1$. Moreover, Garba proved in [9] that the rank of the subsemigroup $PK_{n,r}$ of P_n is $S(n+1,r+1)$ for $2 \leq r \leq n-1$.

For $n, r \in \mathbb{Z}^+$ with $r \leq n$, let $P_r(n)$ be the set of all integer solutions of the equation

$$x_1 + x_2 + \cdots + x_r = n \quad \text{with} \quad x_1 \geq x_2 \geq \cdots \geq x_r \geq 1,$$

and let $p_r(n) = |P_r(n)|$. If an r-tuple (n_1, n_2, \ldots, n_r) is a solution of the equation given above, then it is called a \textit{partition of n with r terms} (see [12]). Ayk et al. developed a notation for certain primitive elements of T_n, called path-cycle, and described an algorithm to decompose an arbitrary transformation α in T_n into a product of path-cycles in [2]. In addition, they used these techniques to obtain some informations about generators of T_n, and proved that, rerank$(T_{n,r} : S_n) = p_r(n)$ for $1 \leq r \leq n - 1$ (see also [17, Theorem 8]).

In [19], we obtained the necessary and sufficient conditions for any nonempty subset U of $K_{n,r}$ (or $PK_{n,r}$) to be a (minimal) relative generating set of $T_{n,r}$ (or $PT_{n,r}$) modulo S_n for $1 \leq r \leq n - 1$. Then we concluded the same result in [2, 17] that rerank$(T_{n,r} : S_n) = p_r(n)$ and, we obtained the new result

$$\text{rerank}(PT_{n,r} : S_n) = \sum_{s=0}^{n-r} p_r(n-s)$$

for $1 \leq r \leq n - 1$. Moreover, we showed that

$$\text{rerank}(A_{n,r} : A_n) = p_r(n) \quad \text{and} \quad \text{rerank}(PA_{n,r} : A_n) = \sum_{s=0}^{n-r} p_r(n-s)$$

for each $1 \leq r \leq n - 1$.

In this paper, we first find the necessary and sufficient conditions for any nonempty subset U of $PK_{n,r}$ to be a (minimal) relative generating set of $I_{n,r}$ (respectively $PI_{n,r}$) modulo I_n (respectively SI_n).
for \(1 \leq r \leq n - 1\). Moreover, we find the necessary and sufficient conditions for any subset \(U\) of \(SPK_{n,r}\) to be a (minimal) relative generating set of \(SI_{n,r}\) modulo \(SI_n\). Then we conclude that
\[
\text{rerank}(I_{n,r} : I_n) = p_r(n),
\]
\[
\text{rerank}(SI_{n,r} : SI_n) = p_r(n - 1) \quad \text{and}
\]
\[
\text{rerank}(PI_{n,r} : SI_n) = S(n, r)
\]
for \(1 \leq r \leq n - 1\).

2. Preliminaries

The \textit{height} and the \textit{kernel} of any partial transformation \(\alpha \in P_n\) are defined by
\[
h(\alpha) = |\text{im}(\alpha)| \quad \text{and}
\]
\[
\ker(\alpha) = \{(x, y) \in X_n \times X_n : \text{either } x, y \in \text{dom}(\alpha) \text{ and } x\alpha = y\alpha
\]
\[
\quad \text{or } x, y \notin \text{dom}(\alpha)\},
\]
respectively. For any \(\alpha, \beta \in P_n\) (also \(\alpha, \beta \in T_n\)), recall that \(\text{dom}(\alpha\beta) \subseteq \text{dom}(\alpha), \text{im}(\alpha\beta) \subseteq \text{im}(\beta), \ker(\alpha) \subseteq \ker(\alpha\beta)\), and that
\[
(\alpha, \beta) \in \mathcal{D} \iff h(\alpha) = h(\beta)
\]
\[
(\alpha, \beta) \in \mathcal{H} \iff \text{im}(\alpha) = \text{im}(\beta), \ker(\alpha) = \ker(\beta) \text{ and } \text{dom}(\alpha) = \text{dom}(\beta)
\]
where the equivalences \(\mathcal{D}\) and \(\mathcal{H}\) denote Green’s relations (see, for examples [14] and [8, Theorem 4.5.1]). For \(1 \leq r \leq n\), we denote that Green’s \(\mathcal{D}\)-class, consists of all elements in \(T_n\) (respectively \(P_n\) of height \(r\), by \(D^r\)) (respectively \(D^r_P\)). If the implied semigroup is clear from the context, we will use the simpler notation \(D_r\).

It is shown in [7] that Green’s \(\mathcal{D}\)-class \(D^r\) is generated by its idempotents, and so it follows from [15, Lemma 4] that \(K_{n,r} = \langle E(D^r) \rangle\) for \(2 \leq r \leq n - 1\). It is also shown in [9] that a subset \(A\) of Green’s \(\mathcal{D}\)-class \(D^r_P\) is a generating set of \(PK_{n,r}\) if and only if \(E(D^r_P) \subseteq \langle A \rangle\) for \(2 \leq r \leq n - 1\). Therefore, to show a subset \(A\) of \(D^r_P\) is a generating set of \(PK_{n,r}\), it is enough to prove \(D^r_P \subseteq \langle A \rangle\).

For a given nonempty set \(X\) and a positive integer \(r\) where \(1 \leq r \leq |X|\), let \(A_1, \ldots, A_r\) be a collection of nonempty disjoint subsets of \(X\). Then \(\xi = \{A_1, \ldots, A_r\}\) is called a \textit{partition} of \(X\) (with \(r\) terms) if \(X = \bigcup_{i=1}^{r} A_i\). A partition \(\{A_1, \ldots, A_r\}\) of \(X\) is called an \textit{ordered partition} if \(|A_1| \geq \cdots \geq |A_r|\), and is denoted by \((A_1, \ldots, A_r)\). For \(1 \leq r \leq n\), it is clear that \(\alpha \in D^r_P\) if and only if there exists a unique partition \(\{A_1, \ldots, A_r\}\) of \(\text{dom}\)(\(\alpha\)) such that \(\ker(\alpha) = \bigcup_{i=1}^{r+1} (A_i \times A_i)\) where \(A_{r+1} = X_n \setminus \text{dom}(\alpha) = \text{cdom}(\alpha)\); or equivalently, there exists a unique subset \(\{a_1, \ldots, a_r\}\) of \(X_n\) with cardinality \(r\), such that \(\text{im}(\alpha) = \{a_1, \ldots, a_r\}\). Without loss of generality suppose that \(A_i\alpha = a_i\) for each \(1 \leq i \leq r\), and so \(\alpha\) can be written in the following tabular form:
\[
\alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{array} \right) \quad \text{and} \quad \alpha = \left(\begin{array}{ccc} A_1 & \cdots & A_r \\ a_1 & \cdots & a_r \end{array} \right) \quad \text{if } \alpha \in D^r_P.
\]

For \(\alpha \in D^r_P\), written in the above tabular form, there clearly exists a permutation \(\sigma \in S_r\) such that \((|A_1\sigma|, \ldots, |A_r\sigma|)\) is a partition of \(n\) with \(r\) terms. In this case the \textit{partition} of \(\alpha\) is defined by
\[
\text{part}(\alpha) = (|A_1\sigma|, \ldots, |A_r\sigma|).
\]
For \(\alpha \in D_r^P \) if \(|\text{cdom}(\alpha)| = |A_{r+1}| = s \geq 1\), similarly there exists a permutation \(\sigma \in S_r \) such that \((|A_{1\sigma}|, \ldots, |A_{r\sigma}|)\) is a partition of \(n-s \) with \(r \) terms. In this case, the \textit{co-partition} of \(\alpha \) is defined by

\[
\text{copart}(\alpha) = (|A_{1\sigma}|, \ldots, |A_{r\sigma}| : |A_{r+1}|).
\]

If \(|\text{dom}(\alpha)| = |A_{r+1}| = s = 0\), then for convenience the \textit{copartition} of \(\alpha \) is defined by \(\text{copart}(\alpha) = \text{part}(\alpha) \).

From now on, we consider the case \(1 \leq r \leq n-1 \), since \(D_n^P = D_r^P = S_n \). We also assume that \(\alpha \in D_r^P \) is in the above tabular form unless stated otherwise.

First, recall Proposition 1 and Lemma 2 in [19]:

Proposition 2.1 For \(1 \leq r \leq n-1 \), let \(\alpha, \beta \in D_r \). Then \(\alpha \beta \in D_r \) if and only if \(\ker(\alpha \beta) = \ker(\alpha) \). Moreover, \(\alpha \beta \in D_r \) implies \(\text{cdom}(\alpha \beta) = \text{cdom}(\alpha) \).

Lemma 2.2 For \(1 \leq r \leq n-1 \), let \(\alpha, \beta \in D_r \). Then \(\text{copart}(\alpha) = \text{copart}(\beta) \) if and only if there exist \(\lambda, \mu \in S_n \) such that \(\alpha = \lambda \beta \mu \). In particular, for \(\alpha, \beta \in T_n \), \(\text{part}(\alpha) = \text{part}(\beta) \) if and only if there exist \(\lambda, \mu \in S_n \) such that \(\alpha = \lambda \beta \mu \).

Next we state and prove the following similar lemma which will be used throughout this paper:

Lemma 2.3 For \(1 \leq r \leq n-1 \), let \(\alpha \in D_r^P \) and let \(\text{copart}(\alpha) = (n_1, n_2, \ldots, n_r : s) \) with \(s \geq 1 \).

(i) For any \(\beta \in D_r^P \) with \(\text{part}(\beta) = (n_1 + s, n_2, \ldots, n_r) \), there exist \(\lambda, \mu \in SI_n \) such that \(\alpha = \lambda \beta \mu \).

(ii) For any \(\beta \in D_r^P \) with \(\text{copart}(\beta) = (n_1 + s - k, n_2, \ldots, n_r : k) \) where \(1 \leq k \leq s \), there exist \(\lambda, \mu \in SI_n \) such that \(\alpha = \lambda \beta \mu \).

(iii) For any \(\beta \in D_r^P \), \(\text{copart}(\alpha) = \text{copart}(\beta) \) if and only if \(|\text{dom}(\alpha)| = |\text{dom}(\beta)| \) and there exist \(\lambda, \mu \in SI_n \) such that \(\alpha = \lambda \beta \mu \).

Proof Without loss of generality, let

\[
\alpha = \left(\begin{array}{ccc}
A_1 & \cdots & A_r \\
\vdots & \ddots & \vdots \\
A_{r+1}
\end{array} \right)
\]

where \(|A_i| = n_i \) for \(1 \leq i \leq r \) and \(|A_{r+1}| = s \geq 1 \).

(i)-(ii) For any \(\beta \in D_r^P \) without loss of generality let

\[
\beta = \left(\begin{array}{ccc}
B_1 & \cdots & B_r \\
\vdots & \ddots & \vdots \\
B_{r+1}
\end{array} \right)
\]

where

\[
|B_i| = \begin{cases}
 n_i + s & \text{if } |B_{r+1}| = 0 \\
 n_i + s - k & \text{if } 1 \leq |B_{r+1}| = k \leq s
\end{cases}
\]

for each \(2 \leq i \leq r \). Then it is clear that there exists \(\lambda \in SI_n \) such that \(A_1 \lambda \subseteq B_1 \), \(A_i \lambda = B_i \) for each \(2 \leq i \leq r \) and \(\text{cdom}(\lambda) = \text{cdom}(\alpha) \). Moreover, consider the partial injective transformation \(\mu : \text{im}(\beta) \rightarrow \text{im}(\alpha) \) in \(SI_n \) defined by \(b_i \mu = a_i \) for each \(1 \leq i \leq r \). Since \(A_i(\lambda \beta \mu) = a_i \) for each \(1 \leq i \leq r \) and \(\text{cdom}(\lambda \beta \mu) = A_{r+1} \), we have \(\alpha = \lambda \beta \mu \), as required.
Theorem 3.1
Notice that, since \(I \subseteq \text{dom}(\alpha) \) and that there exist \(\lambda, \mu \in \text{SI}_n \) such that \(\alpha = \lambda \beta \mu \). Then \(\text{dom}(\alpha) \subseteq \text{dom}(\lambda) \) and \(\text{dom}(\alpha) \lambda \subseteq \text{dom}(\beta) \), and so \(\text{dom}(\alpha) \lambda = \text{dom}(\beta) \). Since \(\alpha, \beta \in D^P_r \), it follows that \(\text{im}(\beta) \subseteq \text{dom}(\mu) \), and so \(\text{im}(\beta) \mu = \text{im}(\alpha) \). Thus, it is easy to see that \(\text{dom}(\beta) = \bigcup_{i=1}^n A_i \lambda \) and that

\[
\beta = \begin{pmatrix} A_1 \lambda & \cdots & A_r \lambda \\ a_1 \mu^{-1} & \cdots & a_r \mu^{-1} \end{pmatrix} B_{r+1},
\]

where \(B_{r+1} = \text{cdom}(\beta) \). Therefore, since \(|A_i| = |A_i \lambda| \) for each \(1 \leq i \leq r \), we have \(\text{copart}(\alpha) = \text{copart}(\beta) \), as required.

For \(1 \leq r \leq n - 1 \), let \(\alpha, \beta \in I_n \) with \(h(\alpha) = h(\beta) = r \). Then it is clear that \(h(\alpha \beta) = r \) if and only if \(\text{im}(\alpha) = \text{dom}(\beta) \).

3. Relative ranks
Notice that, since \(I_{n,r} \setminus I_n = PK_{n,r} \) is an ideal of \(I_{n,r} \), any generating set of \(I_{n,r} \) must contain a generating set of \(I_n \) for \(1 \leq r \leq n - 1 \). Thus, if \(W \subseteq I_{n,r} \) is a generating set of \(I_{n,r} \), then there exist \(U \subseteq D^P_r \cap W \) and \(V \subseteq I_n \cap W \) such that \(I_n = \langle V \rangle \) and \(I_{n,r} = \langle U \cup V \rangle = \langle U \cup I_n \rangle \). Therefore, any minimal relative generating set of \(I_{n,r} \) modulo \(I_n \) must be a subset of \(D^P_r \) for \(1 \leq r \leq n - 1 \).

Theorem 3.1 Let \(1 \leq r \leq n - 1 \) and \(U \subseteq PK_{n,r} \). Then \(I_{n,r} = \langle U \cup I_n \rangle \) if and only if, for each partition \(p = (n_1, \ldots, n_r) \in P_r(n) \), there exists \(\beta \in U \cap D^P_r \) such that \(\text{part}(\beta) = p \).

Proof (\(\Leftarrow \)) Let \(1 \leq r \leq n - 1 \). For each partition \(p = (n_1, \ldots, n_r) \in P_r(n) \), we fix an arbitrary element \(\beta_p \in U \cap D^P_r \) with \(\text{part}(\beta_p) = p \). Then we denote the set of all these fixed elements by \(V = \{ \beta_p \in U : p \in P_r(n) \} \).

For any element \(\alpha \in D^P_r \) either \(\alpha \in K_{n,r} \) or \(\alpha \in SPK_{n,r} \). If \(\alpha \in K_{n,r} \) with \(\text{copart}(\alpha) = \text{part}(\alpha) = (n_1, \ldots, n_r) = p \), then there exists \(\beta_p \in V \) such that \(\text{part}(\beta_p) = p \), and so it follows from Lemma 2.2 that there exist \(\lambda, \mu \in S_n \subseteq I_n \) such that \(\alpha = \lambda \beta_p \mu \). Now suppose that \(\alpha \in SPK_{n,r} \) with \(\text{copart}(\alpha) = (n_1, n_2, \ldots, n_r : s) \) where \(s \geq 1 \). Then there exists \(\beta_p \in V \) such that \(\text{part}(\beta_p) = (n_1 + s, n_2, \ldots, n_r) = p \) and so, it follows from Lemma 2.3 \((i) \) that there exist \(\lambda, \mu \in SI_n \subseteq I_n \) such that \(\alpha = \lambda \beta_p \mu \). Thus, the set \(V \cup I_n \) and so, the set \(U \cup I_n \) generates \(D^P_r \). Therefore, it follows from Lemma 2.6 given in [9] that \(U \cup I_n \) is a generating set of \(I_{n,r} \).

(\(\Rightarrow \)) For \(1 \leq r \leq n - 1 \), let \(U \subseteq PK_{n,r} \) be a relative generating set of \(I_{n,r} \) modulo \(I_n \), that is \(I_{n,r} = \langle U \cup I_n \rangle \). Then, for an arbitrary partition \(p \in P_r(n) \), consider an arbitrary element \(\beta \in D^P_r \) such that \(\text{part}(\beta) = p \). Since \(I_{n,r} = \langle U \cup I_n \rangle \), \(\beta \) can be written as a product of finitely many elements of \(U \cup I_n \). It follows from \(\beta \notin I_n \) that either \(\beta = \beta \delta \) or \(\beta = \alpha \beta \delta \) for some \(\beta_1 \in U \), \(\delta \in \langle U \cup I_n \rangle \subseteq I_{n,r} \) and \(\alpha_1 \in I_n \setminus \{\varepsilon\} \) where \(\varepsilon \) is the identity permutation on \(X_n \). Now let

\[
\gamma = \begin{cases}
\beta_1 & \text{if } \beta = \beta_1 \delta \\
\alpha_1 \beta_1 & \text{if } \beta = \alpha_1 \beta_1 \delta,
\end{cases}
\]

and so \(\beta = \gamma \delta \). Since \(X_n = \text{dom}(\beta) \subseteq \text{dom}(\gamma) \), it follows that \(\gamma \in T_n \) (and \(\alpha_1 \in S_n \) in the second case), and so \(\beta_1 \in T_n \) in both cases. Since \(h(\gamma) \geq h(\beta) = r \) and \(\beta_1 \in K_{n,r} \), it follows that \(\gamma, \beta_1 \in D^P_r \). Thus, since
ker(γ) ⊆ ker(β), we have ker(β) = ker(γ) and so,

\[p = \text{part}(β) = \text{part}(γ) = \text{part}(β_1). \]

Therefore, β₁ ∈ U ∩ Dᵣ and part(β₁) = p, as required.

As an immediate consequence, we have the following corollary:

Corollary 3.2 For each 1 ≤ r ≤ n − 1,

\[\text{rerank}(I_{n,r} : I_n) = p_r(n) \]

where pᵣ(n) is the number of partitions of n with r terms.

Notice that, since SIₙ,r \ SIₙ = SPKₙ,r is an ideal of SIₙ,r, any generating set of SIₙ,r must contain a generating set of SIₙ. Similarly, any minimal relative generating set of SIₙ,r modulo SIₙ must be a subset of Dₚⁿ ∩ SPKₙ,r = Dₚⁿ \ Dᵣ for each 1 ≤ r ≤ n − 1.

Theorem 3.3 Let 1 ≤ r ≤ n − 2 and U ⊆ SPKₙ,r. Then SIₙ,r = ⟨U ∪ SIₙ⟩ if and only if, for each partition \((n₁, \ldots, n_r) ∈ P_r(n − 1)\), there exists β ∈ U ∩ Dₚⁿ such that copart(β) = (n₁, \ldots, n_r : 1).

Proof (⇐) Let 1 ≤ r ≤ n − 2. For each partition \(p = (n₁, \ldots, n_r) ∈ P_r(n − 1)\), we fix an arbitrary element \(β_p ∈ U ∩ Dₚⁿ\) with copart(β_p) = (n₁, \ldots, n_r : 1). Then we denote the set of all these fixed elements by V = \(\{β_p ∈ U : p ∈ P_r(n − 1)\}\).

For any element \(α ∈ Dₚⁿ ∩ SPKₙ,r,\) let copart(α) = \((n₁, \ldots, n_r : s)\). Since s ≥ 1, we have \((n₁ + s − 1, n₂, \ldots, n_r) = p ∈ P_r(n − 1)\). Then there exists \(β_p ∈ V\) such that part(β_p) = p, so it follows from Lemma 2.3 (iii) (when \(k = 1\)) that there exist λ, μ ∈ SIₙ such that \(α = λβ_pμ\). Thus, the set V ∪ SIₙ, and so the set U ∪ SIₙ generates \(Dₚⁿ \setminus Dᵣ\). It follows from Lemma 2.6 in [9] that U ∪ SIₙ is a generating set of SIₙ,r.

(⇒) For 1 ≤ r ≤ n − 2, let U ⊆ SPKₙ,r be a relative generating set of SIₙ,r modulo SIₙ. Then, for an arbitrary partition \(p = (n₁, \ldots, n_r) ∈ P_r(n − 1)\), consider an arbitrary element \(β ∈ Dₚⁿ\) such that copart(β) = (n₁, \ldots, n_r : 1). Since SIₙ,r = (U ∪ SIₙ), β can be written as a product of finitely many elements of U ∪ SIₙ. It follows from the fact \(β \not∈ SIₙ\) that either \(β = β₁δ\) or \(β = α₁β₁δ\) for some \(β₁ ∈ U, α₁ ∈ SIₙ\), and \(δ ∈ SIₙ,r ∪ \{ε\}\) where \(ε\) is the identity permutation on Xₙ. Now let

\[γ = \begin{cases} β₁ & \text{if } β = β₁δ \\ α₁β₁ & \text{if } β = α₁β₁δ, \end{cases} \]

and so \(β = γδ\). Since |dom(β)| = 1 and dom(β) ⊆ dom(γ) ≠ Xₙ, we have dom(β) = dom(γ). Moreover, since h(γ) ≥ h(β) = r and β₁ ∈ SPKₙ,r, it follows that \(γ, β₁ ∈ Dₚⁿ\). Thus, since ker(γ) ⊆ ker(β) and dom(β) = dom(γ), we have ker(β) = ker(γ), so copart(β) = copart(γ).

Now let \(γ = β₁\), then clearly copart(β) = copart(β₁). Otherwise, since \(α₁ ∈ SIₙ\), we have dom(β) = dom(γ) ⊆ dom(α₁) and |dom(β)| = 1, we have dom(β) = dom(α₁) and im(α₁) = dom(β₁), so

\[\text{copart}(β) = \text{copart}(γ) = \text{copart}(β₁), \]

as claimed.

As an immediate consequence, we have the following corollary:
Corollary 3.4 For each $1 \leq r \leq n - 2$,
\[
\text{rerank}(SI_{n,r} : SI_n) = p_r(n - 1)
\]
where $p_r(n - 1)$ is the number of partitions of $n - 1$ with r terms.

Theorem 3.5 Let $1 \leq r \leq n - 1$ and $U \subseteq PK_{n,r}$. Then $PI_{n,r} = \langle U \cup SI_n \rangle$ if and only if, for each partition $\{A_1, \ldots, A_r\}$ of X_n, there exists $\beta \in U \cap D_r$ such that
\[
\text{ker}(\beta) = \bigcup_{i=1}^{r}(A_i \times A_i).
\]

Proof (\Rightarrow) For $1 \leq r \leq n - 1$, let $U \subseteq PK_{n,r}$ be a relative generating set of $PI_{n,r}$ modulo SI_n. Then, for an arbitrary partition $\{A_1, \ldots, A_r\}$ of X_n, consider an arbitrary element $\beta \in D_r \subseteq K_{n,r} \subseteq PI_{n,r}$ with
\[
\text{ker}(\beta) = \bigcup_{i=1}^{r}(A_i \times A_i).
\]
Since $PI_{n,r} = \langle U \cup SI_n \rangle$ and $\text{dom}(\beta) = X_n$, there exist $\beta_1 \in U \cap T_n$ and $\delta \in PI_{n,r} \cup \{\varepsilon\}$, where ε is the identity permutation on X_n, such that $\beta = \beta_1 \delta$. Then since $\beta_1 \in K_{n,r}$, $\text{ker}(\beta_1) \subseteq \text{ker}(\beta)$ and $h(\beta_1) \geq h(\beta) = r$, it follows that $h(\beta_1) = r$, so $\text{ker}(\beta) = \text{ker}(\beta_1)$. Therefore, $\text{ker}(\beta_1) = \bigcup_{i=1}^{r}(A_i \times A_i)$ and $\beta_1 \in U \cap D_r$, as required.

(\Leftarrow) Let $1 \leq r \leq n - 1$. Recall that $PK_{n,r}$ is the disjoint union of $SPK_{n,r}$ and $K_{n,r}$. Then consider any $\alpha \in SPK_{n,r}$ with $\text{copart}(\alpha) = (n_1, \ldots, n_r : s)$. Since $s \geq 1$, it follows from Lemma 2.3 (i) that for any $\beta \in D_r$ with $\text{part}(\beta) = (n_1 + s, n_2, \ldots, n_r)$ there exist $\lambda, \mu \in SI_n$ such that $\alpha = \lambda \beta \mu$. Therefore, since $K_{n,r} = \langle D_r \rangle$, to show $PI_{n,r} = \langle U \cup SI_n \rangle$ it is enough to show that $D_r \subseteq (U \cup SI_n)$.

For each partition $\mathcal{A} = \{A_1, \ldots, A_r\}$ of X_n into r subsets, we fix an arbitrary element $\beta_{\mathcal{A}} \in U \cap D_r$ such that $\text{ker}(\beta_{\mathcal{A}}) = \bigcup_{i=1}^{r}(A_i \times A_i)$. Then we denote the set of all these fixed elements by
\[
V = \{\beta_{\mathcal{A}} \in U : \mathcal{A} \text{ is a partition of } X_n \text{ into } r \text{ subsets}\}.
\]

For any $\alpha \in D_r$, let $\text{ker}(\alpha) = \bigcup_{i=1}^{r}(A_i \times A_i)$ where $\mathcal{A} = \{A_1, \ldots, A_r\}$ is a partition of X_n. Then there exists $\beta_{\mathcal{A}} \in V \subseteq U \cap D_r$ such that $\text{ker}(\beta_{\mathcal{A}}) = \bigcup_{i=1}^{r}(A_i \times A_i)$. Let $A_i \beta_{\mathcal{A}} = b_i$ for $1 \leq i \leq r$. Now consider the map $\delta : \text{im}(\beta_{\mathcal{A}}) \to \text{im}(\alpha)$ defined by $b_i \delta = A_i \alpha$ for each $1 \leq i \leq r$. Then it is clear that $\delta \in SI_n$ and that $\alpha = \beta_{\mathcal{A}} \delta \in \langle U \cup SI_n \rangle$, as required.

As an immediate consequence, we have the following corollary:

Corollary 3.6 For each $1 \leq r \leq n - 1$,
\[
\text{rerank}(PI_{n,r} : SI_n) = S(n,r)
\]
where $S(n,r)$ is the Stirling number of the second kind.

Proof The proof follows from the fact that the number of partitions of X_n into r subsets is $S(n,r)$.

References

[4] Ayik H, Bugay L. Generating sets of finite transformation semigroups \(PK(n, r) \) and \(K(n, r) \). Communications in Algebra 2015; 43: 412-422.

2225